String Compactifications and low-energy SUSY: The last attempts?

F. Quevedo, ICTP/Cambridge Strings 2015, Bangalore, June 2015

Collaborations with (linear combinations of): L. Aparicio, M. Cicoli, B Dutta, D. Klevers, S. Krippendorf, A. Maharana, C. Mayrhofer, F. Muia, R. Valandro arXiv:1312.0014, arXiv:1409.1931, arXiv:1502.05672, + to appear

Low-energy SUSY Bottom-up Recall:

Hierarchy problem

Gauge coupling unification

• (Thermal) WIMP Dark matter

• **REWSB**

Top-down: SUSY in 4D Strings

★ Calabi-Yau compactifications N=1 ✓

CHSW 85

★ Moduli stabilisation ✓?

★ SUSY breaking: ✓?

- Fluxes (GKP),
- Nonperturbative effects (racetrack),
- Antibranes (KKLT)

Strings, MSSM and LHC

- Accept 1/100-1/1000 tuning as 'natural'
- Extend the MSSM
- Address hierarchy problem differently within SUSY
 - Tuned MSSM
 - Split SUSY (heavy sfermions, TeV fermions)
 - Large SUSY breaking scale

Non-SUSY approaches to hierarchy problem

Golden opportunity for string scenarios

String Phenomenology:

Long-term goal: String theory scenarios that satisfy all particle physics and cosmological observations and hopefully lead to measurable predictions

Progress in several ways

'Generic' model independent results

Explicit constructions of (classes) of models

• Explicit computations of EFT

• Extract scenarios that can lead to eventually 'testable' predictions.

Generic 4D String Predictions'

 SUSY, small irreps, branes, fluxes, axions, no global symmetries,...

Cosmological Moduli Problem (unless M_{moduli}>30 TeV)

Cosmological Moduli 'Problem'

Coughlan et al 1983, Banks et al, de Carlos et al 1993

SUSY Challenges for String Scenarios

- Explicit N=1 Compactification
- Concrete SUSY breaking mechanism
- Moduli Stabilisation (small cc) (+ avoid CMP (plus gravitino+ dark radiation excess,etc!)
- Chiral visible sector
- Computable soft terms

IIB MODULI STABILISATION

4-cycle size: *τ* (Kahler moduli)

3-cycle size: U (Complex structure moduli) + Dilaton S

Concrete Scenarios

• IIB (F-theory)

• IIA

• Heterotic

G2 manifolds

LARGE Volume Scenario

Fluxes determine superpotential W₀ (U,S) (GKP 2003) **Perturbative corrections to K:** $K = -2\ln\left(\mathcal{V} + \frac{\hat{\xi}}{2}\right)$ Nonperturbative contributions to W: $W_{np} = \sum_{i} A_{i} e^{-a_{i}T_{i}}$ $V_F \propto \left(\frac{K^{S\bar{S}}|D_SW|^2 + K^{a\bar{b}}D_aW\bar{D}_{\bar{b}}\bar{W}}{\mathcal{V}^2}\right) + \left(\frac{Ae^{-2a\tau}}{\mathcal{V}} - \frac{Be^{-a\tau}W_0}{\mathcal{V}^2} + \frac{C|W_0|^2}{\mathcal{V}^3}\right)$ $\mathcal{V} \sim e^{a\tau}$ with $\tau \sim \text{Re S} \sim 1/g_s > 1.$

Exponentially large volume for weak coupling ! (SUSY broken by Fluxes, AdS) BBCQ, CQS 2005

LVS Conditions

Need 1<h₁₁<h₁₂ (~half Calabi-Yau's)

Generic values of W_{flux} (.1<W_{flux}<1000)

Explicit Chiral Models

Concrete Compactifications

- From explicit compact Calabi-Yau + Chiral matter
 Cicoli, Klevers, Krippendorf, Mayrhofer, FQ, Valandro arXiv:1312.0014
- Fully supersymmetric EFT
- All geometric moduli stabilised
- Volume only moderately large V~10⁶-10⁷
- Sequestered scenario:<T_{SM}>=0, <F_{TSM}>=0

dS Kahler Moduli Stabilisation

$$V_{F}^{\text{tot}} = V_{\text{np}} + V_{\alpha'} + V_{\text{soft}}$$

$$V_{\text{np}} = \frac{8}{3\lambda} (a_{s}A_{s})^{2} \sqrt{\tau_{s}} \frac{e^{-2 a_{s}\tau_{s}}}{\mathcal{V}} - 4 a_{s}A_{s} |W_{0}| \tau_{s} \frac{e^{-a_{s}\tau_{s}}}{\mathcal{V}^{2}}$$

$$V_{\alpha'} = \frac{3}{4} \frac{\zeta |W_{0}|^{2}}{g_{s}^{3/2} \mathcal{V}^{3}}$$

$$V_{\text{soft}} = p \frac{|W_{0}|^{2}}{\mathcal{V}^{8/3} [\ln (\mathcal{V}/|W_{0}|)]^{2}}$$

$$U_{\alpha'} = \frac{1}{4 \times 10^{6}} \frac{|W_{0}|^{2}}{4 \times 10^{6}}$$

Relevant Scales

String Scale
$$M_s = rac{g_s^{1/4} M_P}{\sqrt{4\pi \mathcal{V}}},$$

Kaluza Klein Scale
$$M_{KK} \simeq \frac{M_P}{\sqrt{4\pi} \mathcal{V}^{2/3}}$$
,

Gravitino mass
$$m_{3/2} \simeq \left(rac{g_s^2}{2\sqrt{2\pi}}
ight) rac{W_0 M_P}{\mathcal{V}}$$
 .

Volume modulus mass

$$m_{\mathcal{V}} \simeq m_{3/2}/\sqrt{\mathcal{V}}.$$

Non-generic Implications

- Usually moduli masses = m_{3/2}
- And assume soft terms = m_{3/2}
- Identify m_{3/2}=1 TeV

But LVS is nongeneric scenario

- Volume modulus mass<<m_{3/2}
- So CMP more acute than expected!
- Soft terms?

SUSY EFT

$$W_{\text{matter}} = \mu(M)H_uH_d + \frac{1}{6}Y_{\alpha\beta\gamma}(M)C^{\alpha}C^{\beta}C^{\gamma} + \cdots$$

 $K_{\text{matter}} = \tilde{K}_{\alpha}(M, \overline{M})\overline{C}^{\overline{\alpha}}C^{\alpha} + \left[Z(M, \overline{M})H_{u}H_{d} + \text{h.c.}\right].$

Yukawas
$$\hat{Y}_{\alpha\beta\gamma} = e^{K/2} \frac{Y_{\alpha\beta\gamma}(U,S)}{\sqrt{\tilde{K}_{\alpha}\tilde{K}_{\beta}\tilde{K}_{\gamma}}}$$

Conlon, Cremades, FQ + Conlon, Witkowski

• Approximate: 'Local' $\tilde{K}_{\alpha} = h_{\alpha}(S, U) e^{K/3}$ • Exact: 'Ultralocal'

SUSY Breaking

Fluxes break SUSY

- In EFT: F-terms of Kahler moduli (plus subdominant F_s, F_u)
- Standard Model on a D3 or D7 brane

Several scenarios

Compactification

Different SUSY Scenarios

Scenario	String Scale	W_0	$m_{3/2}$	Soft masses	CMP
Intermediate Scale	$10^{11} { m GeV}$	$\mathcal{O}(1)$	$1 { m TeV}$	$M_{soft} \sim 1 { m ~TeV}$	Yes
Tuned GUT Scale	$10^{15} { m GeV}$	10^{-10}	$1 { m TeV}$	$M_{soft} \sim 1 { m ~TeV}$	Yes
Generic GUT Scale	$10^{15}~{\rm GeV}$	$\mathcal{O}(1)$	$10^{10}~{\rm GeV}$	$M_{soft} \sim 10^{10} { m GeV}$	No
Sequestered Unsplit	$10^{15}~{\rm GeV}$	$\mathcal{O}(1)$	$10^{10}~{\rm GeV}$	$M_{soft} \sim \frac{m_{3/2}}{V} \sim 1 \text{ TeV}$	No
Sequestered Split	$10^{15}~{\rm GeV}$	$\mathcal{O}(1)$	$10^{10} \ {\rm GeV}$	$M_{1/2} \sim \frac{m_0}{\mathcal{V}^{1/2}} \sim \frac{m_{3/2}}{\mathcal{V}} \sim 1 { m TeV}$	No

- First two not yet obtained from compact CY+ chiral matter
- 3rd: high scale SUSY breaking (e.g. Ibanez et al.)
- 4th +5th SUSY 'solve' hierarchy small 'tuning' by flux dependence of GUT soft terms.

Sequestered Soft Terms

Soft term	Local Models	Ultra Local 1	Ultra Local 2			
$M_{1/2}$	$c_{1/2} m_{3/2} \frac{m_{3/2}}{M_P} \left[\ln \left(\frac{M_P}{m_{3/2}} \right) \right]^{3/2}$					
m_{lpha}^2	$c_0 m_{3/2} M_{1/2}$	$c_0 \frac{m_{3/2} M_{1/2}}{\ln(M_P/m_{3/2})}$	$(c_0)_{\alpha} M_{1/2}^2$			
$A_{lphaeta\gamma}$	$(c_A)_{\alpha\beta\gamma} M_{1/2}$					
$\hat{\mu}$	$c_{\mu} M_{1/2}$					
$B\hat{\mu}$	$c_B m_0^2$					

Coefficients c: functions of fluxes

Cosmology:

Use CMP as a guide for low energy physics

Constraints on the volume

- Validity of EFT (m_{3/2}<<M_{kk}) : V>>10³
- CMP (m_{volume}>30 TeV): V<10⁹

Ranges of relevant scales (GeV)

Thermal History

Alternative History

From S. Watson, SUSY 2013

Volume Reheating*

*Sequestered scenarios

M.Cicoli, J.P. Conlon, FQ arXiv:1208.3562 T. Higaki, F.Takahashi arXiv:1208.3563

$$\begin{split} \Gamma_{\Phi \to a_{b}a_{b}} &= \frac{1}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}}. & \text{Volume axion } a_{b} \\ \Gamma_{\Phi \to H_{u}H_{d}} &= \frac{2Z^{2}}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Higgses} \\ \Gamma_{\Phi \to BB} &= \left(\frac{\lambda}{3/2}\right)^{2} \frac{9}{16} \frac{1}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Closed string axions} \\ \Gamma_{\Phi \to C\bar{C}} &\sim \frac{m_{0}^{2}m_{\Phi}}{M_{P}^{2}} \ll \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Matter scalars C} \\ \hline T_{reheat} &\sim \frac{m_{\Phi}^{3/2}}{M_{Pl}^{1/2}} \sim 0.6 \ \text{GeV} \left(\frac{m_{\Phi}}{10^{6} \text{GeV}}\right)^{3/2}. \end{split}$$

Dark Radiation

Energy density:

$$\rho_{total} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{eff} \right).$$

Standard Model N_{eff}=3.04 At CMB: WMAP, ACT, SPT

Planck 2015: $N_{eff} = 3.13 \pm 0.32$ (68% CL)

$$3.12 \, \kappa \leq \Delta N_{eff} \leq 3.48 \, \kappa \ \kappa = (1 + 9 n_a / 16) / n_H Z^2$$

Simplest Z=1: $1.56 \leq \Delta N_{eff} \leq 1.74$ General: Strong constraints on matter and couplings!

Phenomenology

Nonthermal CMSSM*

 $T_{rh} < T_f = m/20$

- Assume: CMSSM parameters (M,m,A,tanβ, signµ plus T_R)
- REWSB with ≈125 GeV Higgs
- Constraints:

```
Colliders (LEP, LHC)
CMB (Planck)
Direct DM dtection (LUX, XENON100, CDMS, IceCube)
Indirect DM detection (Fermi)
```

* Warning: at this stage is purely phenomenological not stringy!

Collider and CMB constraints

Direct and Indirect DM Constraints

Survivors

Neutralino Higgsino-like saturates Planck's density for m=300 GeV, T_R=2 GeV

LHC signatures: Monojets + soft leptons + ME Vector boson fusion jets + large ME

Large scale and split SUSY?

In progress: strong Higgs mass constraints, explicit determination of splitting m~V^{1/2} M

Pardo+Villadoro 2015

CONCLUSIONS

- Global embedding CY and Moduli Stabilisation Several SUSY breaking scenarios (tuning at UV, low T_R)
- Most known ingredients used: geometry, fluxes, branes, perturbative, non-perturbative effects
- Cosmology-Phenomenology interplay
- Complicated models (but recall SM is ugly)
- Many open questions (MSSM, large scales, etc.
 + formal aspects)