

Brownian branes, emergent symmetries, and hydrodynamics

Mukund Rangamani

JUNE 23, 2015

F. Haehl, R. Loganayagam, MR

[1502.00636], work in progress [1412.1090], [1312.0610]

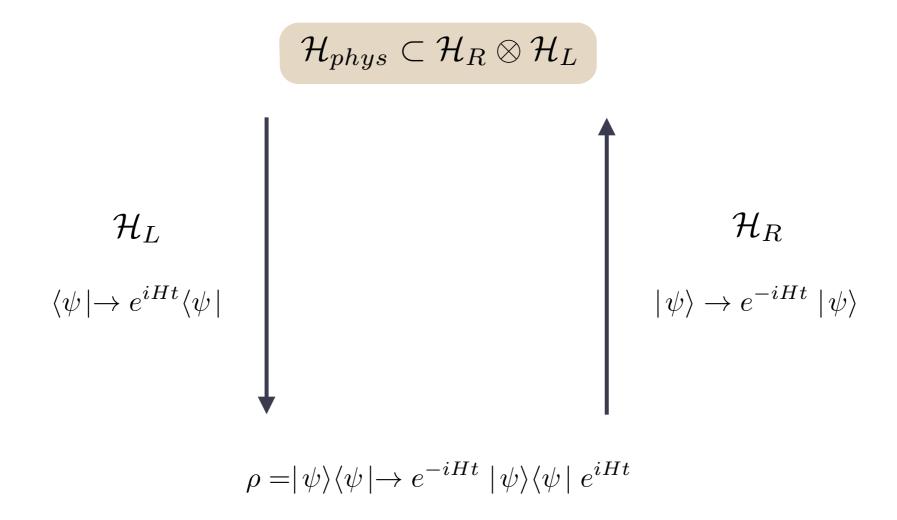
Loganayagam's Talk Thursday 02:30 (Parallel session I)

Motivation: non-equilibrium QFT dynamics

- What is the correct Wilsonian treatment of low energy dynamics in mixed states of a QFT?
- ◆ There is a reasonably good phenomenological understanding, but the theoretical underpinnings are not yet fully understood.
- ◆ The entanglement of the system with an external reservoir is central to the discussion.
- → There are many reasons to be interested in this question:
 - * intrinsic interest from QFT and many-body physics standpoint.
 - * dynamics of black holes via AdS/CFT.
 - * cosmology.

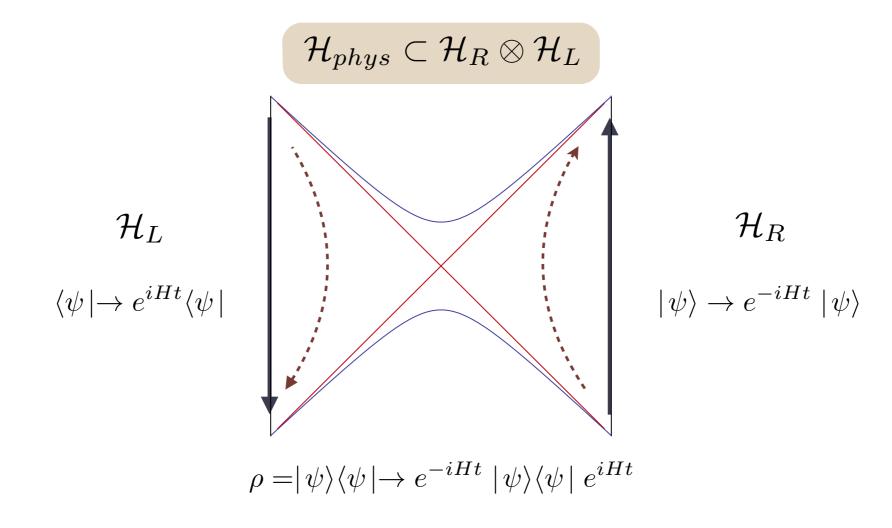
A microscopic perspective

- ◆ **Doubling**: Mixed states of a QFT can be purified by introducing an ancillary system. Focus on pure states in tensor product Hilbert space.
- ◆ Central to the Schwinger-Keldysh formalism developed to compute real time correlation functions in QFTs.



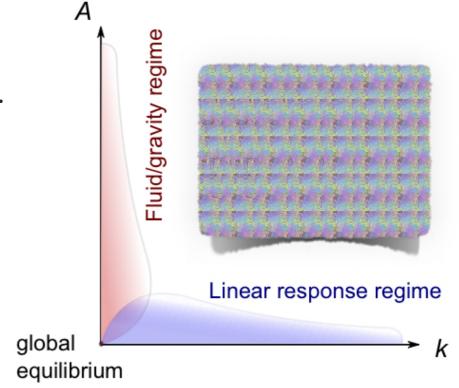
A microscopic perspective

- ◆ **Doubling**: Mixed states of a QFT can be purified by introducing an ancillary system. Focus on pure states in tensor product Hilbert space.
- ◆ Central to the Schwinger-Keldysh formalism developed to compute real time correlation functions in QFTs.



Macroscopic phenomenology

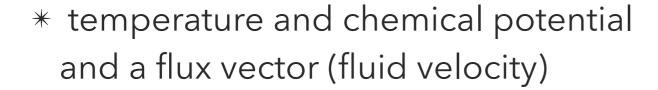
- ◆ Equilibrium dynamics can be understood by working with Euclidean generating functions, etc..
- ◆ Linear fluctuations are captured by Schwinger-Keldysh, while long-wavelength fluctuations are described by hydrodynamic effective field theory.
- ◆ General non-equilibrium dynamics is theoretical terra incognita.

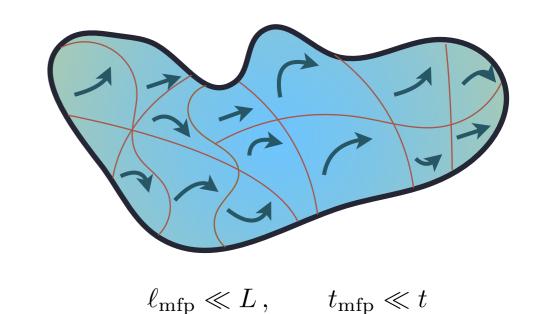


- ◆ Integrating out high energy modes starting from microscopic Schwinger-Keldysh leads to coupling between L and R encoded in *influence* functionals.
 Feynman, Vernon '63
- ◆ What influence functionals are consistent with microscopic unitarity?

Hydrodynamics I: macroscopic fields

- → Hydrodynamics describes near-equilibrium dynamics, capturing long-wavelength fluctuations about a Gibbs density matrix.
- \star The doubled microscopic variables are replaced by collective coordinates Ψ :





$$T, \mu, u^{\mu}, \qquad u^{\mu} u_{\mu} = -1$$

$$g_{\mu\nu}, A_{\mu}$$

$$\mathcal{A}^{\mu} \equiv \frac{u^{\mu}}{T} \;, \qquad \Lambda_{\beta} \equiv \frac{\mu}{T} - \frac{u^{\sigma}}{T} A_{\sigma}$$
 thermal vector thermal twist

Hydrodynamics II: Constrained dynamics

- ◆ Constitutive relations: monitor conserved currents, energy momentum, charge, etc.. as functionals of the hydrodynamic fields.
- ◆ Dynamics is conservation modulo work and anomaly terms, subject to a constraint: local form of the second law of thermodynamics is upheld.

$$\mathcal{E}_T^\mu = \nabla_\nu T^{\mu\nu} - J_\nu \cdot F^{\mu\nu} - T_H^{\mu\perp} = 0$$

$$\mathcal{E}_J = D_\mu J^\mu - J_H^\perp = 0$$
 work term covariant anomalies
$$\exists \ J_S^\mu[\Psi]: \ \forall \ \Psi_{\text{on-shell}} \,, \qquad \nabla_\mu J_S^\mu[\Psi] \geq 0$$

◆ Ample evidence from kinetic theory, fluid/gravity correspondence etc., that this is the correct macroscopic picture.

Entropy from an emergent symmetry

- ◆ A-priori the entropy current is curious; a current not associated with any underlying symmetry principle, but emergent at low energies.
- ◆ Clue from gravity: black hole entropy is a Noether charge. lyer, Wald '94
- ◆ Posit existence of a macroscopic Abelian symmetry, KMS gauge symmetry, which couples to the entropy current.
- ◆ The symmetry is dynamical and Higgsed at the thermal scale, leading to physical effects such as entropy production etc..
- ★ KMS gauge symmetry controls low energy influence functionals ensuring that they respect the second law.

Wherefrom KMS gauge symmetry?

- ◆ Q: What are the acceptable solutions to the axioms of hydrodynamics, i.e., what constitutive relations are consistent with the second law?
- ◆ Theorem: Hydrodynamic transport can be classified in an eightfold way. There are seven adiabatic classes and a class of dissipative transport. In addition we have a class of forbidden constitutive relations which can be determined by studying hydrostatic equilibrium.
- ◆ This theorem was proved by studying an off-shell reformulation of the second law using the adiabaticity equation:

$$\nabla_{\mu}J_{S}^{\mu} + \beta_{\mu}\,\mathcal{E}_{T}^{\mu} + (\Lambda_{\beta} + \beta^{\alpha}A_{\alpha})\,\mathcal{E}_{J} = \Delta \geq 0$$

Aside: Free energy current

◆ The structures are clearer if we introduce the Gibbs free energy current, switching from a microcanonical to grand-canonical language:

$$-\frac{\mathcal{G}^{\sigma}}{T} = J_S^{\sigma} + \beta_{\nu} T^{\nu\sigma} + (\Lambda_{\beta} + \beta^{\alpha} A_{\alpha}) \cdot J^{\sigma}$$

◆ The off-shell second law encoded in the adiabaticity equation then reads

$$\nabla_{\sigma} \left(\frac{\mathcal{G}^{\sigma}}{T} \right) - \frac{\mathcal{G}_{H}^{\perp}}{T} = -\frac{1}{2} T^{\mu\nu} \delta_{\mathcal{B}} g_{\mu\nu} - J^{\mu} \cdot \delta_{\mathcal{B}} A_{\mu} + \Delta$$

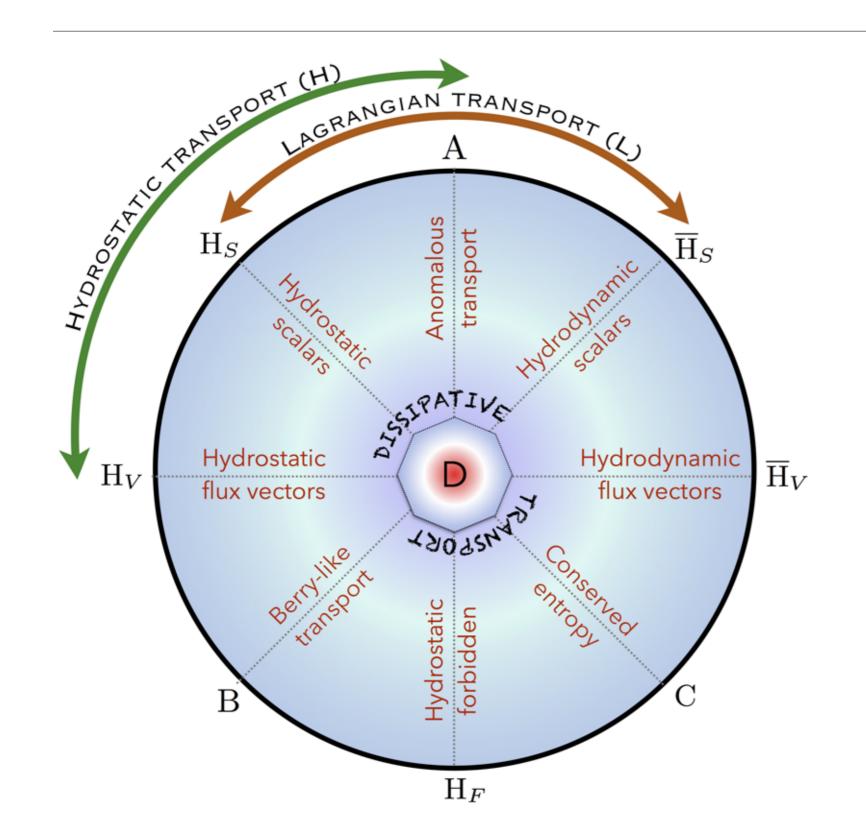
$$\vdots \qquad \vdots \qquad \vdots$$

$$\delta_{\mathfrak{B}}g_{\mu\nu} \equiv \pounds_{\boldsymbol{\beta}}g_{\mu\nu} = \nabla_{\mu}\boldsymbol{\beta}_{\nu} + \nabla_{\nu}\boldsymbol{\beta}_{\mu}, \quad \text{diffeomorphism} \qquad \vdots$$

$$\delta_{\mathfrak{B}}A_{\mu} \equiv \pounds_{\boldsymbol{\beta}}A_{\mu} + \partial_{\mu}\Lambda_{\boldsymbol{\beta}} + [A_{\mu},\Lambda_{\boldsymbol{\beta}}] \quad \text{flavour gauge transformation}$$

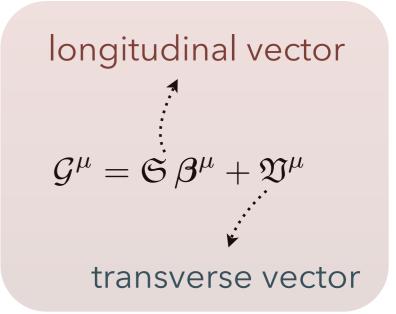
along the thermal vector & twist.

Eightfold classification of hydrodynamic transport

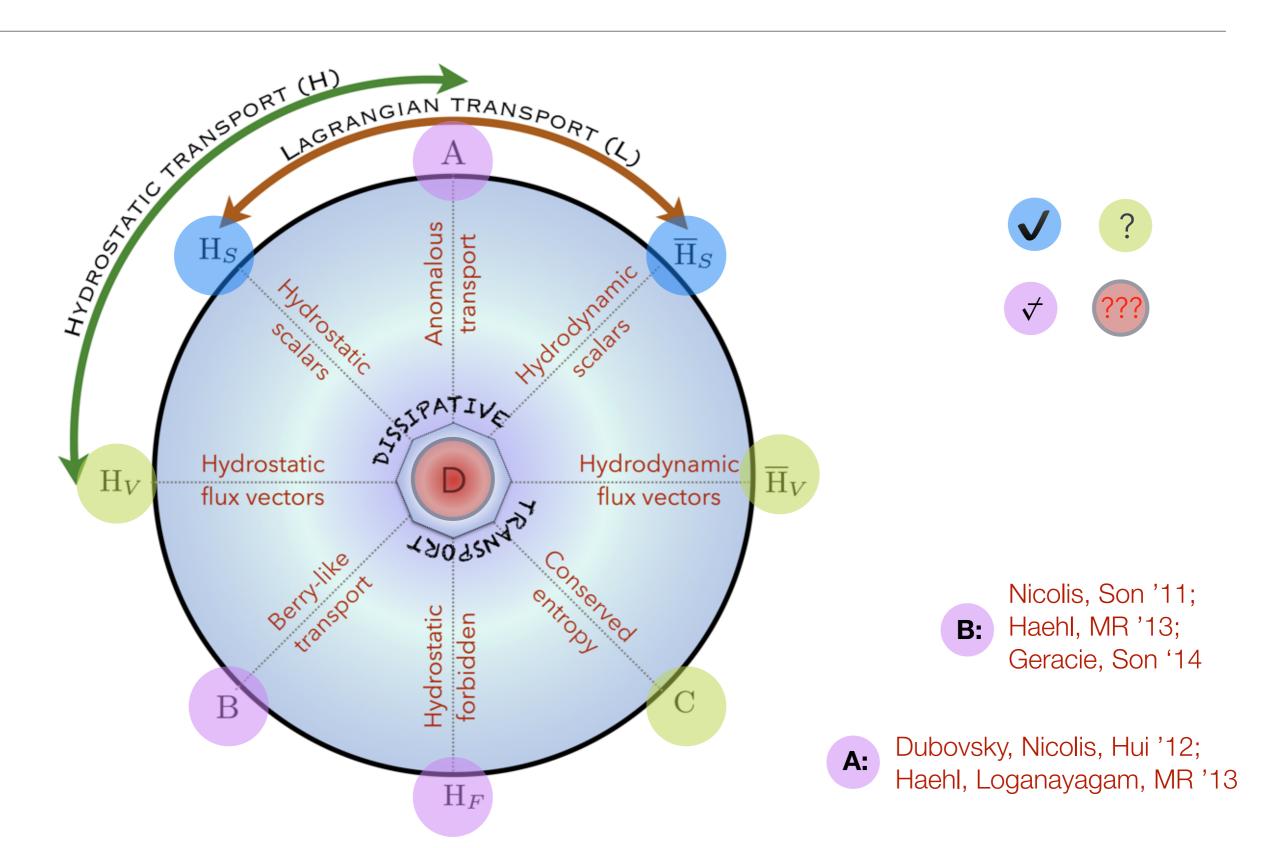


- ◆ Second law:
- * forbids H_F.
- * D terms sign-definite only at leading order.

S. Bhattacharyya ['13-'14]

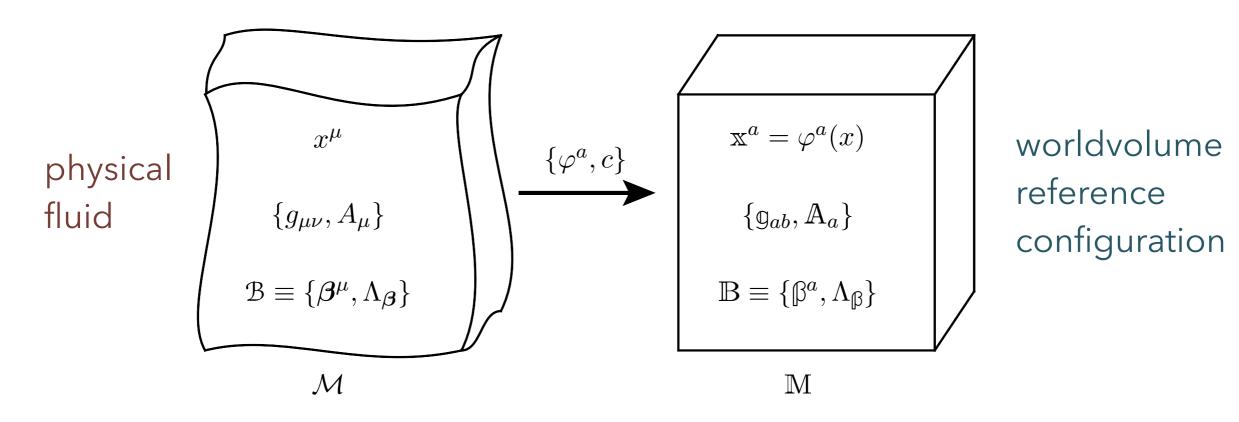


Eightfold effective action?



Landau-Ginzburg sigma models

- ♦ Class L: effective action is just a sigma model parameterized by a scalar functional (free energy density) $\mathcal{L}[\Psi]$.
- ◆ Adiabaticity equation: Off-shell Bianchi identity from invariance under diffeomorphisms and flavour transformations.
- ◆ Dynamics: current conservation obtained from a constrained variational principle. Fix reference configuration & vary the pullback maps.



Symmetry from the eightfold way

- ◆ For the remaining 6 classes we took the microscopic Schwinger-Keldysh picture, and lessons from anomalous transport seriously.
- ◆ Empirically we stumbled upon a framework which captured all of the adiabatic transport in a single Lagrangian density (for the 7 classes).
- ♦ We however needed a symmetry principle to rule out H_F : KMS invariance.

•	the backs	ground sources	$\{g_{\mu u}, A_{\mu}\}$
---	-----------	----------------	---------------------------

• the fluid fields
$$\{oldsymbol{eta}^{\mu}, \Lambda_{oldsymbol{eta}}\}$$

• partners for the sources
$$\{\tilde{g}_{\mu\nu},\tilde{A}_{\mu}\}$$
 "Schwinger-Keldysh" partners

• KMS gauge field ${\sf A}^{({\sf T})}\!_{\mu}$ ensures adiabaticity, forbids ${\sf H}_{\sf F}$

The Eightfold Lagrangian

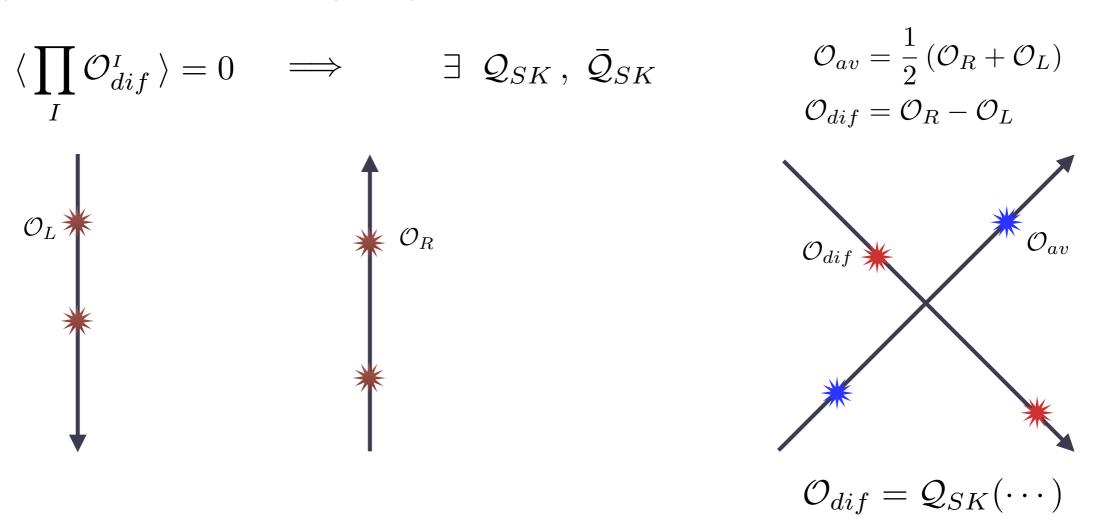
◆ The Lagrangian density is actually very simple:

$$\mathcal{L}_{T} = \frac{1}{2} T^{\mu\nu} \, \tilde{g}_{\mu\nu} + J^{\mu} \cdot \tilde{A}_{\mu} - \frac{\mathcal{G}^{\sigma}}{T} \, A_{\sigma}^{(T)}$$

- ♦ It works to give precisely the desired seven classes and reduces in special cases to non-dissipative effective actions considered in the literature.
- ◆ The free energy current is the Noether current associated with the KMS flavour invariance.
- ◆ The linear couplings to the partners is highly suggestive of structures encountered in analysis of linear dissipative systems and topological sigma models.
- ◆ Take the symmetry seriously and attempt to work out a full theory including dissipation.

Schwinger-Keldysh doubling & symmetries: I

◆ Doubling fields (operators), sources, etc., implies some redundancy. Difference operators reside in a topological sector as their correlators vanish identically.



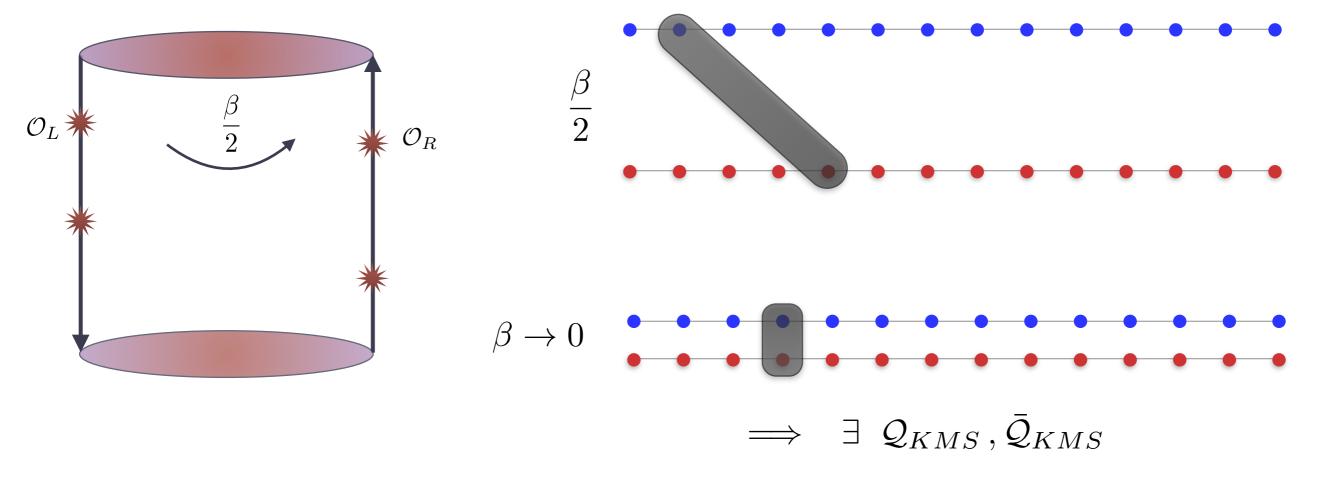
◆ This is a field redefinition symmetry ensuring that we get the correct time ordering prescription.

Schwinger-Keldysh doubling & symmetries: II

◆ A second topological symmetry arises from the KMS condition operating in equilibrium thermal systems (Euclidean periodicity)

$$\mathcal{O}_{ret} = (1 + \mathfrak{f}_{\beta}) \mathcal{O}_R + \mathfrak{f}_{\beta} \mathcal{O}_L, \qquad \mathcal{O}_{adv} = \mathcal{O}_R - \mathcal{O}_L$$

◆ The symmetry is non-local, but approximate locality is attained in the high temperature limit.



Brownian branes

- ♦ Hydrodynamics: low energy theory of spontaneously broken difference diffeomorphisms and flavour transformations, with emergent $U(1)_T$ symmetry.

field redefinition supercharge

 Q_{SK} , \bar{Q}_{SK}

 Q_{KMS} , \bar{Q}_{KMS}

KMS U(1) supercharge

◆ The equivariant cohomology construction for thermal diffeomorphisms and flavour transformations captures the topological sector of the theory.

Vafa, Witten '94

◆ Physical fluid observables can be constructed for space-filling Brownian branes by deforming the theory to include sources for the average fields.

Brownian particles

◆ A particularly simple case of the general set-up is a Brownian 0-brane, a particle, usually captured by the Langevin equation (with noise).

$$-\mathcal{E}_x \equiv m \, \ddot{x} + \eta \, \beta \, \dot{x} + \frac{\partial V}{\partial x} = \eta \, x_f \,, \qquad x_f \to \text{stochastic}$$

◆ This system is described by a Schwinger-Keldysh like an effective action

$$\mathcal{L}_{B_0} = \tilde{x} \, \mathcal{E}_x + i \, \eta \, \tilde{x}^2 - i \, \bar{\psi} \, \frac{\partial \mathcal{E}_x}{\partial x} \, \psi$$

$$= \frac{m}{2} \, \left(\dot{x}_R^2 - \dot{x}_L^2 \right) + \mathcal{L}_{IF}(x_R, x_L) + \text{ghosts}$$
Martin, Siggia, Rose '73

Mathai, Quillen '86

- ◆ This is a familiar topological field theory being described by the Morse theory supersymmetric quantum mechanics model.
 Witten '82
- ◆ The general Bp-brane is more complicated but follows along similar lines.

Some consistency checks

- ◆ The gauge-fixed theory with BRST ghosts set to zero agrees with the eightfold effective action.
- ◆ The partner fields are Lagrange multiplier fields of BRST symmetry enforcing physical constitutive relations.
- ◆ For linear dissipative systems the macroscopic manifestation of KMS, viz., the fluctuation-dissipation theorem, is naturally incorporated in the Brownian brane theory (in BRST ghost kinetic terms).
- ◆ Supported by the picture of Brownian motion in AdS/CFT wherein one monitors the stochastic fluctuations of a quark in a hot plasma.

Eightfold classification of physical fluids

◆ The stress tensor for a neutral conformal fluid in the eightfold basis is

$$T^{\mu\nu} = p \left(d u^{\mu} u^{\nu} + g^{\mu\nu} \right) - \eta \sigma^{\mu\nu}$$

$$+ \left(\lambda_{1} - \kappa \right) \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + \left(\lambda_{2} + 2 \tau - 2 \kappa \right) \sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>}$$

$$+ \tau \left(u^{\alpha} \mathcal{D}_{\alpha}^{\nu\nu} \sigma^{\mu\nu} - 2 \sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right) + \left(\lambda_{3} \omega^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right)$$

$$+ \kappa \left(C^{\mu\alpha\nu\beta} u_{\alpha} u_{\beta} + \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + 2 \sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right).$$

$$\overline{\mathsf{Hs}}$$

◆ Explicit results for transport from holography, kinetic theory lend excellent support the eightfold classification.

Baier et. al.; Bhattacharyya et. al., '07

York, Moore '08

◆ Some interesting accidental(?) relations in Einstein gravity

$$\lambda_1 = \kappa, \qquad \lambda_2 = 2(\kappa - \tau)$$

Holographic fluids

◆ Transport coefficients for holographic fluids (sans viscosity) up to second order can be obtained from a simple effective action:

$$\mathcal{L}^{\mathcal{W}} = c_{\text{eff}} \left(\frac{4\pi T}{d} \right)^d - c_{\text{eff}} \left(\frac{4\pi T}{d} \right)^{d-2} \left[\frac{wR}{(d-2)} + \frac{1}{2} \omega^2 + \frac{1}{d} \operatorname{Harmonic} \left(\frac{2}{d} - 1 \right) \sigma^2 \right]$$

◆ First principles derivation from gravitational dynamics?

Nickel, Son '10

de Boer et. al., Crossley et. al., '15

cf., Heemskerk, Polchinski; Faulkner, Liu, MR '10

◆ <u>Optimum dissipation conjecture:</u> Holographic fluids not only attain the minimum allowed value of shear viscosity, but also ensure that the entropy production in any fluid flow is minimized.

Summary & Open Questions

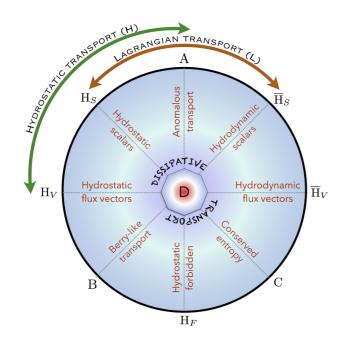
- ◆ Basic story: a topological field theory with emergent gauge symmetry underlies the low energy dynamics of near-equilibrium states of a QFT.
- ◆ Construction aided in large part by a complete solution to the structural aspects of relativistic hydrodynamics.
- Connections with generalized fluctuation-dissipation theorems?
- * AdS/CFT derivation of the Brownian brane dynamics?
- Implications for black hole physics?
- Scrambling rates, equilibration, chaos?
- General principles for out-of-equilibrium dynamics?

More Qs: Section 19 of 1502.00636

It is rather fitting that in the centennial year of three theoretical milestones:

- * Einstein's theory of General Relativity
- * Schwarzschild's discovery of the first black hole solution
- * Noether's understanding of symmetries and conservation laws

we yet again encounter an interplay of some of these principles, which may pave the way for a better understanding of non-equilibrium dynamics of QFTs.



Thank you!

