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Motivation: non-equilibrium QFT dynamics

✦ There is a reasonably good phenomenological understanding, but the 
theoretical underpinnings are not yet fully understood.  

✦ The entanglement of the system with an external reservoir is central to the 
discussion.  

✦  There are many reasons to be interested in this question: 

✴ intrinsic interest from QFT and many-body physics standpoint. 

✴ dynamics of black holes via AdS/CFT. 

✴ cosmology.

 What is the correct Wilsonian treatment of low energy dynamics in mixed 
states of a QFT? 



A microscopic perspective

✦ Doubling: Mixed states of a QFT can be purified by introducing an ancillary 
system. Focus on pure states in tensor product Hilbert space. 

✦ Central to the Schwinger-Keldysh formalism developed to compute real 
time correlation functions in QFTs.
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Macroscopic phenomenology

✦ Equilibrium dynamics can be understood by 
working with Euclidean generating functions, etc.. 

✦ Linear fluctuations are captured by Schwinger-
Keldysh, while long-wavelength fluctuations are 
described by hydrodynamic effective field theory.  

✦ General non-equilibrium dynamics is theoretical 
terra incognita.

✦ Integrating out high energy modes starting from microscopic Schwinger-
Keldysh leads to coupling between L and R encoded in influence 
functionals. 

✦ What influence functionals are consistent with microscopic unitarity?

Feynman, Vernon ‘63 



Hydrodynamics I: macroscopic fields

✦ Hydrodynamics describes near-equilibrium 
dynamics, capturing long-wavelength 
fluctuations about a Gibbs density matrix. 

✦ The doubled microscopic variables are 
replaced by  collective coordinates     :

`mfp ⌧ L , tmfp ⌧ t

✴  temperature and chemical potential 
and a flux vector (fluid velocity) 

✴ background metric and 
electromagnetic potential

T, µ, uµ, uµ uµ = �1

gµ⌫ , Aµ

thermal vector thermal twist

2.1 The adiabaticity equation

Consider a fluid characterized by normalized velocity field uµ (with uµuµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavour gauge field Aµ which generically will be taken to be non-abelian.14 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ uµ

T
, ⇤� ⌘ µ

T
� u�

T
A� . (2.1)

The fields {�µ,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

uµ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��A�
p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current Jµ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.18). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫ , Jµ, Jµ

S} , (2.3)

where instead of Jµ
S we often equivalently consider the Gibbs free energy current Gµ to be

defined in due course.

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

Tµ⌫ = Tµ⌫ [ ] = Tµ⌫ [g↵� , A↵,�
↵,⇤�]

Jµ = Jµ [ ] = Jµ [g↵� , A↵,�
↵,⇤�]

Jµ
S = Jµ

S [ ] = Jµ
S [g↵� , A↵,�

↵,⇤�] .

(2.5)

14 Generalizations to arbitrary number of flavour symmetries is straightforward.
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Hydrodynamics II: Constrained dynamics

✦ Constitutive relations:  monitor conserved currents, energy momentum, 
charge, etc.. as functionals of the hydrodynamic fields.

✦ Dynamics is conservation modulo work and anomaly terms, subject to a 
constraint: local form of the second law of thermodynamics is upheld. 

✦ Ample evidence from kinetic theory, fluid/gravity correspondence etc., that 
this is the correct macroscopic picture. 

9 Jµ
S [ ] : 8  

on-shell

, rµJ
µ
S [ ] � 0

work term covariant anomalies

Eµ
T
= r⌫T

µ⌫ � J⌫ · Fµ⌫ � Tµ?
H = 0 EJ = DµJ

µ � J?
H = 0



Entropy from an emergent symmetry

✦ A-priori the entropy current is curious; a current not associated with any 
underlying symmetry principle, but emergent at low energies. 

✦ Clue from gravity: black hole entropy is a Noether charge. 

✦ Posit existence of a macroscopic Abelian symmetry, KMS gauge symmetry, 
which couples to the entropy current. 

✦ The symmetry is dynamical and Higgsed at the thermal scale, leading to 
physical effects such as entropy production etc.. 

✦ KMS gauge symmetry controls low energy influence functionals ensuring 
that they respect the second law.

Iyer, Wald ‘94



Wherefrom KMS gauge symmetry?

✦ Q: What are the acceptable solutions to the axioms of hydrodynamics, i.e., 
what constitutive relations are consistent with the second law?

✦ Theorem: Hydrodynamic transport can be classified in an eightfold way. 
There are seven adiabatic classes and a class of dissipative transport. In 
addition we have a class of forbidden constitutive relations which can be 
determined by studying hydrostatic equilibrium.

✦ This theorem was proved by studying an off-shell reformulation of the 
second law using the adiabaticity equation:

rµJ
µ
S + �µ Eµ

T
+ (⇤� + �↵A↵) EJ = � � 0



Aside: Free energy current

✦ The structures are clearer if we introduce the Gibbs free energy current, 
switching from a microcanonical to grand-canonical language:

✦ The off-shell second law encoded in the adiabaticity equation then reads

into the fluid,17 the charge and energy-momentum injection is inevitably accompanied by a

free energy injection. The free energy per unit time per unit volume injected by anomalies is

G?
H
⌘ �T

h

�⌫T
⌫?
H + (⇤� + �⌫

A⌫) · J?H
i

= �
h

u⌫T
⌫?
H + µ · J?H

i

.

(2.19)

Using this definition, we can now write the grand canonical version of the adiabaticity equation

(2.11) as (we include � for completeness)

�
"

r�

✓G�

T

◆

� G?
H

T

#

=
1

2
T

µ⌫
�

B
gµ⌫ + J

µ · �
B
Aµ +�

= T

µ⌫rµ

⇣

u⌫

T

⌘

+ J

� ·


D�

⇣

µ

T

⌘

� E�

T

�

+� .

(2.20) eq:AdiabaticityG

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism and flavor transformations generated by {�µ
,⇤�}:

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ ,

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ . (2.21) eq:delBdef

In this expression, we used £� to denotes the Lie derivative along the vector field �µ.

It is useful to record the expression for the Lie derivative in terms of the more familiar

hydrodynamic decomposition. A quick evaluation leads to

�

B
gµ⌫ = 2r(µ�⌫) =

2

T



�µ⌫ + Pµ⌫
⇥

d� 1
� �

a(µ +r(µ log T
�

u⌫)

�

�

B
Aµ = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ = u

↵
D↵

⇣

µ

T

⌘

uµ � 1

T

vµ . (2.22) eq:diffbga

We use the standard decomposition of the gradient of the velocity field into the transverse

traceless shear tensor, the antisymmetric vorticity, the vectorial acceleration and scalar ex-

pansion respectively, viz.,

rµu⌫ = �(µ⌫) + ![µ⌫] � uµ a⌫ + Pµ⌫
⇥

d� 1
, (2.23) eq:uder

and the flavour fields decompose as

vµ = E

µ � T P

µ⌫ r⌫

⇣

µ

T

⌘

, E

µ = F

µ⌫
u⌫ . (2.24) eq:cvdef

An alternate form of (2.20) can be given by introducing the fluid acceleration a↵ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] + T� .

(2.25)

17 The anomalous contribution to the entropy current can typically be chosen to vanish for flavour anomalies.

The story for Lorentz anomalies is a bit more involved and is discussed in §12.
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diffeomorphism
flavour gauge transformation

�G�

T
= J�

S + �⌫T
⌫� + (⇤� + �↵A↵) · J�

r�

✓
G�

T

◆
� G?

H

T
= �1

2
Tµ⌫�Bgµ⌫ � Jµ · �BAµ +�

along the thermal vector & twist.



Eightfold classification of hydrodynamic transport

Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].

– 15 –

HLR [’14-’15]

Gµ = S�µ +Vµ

longitudinal vector

transverse vector

✦ Second law:  

✴ forbids HF. 

✴ D terms sign-definite 
only at leading order.

S. Bhattacharyya [’13-’14]



Eightfold effective action?

⍻

✔ ?
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Haehl, MR ’13; 
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Landau-Ginzburg sigma models

M

x

µ

{gµ⌫ , Aµ}

B ⌘ {�µ
,⇤�}

{'a
, c}

a = '

a(x)

{gab, a}

⌘ {�a
,⇤�}

Fig. 3: Illustration of the connection between the physical and reference fields for Class L adiabatic fluids.
The fields on the physical spacetime manifold M are related to those on the reference manifold

by a pull-back using the dynamical fields {'a
, c}. The constrained variation on M which gives

the correct equations of motion corresponds to varying {'a
, c} while holding {�a

,⇤�} fixed. fig:ManifoldSketch

space of constrained variations to derive dynamics. It is somewhat more satisfactory to shift

to a description where these constraints are automatically implemented by an action, rather

than being imposed by hand.

To do this, we need to decompose the variations of {�µ
,⇤�} into those allowed by the

constraint, and those in the orthogonal space of variations (which are forbidden by the con-

straint). The former lie in the Lie orbit of an admissible configuration. We can exploit this

characterization in decomposing the degrees of freedom into the truly dynamical ones and

the ones held rigid under the variation. To ascertain the physical space of variations, we pick

a reference configuration {�µ
,⇤�} in each Lie orbit and then express the actual {�µ

,⇤�} by

Lie dragging this reference configuration by a gauge transformation and di↵eomorphism. We

thus seek to decompose the hydrodynamic fields into

(i). A heavy component which is the reference configuration that one does not vary when

extremizing (denoted by the blackboard bold font characters).

(ii). A light component which is given by the Lie drag modes that one varies when extrem-

izing.

We begin by systematically first establishing a reference configuration. It is convenient

to imagine that these reference configurations live on some other spacetime which is gauge

equivalent and di↵eomorphic to the original spacetime. We will use the lowercase Latin

alphabet to denote the spacetime indices on to distinguish them from lowercase Greek

indices used for the original spacetime M.

Let x

µ be coordinates on M and a be coordinates on . ⌘ {�a
,⇤�} be the refer-

ence hydrodynamic fields living on . The actual {�µ
,⇤�} are obtained by introducing a

di↵eomorphism field '

a(x) and a gauge transformation field c(x) from physical spacetime M

– 56 –

✦ Class L: effective action is just a sigma model parameterized by a scalar 
functional (free energy density)         .    

✦ Adiabaticity equation: Off-shell Bianchi identity from invariance under 
diffeomorphisms and flavour transformations. 

✦ Dynamics:  current conservation obtained from a constrained variational 
principle. Fix reference configuration & vary the pullback maps.

L[ ]

physical 
fluid

worldvolume 
reference  
configuration



Symmetry from the eightfold way

✦ For the remaining 6 classes we took the microscopic Schwinger-Keldysh 
picture, and lessons from anomalous transport seriously. 

✦ Empirically we stumbled upon a framework which captured all of the 
adiabatic transport in a single Lagrangian density (for the 7 classes). 

✦ We however needed a symmetry principle to rule out HF:  KMS invariance.

• the background sources

• the fluid fields

• partners for the sources

• KMS gauge field

We have in addition an associated holonomy field ⇤(T)

� and a U(1)T chemical potential ⇤(T)

� +

�µA(T)
µ.

The di↵eomorphism and flavor transformations on the fields in an obvious manner. On

the contrary U(1)T acts nonlinearly and mixes with flavor and di↵eomorphism transforma-

tions:

• On all fields, U(1)T acts as a longitudinal di↵eomorphism and flavor gauge transforma-

tion along {�µ
,⇤�}.

• In addition, on {g̃µ⌫ , Ãµ}, there is a further shift by {�
B
gµ⌫ , �BAµ}.

• The field A(T)
µ transforms as a connection for U(1)T and ⇤(T)

� acts like a gauge transfor-

mation parameter, viz., ⇤(T)

� + ��A(T)
� is invariant.

It is worth noting that from a Schwinger-Keldysh point of view, these transformation rules

are not the most natural ones. It would have been more natural to retain the abelian part

of the non-diagonal di↵eomorphism and flavour gauge symmetries along B. We anticipate

that the di↵erence is due to the fact that the natural basis of sources chosen here is not the

canonical Schwinger-Keldysh choice. In fact it seems plausible to conjecture that

g

R
µ⌫ = gµ⌫ ,

A

R
µ = Aµ

g

L
µ⌫ = gµ⌫ � g̃µ⌫ � �µ A

(T)
⌫ � �⌫ A

(T)
µ ,

A

L
µ = Aµ � Ãµ � (⇤� + �↵

A↵) A
(T)

µ

(15.1) eq:skLTdef

as the appropriate identifications for the right (R) and left (L) sources respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [31] anyway. For

the present the reader may therefore take our prescription merely as a technical tool to proof

the completeness of our eightfold classification without worrying about the profound physical

consequences.

15.2 The fields and their transformation properties
sec:fieldsLT

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµ⌫ , Aµ},

2. the fluid fields {�µ
,⇤�},

3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,
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3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,

– 128 –

4. an additional U(1)T gauge field A(T)
µ and its holonomy field ⇤(T)

� .

When necessary we will collectively refer to these fields as  T. The symmetries that any

e↵ective Lagrangian needs to preserve are diagonal di↵eomorphisms/flavor gauge transfor-

mations (acting equally on sources and their partners) and in addition the abelian U(1)T
thermal shift symmetry (which we claim enforces consistency of Feynman-Vernon terms).

Let us now record the transformation rules for the fields  T. We denote the trans-

formation parameters of di↵eomorphism, flavor, and U(1)T transformations by {⇠,⇤,⇤(T)}
respectively. In terms of these independent parameters, U(1)T has a twisted action on the

various fields. This is because fields transform non-linearly under it and part of the U(1)T
transformation involves di↵eomorphisms and flavour gauge transformations. We will deal

with the non-trivial mixing between di↵eomorphism and flavor transformations on the one

hand and U(1)T on the other hand using the following trick: instead of using the origi-

nal transformation parameters, we will move to a new basis of transformation parameters

{⇠̄µ, ⇤̄, ⇤̄(T)} which generate combinations of the original transformations which do not mix

with each other. The original transformation parameters are related to these via

⇠

µ ⌘ ⇠̄

µ � (⇤̄(T) + ⇠̄

� A(T)
�)�

µ
, ⇠̄

µ ⌘ ⇠

µ + (⇤(T) + ⇠

� A(T)
�)�

µ
, (15.2a)

⇤ ⌘ ⇤̄� (⇤̄(T) + ⇠̄

� A(T)
�)⇤� , ⇤̄ ⌘ ⇤+ (⇤(T) + ⇠

� A(T)
�)⇤� , (15.2b)

⇤(T) ⌘ ⇤̄(T) + (⇤̄(T) + ⇠̄

� A(T)
�)�

⌫ A(T)
⌫ , ⇤̄(T) ⌘ ⇤(T) � (⇤(T) + ⇠

� A(T)
�)�

⌫ A(T)
⌫ . (15.2c)

We have given the translation between the two sets of gauge transformation parameters

{⇠µ,⇤,⇤(T)} and {⇠̄µ, ⇤̄, ⇤̄(T)} in both forward and reverse directions to facilitate translation

between them in the future. A useful relation in converting between these parameters is

⇤(T) + ⇠

� A(T)
� = ⇤̄(T) + ⇠̄

� A(T)
� .

The transformation rules: Armed with this we are now in a position to write down the

explicit transformations of various fields which takes a simple form in terms of the untwisted

transformation parameters {⇠̄µ, ⇤̄, ⇤̄(T)}:77

�

X
gµ⌫ ⌘ £⇠̄gµ⌫ = Dµ⇠̄⌫ +D⌫ ⇠̄µ ,

�

X
Aµ ⌘ £⇠̄Aµ + [Aµ, ⇤̄] + @µ⇤̄ = Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ ⇠̄

⌫
F⌫µ ,

�

X
�µ ⌘ £⇠̄�

µ = ⇠̄

⌫
D⌫�

µ � �⌫
D⌫ ⇠̄

µ
,

�

X
⇤� +A⌫ �X�

⌫ ⌘ ⇠̄

µ
�

B
Aµ � �µ

Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ [⇤� + ��
A�, ⇤̄+ ⇠̄

⌫
A⌫ ] .

(15.3) eq:TactgA

In terms of the original transformation parameters {⇠µ,⇤,⇤(T)}, these transformations

would mix di↵eomorphism and flavor transformations with U(1)T. The advantage gained

from working with {⇠̄, ⇤̄, ⇤̄(T)} is an untwisting of U(1)T such that {gµ⌫ , Aµ,�µ
,⇤�} are blind

77 We denote the derivative operator which covariantly transforms under di↵eomorphisms, flavour gauge,

and U(1)T transformations by Dµ in what follows. It is defined by appropriately extending (2.8) to incorporate

U(1)T transformations as well.
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``Schwinger-Keldysh’’ partners

ensures adiabaticity, forbids HF



The Eightfold Lagrangian

✦ The Lagrangian density is actually very simple:

✦ It works to give precisely the desired seven classes and reduces in special 
cases to non-dissipative effective actions considered in the literature.

LT =
1

2
Tµ⌫ g̃µ⌫ + Jµ · Ãµ � G�

T
A(T )

�

✦ The linear couplings to the partners is highly suggestive of structures 
encountered in analysis of linear dissipative systems and topological sigma 
models. 

✦ Take the symmetry seriously and attempt to work out a full theory including 
dissipation.

✦ The free energy current is the Noether current associated with the KMS 
flavour invariance.



Schwinger-Keldysh doubling & symmetries: I

✦ Doubling fields (operators), sources, etc., implies some redundancy. Difference 
operators reside in a topological sector as their correlators vanish identically.

Oav =
1

2
(OR +OL)

Odif = OR �OL

OR
OL OavOdif

✦ This is a field redefinition symmetry ensuring that we get the correct time 
ordering prescription.

h
Y

I

OI
dif i = 0 =) 9 QSK , Q̄SK

Odif = QSK(· · · )



Schwinger-Keldysh doubling & symmetries: II

✦ A second topological symmetry arises from the KMS condition operating in 
equilibrium thermal systems (Euclidean periodicity)

✦ The symmetry is non-local, but approximate locality is attained in the high temperature limit.

OR
OL

�

2

�

2

� ! 0

Oret = (1 + f�)OR + f� OL , Oadv = OR �OL

=) 9 QKMS , Q̄KMS



Brownian branes

✦ Hydrodynamics: low energy theory of spontaneously broken  difference 
diffeomorphisms and flavour transformations, with emergent U(1)T symmetry.

QSK , Q̄SK QKMS , Q̄KMS
field redefinition 
supercharge

KMS U(1) 
supercharge

✦ Brownian p-branes: Worldvolume dynamics captured by a gauged 
topological sigma model (balanced TQFT) incorporating:

✦ The equivariant cohomology construction for thermal diffeomorphisms and 
flavour transformations captures the topological sector of the theory.

Vafa, Witten ’94

✦ Physical fluid observables can be constructed for space-filling Brownian 
branes by deforming the theory to include sources for the average fields.

Dijkgraaf, Moore ‘96



Brownian particles

✦ This system is described by a Schwinger-Keldysh like an effective action 

�E
x

⌘ mẍ+ ⌘ � ẋ+

@V

@x

= ⌘ x

f

, x

f

! stochastic

✦ This is a familiar topological field theory being described by  the Morse 
theory supersymmetric quantum mechanics model.

✦ The general Bp-brane is more complicated but follows along similar lines.

Mathai, Quillen ‘86

L
B0 = x̃ E

x

+ i ⌘ x̃

2 � i  ̄

@E
x

@x

 

=

m

2

�
ẋ

2
R � ẋ

2
L

�
+ LIF (xR, xL) + ghosts

Witten ‘82

✦ A particularly simple case of the general set-up is a Brownian 0-brane, a 
particle, usually captured by the Langevin equation (with noise).

Martin, Siggia, Rose ‘73



Some consistency checks

✦ The gauge-fixed theory with BRST ghosts set to zero agrees with the 
eightfold effective action. 

✦ The partner fields are Lagrange multiplier  fields of BRST symmetry 
enforcing physical constitutive relations.

✦ Supported by the picture of Brownian motion in AdS/CFT wherein one 
monitors the stochastic fluctuations of a quark in a hot plasma.

de Boer, Hubeny, MR, Shigemori ’08 
Son, Teaney ‘09

✦ For linear dissipative systems the macroscopic manifestation of KMS, viz., the 
fluctuation-dissipation theorem, is naturally incorporated in the Brownian 
brane theory (in BRST ghost kinetic terms).



Eightfold classification of physical fluids

4

III. THE ROUTE TO DISSIPATION

Having classified solutions to the adiabaticity equation
let us now turn to the characterization of hydrodynamic
transport including dissipative terms (Class D). We will
do so by first systematically eliminating all of the adia-
batic transport by the following algorithm:

1. Enumerate the total number of transport coe�-
cients, Totk@ , at the k

th order in the derivative ex-
pansion. This can be done by either working in a
preferred fluid frame, or more generally by classify-
ing frame-invariant scalar, vector and tensor data.

2. Find the particular solution to the anomaly induced
transport (if any); this fixes all terms in Class A.

3. Restrict to hydrostatic equilibrium. The (inde-
pendent) non-vanishing scalar fields and transverse
conserved vectors determine HS and HV respec-
tively (after factoring out terms which are related
up to total derivatives), which parameterize the
(Euclidean) partition function [9, 10].

4. Classify the number of tensor structures entering
constitutive relations that survive the hydrostatic
limit. Since they are to be determined from HS and
HV respectively, we should have a number of hy-
drostatic relations HF . In general the hydrostatic
constrained transport coe�cients are given as lin-
ear di↵erential combinations of unconstrained ones.

5. Determine the Class L scalars that vanish in hy-
drostatic equilibrium HS from the list of frame in-
variant scalars after throwing out terms in HS (and
those related by total derivatives).

6. Find all solutions to Class B and HV terms at the
desired order in the gradient expansion by clas-
sifying potential tensor structures {N ,X ,S} and
{CN ,CX ,CS} respectively. We have now solved for
the adiabatic part of hydrodynamics.

7. The remainder of transport is dissipative and con-
tributes to � 6= 0. Class D is subdivided into
two classes: terms constrained by the second law
lie in Class Dv, while those in Class Ds contribute
sub-dominantly to entropy production and are ar-
bitrary. The goal at this stage is to isolate the Dv

terms; fortunately they only show up only at the
leading order in the gradient expansion (k = 1);
for k � 1 all dissipative terms are in Class Ds (cf.,
[3, 4]).

8. Finally, Class Ds can be written in terms of dissi-
pative tensor structures using the same formalism
employed for Class B, except now we pick a di↵er-
ent symmetry structure to ensure � 6= 0.

Steps 1-6 can be implemented straightforwardly in the
U(1)T invariant LT , but we will exemplify this algorithm
by a more pedestrian approach below.

In Table I we provide a classification of transport coef-
ficients for few hydrodynamic systems up to second order
in gradient expansion.

Fluid Type Tot HS HS HF HV A B HV D
Neutral 1@ 2 0 0 0 0 0 0 0 2
Neutral 2@ 15 3 2 5 0 0 2 0 3

Weyl neutral 2@ 5 2 1 0 0 0 1 0 1
Charged 1@ 3 0 0 0 0 0 0 0 3
Charged 2@ 51 7 5 17 0 0 11 2 9

TABLE I. Transport taxonomy for some simple (parity-even)
fluid systems. The fluid type refers to whether we describe
pure energy-momentum transport (neutral) or transport with
a single global symmetry (charged). We have indicated the
derivative order at which we are working by k@.

IV. AN EXAMPLE: WEYL INVARIANT
NEUTRAL FLUID

To illustrate our construction consider a (parity-even)
Weyl invariant neutral fluid which has been studied ex-
tensively in the holographic context [14–16]. Weyl invari-
ance implies that the stress tensor must be traceless and
built out of Weyl covariant tensors. Our classification
suggests the following constitutive relation written in a
basis adapted to the eightfold way:5

T

µ⌫ = p (d uµ
u

⌫ + g

µ⌫)� ⌘ �

µ⌫

+ (�1 � )�<µ↵
�

⌫>
↵ + (�2 + 2 ⌧ � 2) �<µ↵

!

⌫>
↵

+ ⌧

�
u

↵DW
↵ �

µ⌫
� 2�<µ↵

!

⌫>
↵

�
+ �3 !

<µ↵
!

⌫>
↵

+ 

�
C

µ↵⌫�
u↵ u� + �

<µ↵
�

⌫>
↵ + 2�<µ↵

!

⌫>
↵

�
. (8)

To obtain this note that for a neutral fluid there are no
anomalies so A = 0. At first order there is only a Class
D term ⌘ �µ⌫ which contributes to � = ⌘ �

2, leading
to ⌘ � 0 (shear viscosity is non-negative). At second
order we have two hydrostatic scalars !µ⌫ !

⌫µ and W
R;

hence HS = 2 corresponding to �3 and  terms. As
�µ⌫ vanishes in hydrostatics only two tensors survive the
limit; thus there are no constraints, HF = 0. There are
no transverse vectors and so HV = HV = 0. Surprisingly
(�2 + 2 ⌧ � 2) �

<µ↵
!

⌫>
↵ is a Class B term – it can be

obtained from N

[(µ⌫)|(↵�)]
⇠ (�2 + 2 ⌧ � 2) (!µ↵

P

⌫� +
perms.). There is one non-hydrostatic scalar �

2 which
is in HS corresponding to ⌧ term above. This leaves
us with one Class D term which can be inferred to be
(�1�)�<µ↵

�

⌫>
↵ . Its contribution to entropy production

is rµJ
µ
S ⇠ (�1�)�↵⌫�

⌫�
�

↵
� . This being sub-dominant

5 The fluid tensors are defined via the decomposition rµ u⌫ =
�(µ⌫) +![µ⌫] +

1
d�1 ⇥ (gµ⌫ +uµ u⌫)� a⌫ uµ and <> denotes the

symmetric, transverse (to uµ) traceless projection. The Weyl co-
variant derivative [17] (and associated curvatures) preserve ho-
mogeneity under conformal rescaling.

✦ The stress tensor for a neutral conformal fluid in the eightfold basis is

HS

D

B

HS

Baier et. al.;  Bhattacharyya et. al., ‘07

✦  Explicit results for transport from holography, kinetic theory lend excellent 
support the eightfold classification.

York, Moore ‘08

✦ Some interesting accidental(?) relations in Einstein gravity

�1 =  , �2 = 2(� ⌧) Haack, Yarom ’08



Holographic fluids

✦ Optimum dissipation conjecture: Holographic fluids not only attain the 
minimum allowed value of shear viscosity, but also ensure that the entropy 
production in any fluid flow is minimized. 

This would correspond to the finite coupling corrections to the strong coupling limit of the

holographic plasma. So far it has been checked that (14.33) holds perturbatively in Gauss-

Bonnet theories to leading order in the higher-derivative coupling [70], though not to next

to leading order [71, 72]. Curiously enough, higher derivative corrections that arise in string

theory (from Type IIB flux compactification on S5) uphold this relation to one additional

order [72] (to O(��3/2) in the strong coupling perturbation expansion for the N = 4 SYM

plasma). However, the original relations as stated in (8.26) are satisfied only to leading order

in the higher derivative correction to gravity. From the adiabatic fluid perspective, (8.26) is

a bit more fundamental since � �1 provides a measure for entropy production.

Viewing these relations as fixing a Class D and Class B term respectively is itself an

interesting statement, independent of the precise values. While any physical fluid would of

course have specific values of transport coe�cients, one generically expects that the second

order Weyl transport is a point in the five-dimensional space of parameters. Having extra

constraints fixing two parameters in terms of the others is an interesting statement which

deserves to be understood better. Moreover, the value chosen for �1 is such that no entropy

is produced. This is rather remarkable hinting that holographic fluids are even more perfect

than hitherto believed to be.

Finally, for completeness let us record the values of {k�, k!, kR} that are suggested by

holography. Translating the results of [65] we have89

kR = � ce↵
d� 2

✓

4⇡

d

◆d�2

,

k! =
d� 2

2
kR ,

k� =
ce↵
2 d

✓

4⇡

d

◆d�2

Harmonic

✓

2

d
� 1

◆

,

(14.34)

where Harmonic(x) = �e +
�0(x)
�(x) is the Harmonic number function (�e is Euler’s constant).

Thus, the fluid-gravity result for second order neutral fluid transport can be determined

explicitly from a Lagrangian density

LW = ce↵

✓

4⇡T

d

◆d

� ce↵

✓

4⇡T

d

◆d�2  WR

(d� 2)
+

1

2
!2 +

1

d
Harmonic

✓

2

d
� 1

◆

�2

�

(14.35)

where we have included also the zero derivative pressure term.

It is really amazing that the simple e↵ective action (14.35) captures all the non-trivial

results about the thermodynamics of a strongly coupled plasma along with the non-linear part

of transport. Only the value of the first order Class D term, shear viscosity, is undetermined

and indeed modulo this contribution (which is of course important), holographic plasmas

are e↵ectively adiabatic. Coupled with the low value of shear viscosity [87], it follows that

89 We use ce↵ to denote the e↵ective central charge of the field theory; ce↵ = `AdS
16⇡GN

. For N = 4 SYM in

d = 4 with gauge group SU(N) this is 1
8⇡2 N2.
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✦ Transport coefficients for holographic fluids (sans viscosity) up to second 
order can be obtained from a simple effective action:

✦ First principles derivation from gravitational dynamics?

de Boer et. al., Crossley et. al., ‘15Nickel, Son ‘10

cf., Heemskerk, Polchinski; Faulkner, Liu, MR ’10 



Summary & Open Questions

✦ Basic story: a topological field theory with emergent gauge symmetry 
underlies the low energy dynamics of near-equilibrium states of a QFT. 

✦ Construction aided in large part by a complete solution to the structural 
aspects of relativistic hydrodynamics.

More Qs: Section 19 of 1502.00636

✤  Connections with generalized fluctuation-dissipation theorems? 

✤  AdS/CFT derivation of the Brownian brane dynamics? 

✤  Implications for black hole physics? 

✤  Scrambling rates, equilibration, chaos?  

✤  General principles for out-of-equilibrium dynamics?



Thank you!
Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].
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It is rather fitting that in the centennial year of three theoretical milestones: 

✴ Einstein’s theory of General Relativity 

✴ Schwarzschild’s discovery of the first black hole solution 

✴ Noether’s understanding of symmetries and conservation laws 

we yet again encounter an interplay of some of these principles, which may 
pave the way for a better understanding of non-equilibrium dynamics of QFTs.


