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Motivation: non-equilibrium QFT dynamics

- What is the correct Wilsonian treatment of low energy dynamics in mixed
states of a QFT?

+ There is a reasonably good phenomenological understanding, but the
theoretical underpinnings are not yet fully understood.

+ The entanglement of the system with an external reservoir is central to the
discussion.

+ There are many reasons to be interested in this question:
* intrinsic interest from QFT and many-body physics standpoint.

* dynamics of black holes via AdS/CFT.

* cosmology.



A mICroscopic perspective

+ Doubling: Mixed states of a QFT can be purified by introducing an ancillary
system. Focus on pure states in tensor product Hilbert space.

+ Central to the Schwinger-Keldysh formalism developed to compute real
time correlation functions in QFTs.
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Macroscopic phenomenology

A
+ Equilibrium dynamics can be understood by P2 P—
working with Euclidean generating functions, etc.. g |
+ Linear fluctuations are captured by Schwinger- g ﬁé”;;;;;;;%;;
T Mo .,;;;ﬁ.r-zrfwrpa'rr AR
Keldysh, while long-wavelength fluctuations are i | |
described by hydrodynamic effective field theory.
Linear response regime
+ General non-equilibrium dynamics is theoretical siobal I .
terra incognita. equilibrium

+ Integrating out high energy modes starting from microscopic Schwinger-
Keldysh leads to coupling between L and R encoded in influence
functionals. Feynman, Vernon ‘63

+ What influence functionals are consistent with microscopic unitarity?



Hydrodynamics |: macroscopic fields

+ Hydrodynamics describes near-equilibrium
dynamics, capturing long-wavelength
fluctuations about a Gibbs density matrix.

+ The doubled microscopic variables are

replaced by collective coordinates W:

* temperature and chemical potential

| . T, u, ut, utu, = —1
and a flux vector (fluid velocity)
* background metric and
. : g,uwA,u
electromagnetic potential
ut o u’
H=_— Ag=—=——A,
- B=T STT T

thermal vector e thermal twist



Hydrodynamics Il: Constrained dynamics

+ Constitutive relations: monitor conserved currents, energy momentum,
charge, etc.. as functionals of the hydrodynamic fields.

+ Dynamics is conservation modulo work and anomaly terms, subject to a
constraint: local form of the second law of thermodynamics is upheld.

EH =V, T — J, - F" — Tl =0 Ej=D,J"—Jy =0
.xﬂ Yook «
work term ™ covariant anomalies
- Jg[\IJ] .V Wonshell Vujg[\If] >0

+ Ample evidence from kinetic theory, fluid/gravity correspondence etc., that
this is the correct macroscopic picture.



—ntropy from an emergent symmetry

+ A-priori the entropy current is curious; a current not associated with any
underlying symmetry principle, but emergent at low energies.

+ Clue from gravity: black hole entropy is a Noether charge. lyer, Wald ‘94

+ Posit existence of a macroscopic Abelian symmetry, KMS gauge symmetry,
which couples to the entropy current.

+ The symmetry is dynamical and Higgsed at the thermal scale, leading to
physical effects such as entropy production etc..

+ KMS gauge symmetry controls low energy influence functionals ensuring
that they respect the second law.



Wherefromm KMS gauge symmetry?

+ Q: What are the acceptable solutions to the axioms of hydrodynamics, i.e.,
what constitutive relations are consistent with the second law?

+ Theorem: Hydrodynamic transport can be classified in an eightfold way.
There are seven adiabatic classes and a class of dissipative transport. In
addition we have a class of forbidden constitutive relations which can be
determined by studying hydrostatic equilibrium.

+ This theorem was proved by studying an off-shell reformulation of the
second law using the adiabaticity equation:

Vudg +BuEL + (Ag+B%An)E, =A >0



Aside: Free energy current

+ The structures are clearer if we introduce the Gibbs free energy current,
switching from a microcanonical to grand-canonical language:

LS JE BT+ (Mgt B AL I

+ The off-shell second law encoded in the adiabaticity equation then reads

G? G 1
Vol 2= ) - ZHE = —Z T 65q,, — J* - 6gA, + A

5Bg,uV — OEI@gluy — V,LL/BV + vVﬁM? d'ﬁeomOrph|Sm
6, A, = £gA, +0,MAg+[A,,Ag] tlavour gauge transformation

along the thermal vector & twist.



—ightfold classification of hydrodynamic transport

4+ Second law:

* forbids HE.

* D terms sign-definite

only at leading order.

Anomalous

e
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Cightfold effective action”

Nicolis, Son ’'11;
B: Haehl, MR '13;
Geracie, Son ‘14

Dubovsky, Nicolis, Hui ’12;
Haehl, Loganayagam, MR '13



. andau-Ginzburg sigma models

+ Class L: effective action is just a sigma model parameterized by a scalar
functional (free energy density) L[¥].

+ Adiabaticity equation: Off-shell Bianchi identity from invariance under
diffeomorphisms and flavour transformations.

+ Dynamics: current conservation obtained from a constrained variational
principle. Fix reference configuration & vary the pullback maps.

. x* = p%(z) worldvolume
physical

fluid

reference

{gabaAa} . .
configuration

B = {B*, Ag}

M



Symmetry from the eightfold way

+ For the remaining 6 classes we took the microscopic Schwinger-Keldysh
picture, and lessons from anomalous transport seriously.

+ Empirically we stumbled upon a framework which captured all of the
adiabatic transport in a single Lagrangian density (for the 7 classes).

+ We however needed a symmetry principle to rule out He: KMS invariance.

« the background sources {9y Ap}
o the fluid fields {B",Ag}
e partners for the sources (G, A} “Schwinger-Keldysh" partners

KMS gauge field AT, ensures adiabaticity, forbids Hr



The Eightfold Lagrangian

+ The Lagrangian density is actually very simple:

1 . _ o
‘CT — §TMV9MV_I_JM,A’UJ_?AS_T)

+ It works to give precisely the desired seven classes and reduces in special
cases to non-dissipative effective actions considered in the literature.

+ The free energy current is the Noether current associated with the KMS
flavour invariance.

+ The linear couplings to the partners is highly suggestive of structures
encountered in analysis of linear dissipative systems and topological sigma
models.

+ Take the symmetry seriously and attempt to work out a full theory including
dissipation.



Schwinger-Keldysh doubling & symmetries: |

+ Doubling fields (operators), sources, etc., implies some redundancy. Difference
operators reside in a topological sector as their correlators vanish identically.

B 1
HOM — 1 Qsk, Dsk Oar = 5 (Or +OL)

Ouair = Or — O,
OL%L l o,

Oaif = Qsr(--)

+ This is a field redefinition symmetry ensuring that we get the correct time

ordering prescription.



Schwinger-Keldysh doubling & symmetries: ||

+ A second topological symmetry arises from the KMS condition operating in
equilibrium thermal systems (Euclidean periodicity)

Oret — (1+f6) OR"‘fﬁ OL) Oad/v :OR_OL

+ The symmetry is non-local, but approximate locality is attained in the high temperature limit.

— 3 Oxwms,QKMS



Srownian branes

+ Hydrodynamics: low energy theory of spontaneously broken difference
diffeomorphisms and flavour transformations, with emergent U(1)r symmetry.

+ Brownian p-branes: Worldvolume dynamics captured by a gauged

topological sigma model (balanced TQFT) incorporating: Diikgraaf, Moore ‘96

field redefinition KMS U(1)

Qsk » sk Qrms , QxS
supercharge supercharge

+ The equivariant cohomology construction for thermal diffeomorphisms and
flavour transformations captures the topological sector of the theory.

Vafa, Witten 94

+ Physical fluid observables can be constructed for space-filling Brownian
branes by deforming the theory to include sources for the average fields.



Srownian particles

+ A particularly simple case of the general set-up is a Brownian O-brane, a
particle, usually captured by the Langevin equation (with noise).

oV
—Exzmizi+775:i:—|—a—:nxf, r ¢ — stochastic
x

+ This system is described by a Schwinger-Keldysh like an effective action

~ 0&
~ . ~9 . x
L, =T& +inT” — i . (0 Martin, Siggia, Rose ‘73

. 2 Mathai, Quillen ‘86

m :
=5 (CER — :E2L) + L1r(TR, L) + ghosts

+ This is a familiar topological field theory being described by the Morse
theory supersymmetric quantum mechanics model. Witten ‘82

+ The general Bp-brane is more complicated but follows along similar lines.



Some consistency checks

+ The gauge-fixed theory with BRST ghosts set to zero agrees with the
eightfold effective action.

+ The partner fields are Lagrange multiplier fields of BRST symmetry
enforcing physical constitutive relations.

+ For linear dissipative systems the macroscopic manifestation of KMS, viz., the
fluctuation-dissipation theorem, is naturally incorporated in the Brownian
brane theory (in BRST ghost kinetic terms).

+ Supported by the picture of Brownian motion in AdS/CFT wherein one
monitors the stochastic fluctuations of a quark in a hot plasma.

de Boer, Hubeny, MR, Shigemori '08
Son, Teaney ‘09



—ightfold classification of physical fluids

+ The stress tensor for a neutral conformal fluid in the eightfold basis is

- —
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+ Explicit results for transport from holography, kinetic theory lend excellent
support the eightfold classification.

Baier et. al.; Bhattacharyya et. al., ‘07 York, Moore ‘08

+ Some interesting accidental(?) relations in Einstein gravity

Al =K, Ao =2(k—1T) Haack, Yarom '08



Holographic fluids

+ Transport coefficients for holographic fluids (sans viscosity) up to second
order can be obtained from a simple effective action:

ArT\ ArT\E2[ W 1 1 y
LY = cop (%) — Coff <7T7) [(d _RQ) + 5 w? + = Harmonic (a — 1) 02]

+ First principles derivation from gravitational dynamics?

Nickel, Son ‘10 de Boer et. al., Crossley et. al., ‘15
cf., Heemskerk, Polchinski; Faulkner, Liu, MR ’10

+ Optimum dissipation conjecture: Holographic fluids not only attain the

minimum allowed value of shear viscosity, but also ensure that the entropy
oroduction in any fluid flow is minimized.



Summary & Open Questions

+ Basic story: a topological field theory with emergent gauge symmetry
underlies the low energy dynamics of near-equilibrium states of a QFT.

+ Construction aided in large part by a complete solution to the structural
aspects of relativistic hydrodynamics.

+ Connections with generalized fluctuation-dissipation theorems?
+ AdS/CFT derivation of the Brownian brane dynamics?

+ Implications for black hole physics?

+ Scrambling rates, equilibration, chaos?

+ General principles for out-of-equilibrium dynamics?

More Qs: Section 192 of 1502.00636



It is rather fitting that in the centennial year of three theoretical milestones:
* Einstein’s theory of General Relativity
* Schwarzschild’s discovery of the first black hole solution
* Noether's understanding of symmetries and conservation laws

we yet again encounter an interplay of some of these principles, which may
pave the way for a better understanding of non-equilibrium dynamics of QFTs.
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