Conformal Bootstrap With Slightly Broken Higher Spin Symmetry

Alexander Zhiboedov (Harvard U)

Strings 2015 ICTS-TIFR, Bengaluru

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]
[Rattazzi, Rychkov, Tonni, Vichi '08]

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]

- Non-perturbative

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]

- Non-perturbative
- AdS/CFT

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]

- Number of primary operators is infinite

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]

- Number of primary operators is infinite
- No simple map

Conformal Bootstrap

$$
\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}
$$

[Ferrara, Gatto, Grillo '74] [Polyakov '74]

- Number of primary operators is infinite
- No simple map

What is the mechanism?

Conformal Bootstrap

$\langle\mathcal{O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}$

$$
u=z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$\mathrm{X}_{4}=(\infty, \infty)$

Conformal Bootstrap

$\langle\mathcal{O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}$

$$
u=z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

- $\mathrm{x}_{4}=(\infty, \infty)$

Conformal Bootstrap

$\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}} \quad u=z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}$

Conformal Bootstrap

$\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}$

$$
u=z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
v=(1-z)(1-\bar{z})=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
\text { - } \mathrm{x}_{4}=(\infty, \infty)
$$

Inside the diamond both the u - and v-channel OPEs converge

Conformal Bootstrap

$\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}$

$$
\times(\bigcirc)=()
$$

Experiment (deeply Euclidean) $u=v=\frac{1}{4}$

Conformal Bootstrap

$\langle\mathcal{O O O O}\rangle=\frac{G(u, v)}{\left(x_{12}^{2} x_{34}^{2}\right)^{\Delta}}$

$$
\text { - } \mathrm{x}_{4}=(\infty, \infty)
$$

Experiment (deeply Euclidean)

$$
u=v=\frac{1}{4}
$$

Analytic Bootstrap ($\mathrm{d}>2$)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

1. The crossing equation:

$$
G(u, v)=\left(\frac{u}{v}\right)^{\Delta} G(v, u)
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

1. The crossing equation:

$$
G(u, v)=\left(\frac{u}{v}\right)^{\Delta} G(v, u)
$$

2. Consider the limit $v \ll u \ll 1$. Use the v-channel OPE

$$
G(u, v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

minimal twist operator (stress tensor)

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

1. The crossing equation:

$$
G(u, v)=\left(\frac{u}{v}\right)^{\Delta} G(v, u)
$$

2. Consider the limit $v \ll u \ll 1$. Use the v-channel OPE

$$
G(u, v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

Ł minimal twist operator (stress tensor)
3. Reproduce it using the u-channel OPE

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{\min }} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{\min }, s_{\min }}(u)+\ldots\right)
$$

Collinear blocks are given by

$$
f_{\tau, s}(v)={ }_{2} F_{1}\left(\frac{\tau}{2}+s, \frac{\tau}{2}+s, \tau+2 s, 1-v\right) \sim \log v
$$

Analytic Bootstrap ($\mathrm{d}>2$)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
$\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)$
Collinear blocks are given by

$$
f_{\tau, s}(v)={ }_{2} F_{1}\left(\frac{\tau}{2}+s, \frac{\tau}{2}+s, \tau+2 s, 1-v\right) \sim \log v
$$

They admit the following scaling limit

$$
\lim _{v \rightarrow 0, s \sqrt{v}-\text { fixed }} f_{\tau, s}(v) \sim e^{-s \sqrt{v}}
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
$\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)$
Collinear blocks are given by

$$
f_{\tau, s}(v)={ }_{2} F_{1}\left(\frac{\tau}{2}+s, \frac{\tau}{2}+s, \tau+2 s, 1-v\right) \sim \log v
$$

They admit the following scaling limit

$$
\lim _{v \rightarrow 0, s \sqrt{v}-\text { fixed }} f_{\tau, s}(v) \sim e^{-s \sqrt{v}}
$$

The mechanism is the following

$$
\sum s^{\alpha-1} e^{-s \sqrt{v}} \sim \frac{1}{v^{\alpha}}
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{\min }} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{\min }, s_{\min }} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{\min }, s_{m i n}}(u)+\ldots\right)
$$

- Double trace-like operators with large spin are always present in the spectrum

$$
\tau_{s}=2 \Delta-\alpha_{d} \frac{c_{\tau_{\min }}}{s^{\tau_{\min }}}
$$

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

- Double trace-like operators with large spin are always present in the spectrum

$$
\tau_{s}=2 \Delta-\alpha_{d} \frac{c_{\tau_{\min }}}{s^{\tau_{\min }}}
$$

- Assumed gap in the twist spectrum

Analytic Bootstrap (d>2)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin '12]
[Komargodski, AZ '12]

$$
\sum_{\tau, s} c_{\tau, s} u^{\frac{\tau}{2}} f_{\tau, s}(v)=\left(\frac{u}{v}\right)^{\Delta}\left(1+c_{\tau_{m i n}, s_{m i n}} v^{\frac{\tau_{m i n}}{2}} f_{\tau_{m i n}, s_{m i n}}(u)+\ldots\right)
$$

- Double trace-like operators with large spin are always present in the spectrum

$$
\tau_{s}=2 \Delta-\alpha_{d} \frac{c_{\tau_{\min }}}{s^{\tau_{m i n}}}
$$

- Assumed gap in the twist spectrum
- (${ }^{* * *}$) is expected be valid for $\delta \tau_{g a p} \log s \gg 1$

Analytic Bootstrap (d>2)

$$
\delta \tau_{\text {gap }} \log s \gg 1
$$

(strong coupling)

Analytic Bootstrap (d>2)

$\delta \tau_{\text {gap }} \log s \gg 1$

(strong coupling)
$\delta \tau_{\text {gap }} \log s \ll 1$
(weak coupling)

Analytic Bootstrap (d>2)

$$
\delta \tau_{g a p} \log s \gg 1 \quad \text { (strong coupling) }
$$

$\delta \tau_{\text {gap }} \log s \ll 1 \quad$ (weak coupling)

Example: 3d Ising model $\delta \tau_{\text {gap }} \simeq 0.02$

We would like to understand this case

Plan

Find anomalous dimensions of higher spin currents in theories with slightly broken higher spin symmetry using conformal bootstrap

$$
\tau=\Delta-s=d-2+\gamma_{s}, \quad \gamma_{s} \ll 1
$$

Plan

Find anomalous dimensions of higher spin currents in theories with slightly broken higher spin symmetry using conformal bootstrap

$$
\tau=\Delta-s=d-2+\gamma_{s}, \quad \gamma_{s} \ll 1
$$

High spin behavior is controlled by the low twist operators in the dual channel.

Plan

Find anomalous dimensions of higher spin currents in theories with slightly broken higher spin symmetry using conformal bootstrap

$$
\tau=\Delta-s=d-2+\gamma_{s}, \quad \gamma_{s} \ll 1
$$

High spin behavior is controlled by the low twist operators in the dual channel.
(In some interesting cases s=4 is already large)

Double Light-Cone Limit

We consider the crossing equation when $u, v \rightarrow 0$

$$
f(u, v)=v^{\Delta} G(u, v)=u^{\Delta} G(v, u)=f(v, u)
$$

Double Light-Cone Limit

We consider the crossing equation when $u, v \rightarrow 0$

$$
f(u, v)=v^{\Delta} G(u, v)=u^{\Delta} G(v, u)=f(v, u)
$$

In free theories $f(u, v)$ is just a sum of basic building blocks that separately satisfy crossing

$$
\begin{aligned}
f^{\tau_{1}, \tau_{2}}(u, v) & =u^{\frac{\tau_{1}}{2}} v^{\frac{\tau_{2}}{2}}+u^{\frac{\tau_{2}}{2}} v^{\frac{\tau_{1}}{2}} \\
f(u, v) & =\sum_{m, n} c_{\tau_{m}, \tau_{n}} f^{\tau_{m}, \tau_{n}}(u, v)
\end{aligned}
$$

Double Light-Cone Limit

We consider the crossing equation when $u, v \rightarrow 0$

$$
f(u, v)=v^{\Delta} G(u, v)=u^{\Delta} G(v, u)=f(v, u)
$$

In free theories $f(u, v)$ is just a sum of basic building blocks that separately satisfy crossing

$$
\begin{aligned}
f^{\tau_{1}, \tau_{2}}(u, v) & =u^{\frac{\tau_{1}}{2}} v^{\frac{\tau_{2}}{2}}+u^{\frac{\tau_{2}}{2}} v^{\frac{\tau_{1}}{2}} \\
f(u, v) & =\sum_{m, n} c_{\tau_{m}, \tau_{n}} \tau^{\tau_{m}, \tau_{n}}(u, v)
\end{aligned}
$$

Double light-cone limit smoothly interpolates between the u-channel and v-channel OPE.

Double Light-Cone Limit

$$
f^{\tau_{1}, \tau_{2}}(u, v)=u^{\frac{\tau_{1}}{2}} v^{\frac{\tau_{2}}{2}}+u^{\frac{\tau_{2}}{2}} v^{\frac{\tau_{1}}{2}}
$$

- Microscopically, these are composed of operators with twists τ_{1} and τ_{2} that are mapped into each other under crossing

Double Light-Cone Limit

$$
f^{\tau_{1}, \tau_{2}}(u, v)=u^{\frac{\tau_{1}}{2}} v^{\frac{\tau_{2}}{2}}+u^{\frac{\tau_{2}}{2}} v^{\frac{\tau_{1}}{2}}
$$

- Microscopically, these are composed of operators with twists τ_{1} and τ_{2} that are mapped into each other under crossing

$$
f(u, v)^{\text {disc }}=u^{\Delta}+v^{\Delta}
$$

- This is true in a generic CFT and implies existence of double trace-like operators with twist 2Δ

Double Light-Cone Limit

$$
f^{\tau_{1}, \tau_{2}}(u, v)=u^{\frac{\tau_{1}}{2}} v^{\frac{\tau_{2}}{2}}+u^{\frac{\tau_{2}}{2}} v^{\frac{\tau_{1}}{2}}
$$

- Microscopically, these are composed of operators with twists τ_{1} and τ_{2} that are mapped into each other under crossing

$$
f(u, v)^{d i s c}=u^{\Delta}+v^{\Delta}
$$

- This is true in a generic CFT and implies existence of double trace-like operators with twist 2Δ

$$
f(u, v)^{H S}=u^{\frac{d-2}{2}} v^{\frac{d-2}{2}}
$$

- Higher spin currents are self-dual under crossing

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)

$$
f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{m}{2}} v^{\frac{n}{2}}, \quad c_{m n}(\log u, \log v)=c_{n m}(\log v, \log u)
$$

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)

$$
f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{m}{2}} v^{\frac{n}{2}}, \quad c_{m n}(\log u, \log v)=c_{n m}(\log v, \log u)
$$

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)

$$
f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{m}{2}} v^{\frac{n}{2}}, \quad c_{m n}(\log u, \log v)=c_{n m}(\log v, \log u)
$$

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)

$$
f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{\zeta_{2}}{\frac{m}{2}} v^{\frac{n}{2}}}, \quad c_{m n}(\log u, \log v) \stackrel{\text { crossing }}{=} c_{n m}(\log v, \log u) .
$$

To first order

$$
c_{m n}=c_{m n}^{(0)}+g \delta c_{m n}
$$

$$
\delta c_{m n}=c_{0}+c_{1} \log v+c_{2} \log u+c_{3} \log u \log v
$$

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)
$f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{\zeta_{2}}{2}} v^{\frac{n}{2}}, \quad c_{m n}(\log u, \log v) \stackrel{\text { crossing }}{=} c_{n m}(\log v, \log u)$.
To first order

$$
c_{m n}=c_{m n}^{(0)}+g \delta c_{m n}
$$

$$
\delta c_{m n}=c_{0}+c_{1} \log v+c_{2} \log u+c_{3} \log u \log v
$$

anomalous dimensions

$$
u^{\frac{\gamma}{2}} \rightarrow 1+\frac{\gamma}{2} \log u
$$

Double Light-Cone Limit

When we turn on the coupling g the correlator becomes (perturbatively)
$f(u, v)=\sum_{m, n} c_{m n}(\log u, \log v) u^{\frac{\zeta_{2}}{2}} v^{\frac{n}{2}}, \quad c_{m n}(\log u, \log v) \stackrel{\text { crossing }}{=} c_{n m}(\log v, \log u)$.
To first order

$$
c_{m n}=c_{m n}^{(0)}+g \delta c_{m n}
$$

$$
\delta c_{m n}=c_{0}+c_{1} \log v+c_{2} \log u+c_{3} \log u \log v
$$

anomalous dimensions

$$
u^{\frac{\gamma}{2}} \rightarrow 1+\frac{\gamma}{2} \log u
$$

Double Light-Cone Limit

Double Light-Cone Limit

Whereas at L-th order we have

$$
\begin{aligned}
c_{m n}^{(L)} & =g^{L} \sum_{i, j=0}^{L} c_{m n \mid i j}^{(L)}(\log u)^{i}(\log v)^{j}, \\
c_{m n \mid i j}^{(L)} & =c_{n m \mid j i}^{(L)}
\end{aligned}
$$

Double Light-Cone Limit

Whereas at L-th order we have

$$
\begin{aligned}
c_{m n}^{(L)} & =g^{L} \sum_{i, j=0}^{L} c_{m n \mid i j}^{(L)}(\log u)^{i}(\log v)^{j}, \\
c_{m n \mid i j}^{(L)} & =c_{n m \mid j i}^{(L)}
\end{aligned}
$$

Generically, we think of $g \sim \gamma_{s} \ll 1$
(light higher spin currents)

Self-duality of Higher Spin Currents

Let us consider a situation when higher spin currents are the lowest twist operators that appear in the OPE

$$
f(u, v)=u^{\frac{d-2}{2}} v^{\frac{d-2}{2}} h(\log u, \log v), \quad h(\log u, \log v)=h(\log v, \log u)
$$

Self-duality of Higher Spin Currents

Let us consider a situation when higher spin currents are the lowest twist operators that appear in the OPE

$$
f(u, v)=u^{\frac{d-2}{2}} v^{\frac{d-2}{2}} h(\log u, \log v), \quad h(\log u, \log v)=h(\log v, \log u)
$$

- Case 1: $\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$
(microscopically: gauge theories)

Self-duality of Higher Spin Currents

Let us consider a situation when higher spin currents are the lowest twist operators that appear in the OPE

- Case 1: $\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$
(microscopically: gauge theories)
- Case 2: $\mathcal{O}=\phi, \quad \Delta_{\text {ext }}=\frac{d-2}{2}$
(microscopically: critical $O(N)$, 3d Ising)

Log(S) From Bootstrap

Log(S) From Bootstrap

Consider external operators $\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s} f_{\tau, s}(v)=\frac{f(u, v)}{v^{d-2}}=\frac{u^{\frac{d-2}{2}}}{v^{\frac{d-2}{2}}} h(\log u, \log v)
$$

Log(S) From Bootstrap

Consider external operators $\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau,} f_{\tau, s}(v)=\frac{f(u, v)}{v^{d-2}}=\frac{u^{\frac{d-2}{2}}}{v^{\frac{d-2}{2}}} h(\log u, \log v)
$$

- Collinear blocks have log(v) divergence for small v

Log(S) From Bootstrap

Consider external operators
$\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau,} f_{\tau, s}(v)=\frac{f(u, v)}{v^{d-2}}=\frac{u^{\frac{d-2}{2}}}{v^{\frac{d-2}{2}}} h(\log u, \log v)
$$

- Collinear blocks have log(v) divergence for small v
- Power-like divergences can only come from a sum over an infinite set of operators

Log(S) From Bootstrap

Consider external operators
$\mathcal{O}=\phi^{2}, \quad \Delta_{\text {ext }}=d-2$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, f} f_{\tau, s}(v)=\frac{f(u, v)}{v^{d-2}}=\frac{u^{\frac{d-2}{2}}}{v^{\frac{d-2}{2}}} h(\log u, \log v)
$$

- Collinear blocks have log(v) divergence for small v
- Power-like divergences can only come from a sum over an infinite set of operators
- The relevant spins are $s=\frac{h}{\sqrt{v}}$

Log(S) From Bootstrap

This becomes an equation for anomalous dimensions (and 3pt functions) of higher spin currents

$$
\begin{gathered}
\Delta_{s}=d-2+s+\gamma_{s}, \quad \gamma_{s} \ll 1 . \\
\frac{4}{\Gamma\left(\frac{d}{2}-1\right)^{2}} \int_{0}^{\infty} d h h^{d-3} u^{\frac{1}{2} \gamma} \frac{h}{\sqrt{v}}\left(\frac{a_{\frac{h}{\sqrt{v}}}}{a_{\frac{h}{\sqrt{v}}}^{(0)}}\right) K_{0}(2 h)=h(\log u, \log v)
\end{gathered}
$$

Log(S) From Bootstrap

This becomes an equation for anomalous dimensions (and 3pt functions) of higher spin currents

$$
\begin{aligned}
& \Delta_{s}=d-2+s+\gamma_{s}, \quad \gamma_{s} \ll 1 \\
& \text { sum over spins } \\
& \frac{4}{\Gamma\left(\frac{d}{2}-1\right)^{2}} \int_{0}^{\infty} d h h^{d-3} u^{\frac{1}{2} \gamma \frac{h}{\sqrt{v}}}\left(\frac{a_{\frac{h}{\sqrt{v}}}}{a_{\frac{h}{\sqrt{v}}}^{(0)}}\right) \quad K_{0}(2 h)=h(\log u, \log v)
\end{aligned}
$$

Log(S) From Bootstrap

This becomes an equation for anomalous dimensions (and 3pt functions) of higher spin currents

$$
\begin{aligned}
& \Delta_{s}=d-2+s+\gamma_{s}, \quad \gamma_{s} \ll 1 \\
& \frac{4}{\Gamma\left(\frac{d}{2}-1\right)^{2}} \int_{0}^{\infty} d h h^{d-3} u^{\frac{1}{2} \gamma} \frac{h}{\sqrt{v}}\left(\frac{a_{\frac{h}{\sqrt{v}}}}{a_{\frac{h}{\sqrt{v}}}^{(0)}}\right) \quad K_{0}(2 h)=h(\log u, \log v) \\
& \text { collinear conformal block }
\end{aligned}
$$

Log(S) From Bootstrap

This becomes an equation for anomalous dimensions (and 3pt functions) of higher spin currents

Log(S) From Bootstrap

This becomes an equation for anomalous dimensions (and 3pt functions) of higher spin currents

$$
\begin{aligned}
& \text { sum over spins } \Delta_{s}=d-2+s+\gamma_{s}, \quad \gamma_{s} \ll 1 \\
& \frac{4}{\Gamma\left(\frac{d}{2}-1\right)^{2}} \int_{0}^{\infty} d h h^{d-3} u^{\frac{1}{2} \gamma} \frac{h}{\sqrt{v}} \\
& \text { three-point functions }
\end{aligned}\left(\frac{a_{\frac{h}{\sqrt{v}}}}{a_{\frac{h}{\sqrt{v}}}^{(0)}}\right) \quad K_{0}(2 h)=h(\log u, \log v)
$$

The consistent form of the correction is

$$
\begin{aligned}
\gamma_{s} & =\gamma^{(1)} \log s+\gamma^{(2)} \log ^{2} s+\gamma^{(3)} \log ^{3} s+\ldots \\
\frac{a_{s}}{a_{s}^{(0)}} & =1+a^{(1)} \log s+a^{(2)} \log ^{2} s+a^{(3)} \log ^{3} s+\ldots
\end{aligned}
$$

Log(S) From Bootstrap

The solution is

$$
\begin{aligned}
\gamma_{s} & =\gamma^{(1)}(g) \log s, \\
\frac{a_{s}}{a_{s}^{(0)}} & =\frac{\Gamma\left(\frac{d}{2}-1-\frac{\gamma_{s}}{2}\right)^{2}}{\Gamma\left(\frac{d}{2}-1\right)^{2}}
\end{aligned}
$$

[Alday, Maldacena '07]
[Alday, Bissi '13]

Log(S) From Bootstrap

The solution is

$$
\begin{aligned}
\gamma_{s} & =\gamma^{(1)}(g) \log s, \\
\frac{a_{s}}{a_{s}^{(0)}} & =\frac{\Gamma\left(\frac{d}{2}-1-\frac{\gamma_{s}}{2}\right)^{2}}{\Gamma\left(\frac{d}{2}-1\right)^{2}}
\end{aligned}
$$

[Alday, Maldacena '07]
[Alday, Bissi '13]

It implies the following form of the corrected correlator
[Alday, Eden, Korchemsky, Maldacena, Sokatchev '10]

$$
f(u, v)=u^{\frac{d-2}{2}} v^{\frac{d-2}{2}} e^{-\frac{f(g)}{4} \log u \log v}
$$

Z_{2}-preserving Theory

Consider external operators

$$
\mathcal{O}=\phi, \Delta_{\text {ext }}=\frac{d-2}{2}
$$

$$
Z_{2}: \phi \rightarrow-\phi
$$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s} f_{\tau, s}=\frac{f(u, v)}{v^{\frac{d-2}{2}}}=u^{\frac{d-2}{2}} h(\log u, \log v)
$$

Z_{2}-preserving Theory

Consider external operators

$$
\begin{aligned}
& \mathcal{O}=\phi, \Delta_{\text {ext }}=\frac{d-2}{2} \\
& Z_{2}: \phi \rightarrow-\phi
\end{aligned}
$$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s} f_{\tau, s}=\frac{f(u, v)}{v_{\left(\frac{d-2}{2}\right)}}=u^{\frac{d-2}{2}} h(\log u, \log v)
$$

Z_{2}-preserving Theory

Consider external operators

$$
\begin{aligned}
& \mathcal{O}=\phi, \Delta_{\text {ext }}=\frac{d-2}{2} \\
& Z_{2}: \phi \rightarrow-\phi
\end{aligned}
$$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s} f_{\tau, s}=\frac{f(u, v)}{v_{\left(\frac{d-2}{2}\right)}}=u^{\frac{d-2}{2}} h(\log u, \log v)
$$

- No power-like divergences, so we cannot apply the previous method directly

Z_{2}-preserving Theory

Consider external operators

$$
\begin{aligned}
& \mathcal{O}=\phi, \Delta_{\text {ext }}=\frac{d-2}{2} \\
& Z_{2}: \phi \rightarrow-\phi
\end{aligned}
$$

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s} f_{\tau, s}=\frac{f(u, v)}{u_{\left(\frac{d-2}{2}\right)}}=u^{\frac{d-2}{2}} h(\log u, \log v)
$$

- No power-like divergences, so we cannot apply the previous method directly

Let us act with the Casimir operator on both sides of the sum rule. We get

$$
\sum_{\tau, s} u^{\frac{\tau}{2}} c_{\tau, s}\left(s^{2}-\frac{1}{4}\right) f_{\tau, s}(v)=\mathcal{D}\left(u^{\frac{d-2}{2}} h(\log u, \log v)\right)
$$

Z_{2}-preserving Theory

The most singular terms in the small v limit take the following form

$$
\mathcal{D}\left(u^{\frac{d-2}{2}} \log u(\log v)^{k}\right) \approx \frac{k(k-1) u^{\frac{d-2}{2}} \log u(\log v)^{k-2}}{v}
$$

This can only come from an infinite set of operators!

Z_{2}-preserving Theory

The most singular terms in the small v limit take the following form

$$
\mathcal{D}\left(u^{\frac{d-2}{2}} \log u(\log v)^{k}\right) \approx \frac{k(k-1) u^{\frac{d-2}{2}} \log u(\log v)^{k-2}}{v}
$$

This can only come from an infinite set of operators!
The sum rule takes the form

$$
\frac{1}{2} \frac{4}{\Gamma(d / 2-1)^{2}} \int_{0}^{\infty} d h h^{d-3}\left(\frac{h^{2}}{v}\right) K_{0}(2 h) \gamma\left(\frac{h}{\sqrt{v}}\right)=(\log v)^{k-2} v^{\frac{d-4}{2}} .
$$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{1}{N}$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{1}{N}$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{\bar{N}}{N}$

$$
\gamma_{\sigma_{(i} \partial^{s} \sigma_{j)}}=\frac{0}{N} \frac{1}{s^{d-2}}+\frac{c_{\alpha}(d)}{N} \frac{1}{s^{2}}
$$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{1}{N}$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{\bar{N}}{N}$

$$
\gamma_{\sigma_{i} \partial^{s} \sigma_{j)}}=\frac{c_{0}(d)}{N^{2}} \frac{1}{s^{d-2}}+\frac{c_{\alpha}(d)}{N} \frac{1}{s^{2}}
$$

Z_{2}-preserving Theory

The sum rule requires anomalous dimensions of the higher spin currents to have the following structure

$$
\begin{aligned}
\gamma_{s} & =\frac{\alpha_{0}(g)+\alpha_{1}(g) \log s+\alpha_{2}(g)(\log s)^{2}+\ldots}{s^{d-2}}, \\
\alpha_{0}(g) & \sim g^{2}, \quad \alpha_{1}(g) \sim g^{3}, \quad \alpha_{2}(g) \sim g^{4}
\end{aligned}
$$

Microscopically, the theory of this type is the critical $\mathrm{O}(\mathrm{N})$ model. HS currents are in the symmetric traceless representation of $\mathrm{O}(\mathrm{N})$ and $g=\frac{\bar{N}}{N}$

$$
\gamma_{\sigma_{(i} \partial^{s} \sigma_{j)}}=\frac{c_{0}(d)}{N^{2}} \frac{1}{s^{d-2}}+\frac{c_{\alpha}(d)}{N} \frac{1}{s^{2}}
$$

For $\quad 1 \ll s^{4-d} \ll N \quad$ the $\frac{1}{s^{2}}$ term dominates!

3d Ising Model

- Conformal invariance and Z_{2} invariance

3d Ising Model

- Conformal invariance and Z_{2} invariance
- Contains in the spectrum a scalar operator σ

$$
\Delta_{\sigma}=\frac{1}{2}+\gamma_{\sigma} \quad \gamma_{\sigma} \simeq 0.018
$$

$$
Z_{2}: \sigma \rightarrow-\sigma
$$

3d Ising Model

- Conformal invariance and Z_{2} invariance
- Contains in the spectrum a scalar operator σ

$$
\Delta_{\sigma}=\frac{1}{2}+\gamma_{\sigma}
$$

$$
Z_{2}: \sigma \rightarrow-\sigma
$$

From this it follows that the theory contains an infinite set of light higher spin currents

$$
\begin{aligned}
& \Delta_{s}=1+s+\gamma_{s} \quad s=2,4,6, \ldots \\
& 0 \leq \gamma_{s}<2 \gamma_{\sigma} \ll 1
\end{aligned}
$$

3d Ising Model

- We consider perturbation theory in $\gamma_{\sigma}=g$

3d Ising Model

- We consider perturbation theory in $\gamma_{\sigma}=g$
- The leading correction to γ_{s} at large spin comes from current themselves (critical $\mathrm{O}(\mathrm{N})$)

$$
\mathrm{HS}=\mathrm{HS}
$$

3d Ising Model

- We consider perturbation theory in $\gamma_{\sigma}=g$
- The leading correction to γ_{s} at large spin comes from current themselves (critical $\mathrm{O}(\mathrm{N})$)

$$
\mathrm{HS}=\mathrm{HS}
$$

As we argued above in this case we get

$$
\begin{gathered}
\gamma_{s}=\frac{c(\log s) \gamma_{\sigma}^{2}}{s}=\frac{\gamma_{\sigma}^{2}}{s}\left(c_{0}+c_{1} \log s+\ldots\right), \quad \gamma_{\sigma}^{2} \simeq 3 \cdot 10^{-4} \\
c(\infty) \simeq 8.5 \\
c_{0}=?
\end{gathered}
$$

3d Ising Model

- The next operator in the spectrum is ε

$$
\Delta_{\varepsilon} \simeq 1.41 \quad \text { (strongly coupled) }
$$

3d Ising Model

- The next operator in the spectrum is ε
$\Delta_{\varepsilon} \simeq 1.41 \quad$ (strongly coupled)
Comparing $\frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}$ with $\frac{\gamma_{\sigma}^{2}}{s}$ we find that for
$2 \leq s \leq 10^{4}$

$$
\frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}>\frac{\gamma_{\sigma}^{2}}{s}
$$

3d Ising Model

- The next operator in the spectrum is ε

$$
\Delta_{\varepsilon} \simeq 1.41 \quad \text { (strongly coupled) }
$$

Comparing $\frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}$ with $\frac{\gamma_{\sigma}^{2}}{s}$ we find that for
$2 \leq s \leq 10^{4}$

$$
\frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}>\frac{\gamma_{\sigma}^{2}}{s}
$$

Thus, we expect the higher spin currents to be irrelevant for small spins (which are accessible experimentally).
[similar to the $\mathrm{O}(\mathrm{N})$ case]

3d Ising Model

Moreover, we can treat the contribution of ε exactly!
The result is

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

3d Ising Model

Moreover, we can treat the contribution of ε exactly!
The result is

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

We expect an infinite number of corrections to this formula. However, they are all very small for large s.

3d Ising Model

Moreover, we can treat the contribution of ε exactly!
The result is

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

We expect an infinite number of corrections to this formula. However, they are all very small for large s.
$s=4$ is already large!

3d Ising Model

Moreover, we can treat the contribution of ε exactly!
The result is

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

We expect an infinite number of corrections to this formula. However, they are all very small for large s.
$s=4$ is already large!
(not a "precise photography", but a "`very good caricature")

3d Ising Model

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

Corrections:

3d Ising Model

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

Corrections:

- From heavier operators $\frac{1}{s^{\tau}}$

3d Ising Model

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

Corrections:

- From heavier operators $\frac{1}{s^{\tau}}$
- From higher spin currents $\frac{c(\log s) \gamma_{\sigma}^{2}}{s}$

3d Ising Model

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

Corrections:

- From heavier operators $\frac{1}{s^{\tau}}$
- From higher spin currents $\frac{c(\log s) \gamma_{\sigma}^{2}}{s}$
- From the descendants of $\Delta_{\varepsilon} \frac{1}{s^{\Delta_{\varepsilon}+n}}$

3d Ising Model

$$
\gamma_{s} \simeq 2 \gamma_{\sigma}-\frac{2 \Gamma\left(\Delta_{\varepsilon}\right)}{\Gamma\left(\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{\Gamma\left(\Delta_{\sigma}\right)^{2}}{\Gamma\left(\Delta_{\sigma}-\frac{\Delta_{\varepsilon}}{2}\right)^{2}} \frac{f_{\sigma \sigma \varepsilon}^{2}}{s^{\Delta_{\varepsilon}}}
$$

Corrections:

- From heavier operators $\frac{1}{s^{\tau}}$
- From higher spin currents $\frac{c(\log s) \gamma_{\sigma}^{2}}{s}$
- From the descendants of $\Delta_{\varepsilon} \frac{1}{s^{\Delta_{\varepsilon}+n}}$

$$
\gamma_{s} \simeq 0.0363-\frac{0.0926}{s^{1.4126}}+\frac{0.0012}{s^{2.4126}}-\frac{0.0220}{s^{3.4126}}-\frac{0.0003 c_{0}}{s}
$$

3d Ising Model

We can determine c0 from spin-4 anomalous dimension.

[Numerical bootstrap predictions, unpublished]
(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)

3d Ising Model

Or we can construct c0-independent combinations

$$
\begin{aligned}
\left(\gamma_{6}-\frac{2}{3} \gamma_{4}\right)^{\text {theory }} & =0.0135 \\
\left(\gamma_{8}-\frac{1}{2} \gamma_{4}\right)^{\text {theory }} & =0.0198 \\
\left(\gamma_{10}-\frac{2}{5} \gamma_{4}\right)^{\text {theory }} & =0.0235
\end{aligned}
$$

3d Ising Model

Or we can construct c0-independent combinations

[Numerical bootstrap predictions, unpublished]
(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)

$$
\begin{array}{ll}
\left(\gamma_{6}-\frac{2}{3} \gamma_{4}\right)^{\text {theory }}=0.0135, & \left(\gamma_{6}-\frac{2}{3} \gamma_{4}\right)^{\text {exp }}=0.0138(10) \\
\left(\gamma_{8}-\frac{1}{2} \gamma_{4}\right)^{\text {theory }}=0.0198, \quad\left(\gamma_{8}-\frac{1}{2} \gamma_{4}\right)^{\text {exp }}=0.0196(10), \\
\left(\gamma_{10}-\frac{2}{5} \gamma_{4}\right)^{\text {theory }}=0.0235 . \quad\left(\gamma_{10}-\frac{2}{5} \gamma_{4}\right)^{\text {exp }}=0.0239(10) .
\end{array}
$$

3d Ising Model

Or we can construct c0-independent combinations

[Numerical bootstrap predictions, unpublished]
(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)

$$
\begin{gathered}
\left(\gamma_{6}-\frac{2}{3} \gamma_{4}\right)^{\text {theory }}=0.0135, \quad\left(\gamma_{6}-\frac{2}{3} \gamma_{4}\right)^{\text {exp }}=0.0138(10) \\
\left(\gamma_{8}-\frac{1}{2} \gamma_{4}\right)^{\text {theory }}=0.0198, \quad\left(\gamma_{8}-\frac{1}{2} \gamma_{4}\right)^{\text {exp }}=0.0196(10) \\
\left(\gamma_{10}-\frac{2}{5} \gamma_{4}\right)^{\text {theory }}=0.0235 . \quad\left(\gamma_{10}-\frac{2}{5} \gamma_{4}\right)^{\text {exp }}=0.0239(10) \\
\gamma_{4}^{e x p}=0.0227(1)
\end{gathered}
$$

Conclusions

- Anomalous dimensions of higher spin currents are computable from the crossing equation

Conclusions

- Anomalous dimensions of higher spin currents are computable from the crossing equation
- Double light-cone limit has a simple structure in weakly coupled conformal field theories
(also 2d minimal models)

Conclusions

- Anomalous dimensions of higher spin currents are computable from the crossing equation
- Double light-cone limit has a simple structure in weakly coupled conformal field theories
(also 2d minimal models)
- Higher spin currents can be self-dual under crossing

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

$$
\gamma_{s} \sim \log s
$$

(gauge theories/no scalar in the spectrum)

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

$$
\begin{aligned}
& \gamma_{s} \sim \log s \\
& \gamma_{s} \sim \frac{c(\log s)}{s^{d-2}}
\end{aligned}
$$

(gauge theories/no scalar in the spectrum)
(critical $\mathrm{O}(\mathrm{N})$ models/scalar in the spectrum)
Z_{2} is preserved

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

$$
\begin{aligned}
\gamma_{s} & \sim \log s \\
\gamma_{s} & \sim \frac{c(\log s)}{s^{d-2}} \\
\gamma_{s} & \sim \frac{c_{\phi \phi \phi}^{2}}{s^{\Delta_{\phi}}}
\end{aligned}
$$

(gauge theories/no scalar in the spectrum)
(critical $\mathrm{O}(\mathrm{N})$ models/scalar in the spectrum)
Z_{2} is preserved
(Yang-Lee type models/scalar in the spectrum)
Z_{2} is violated

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

$$
\begin{array}{cc}
\gamma_{s} \sim \log s & \text { (gauge theories/no scalar in the spectrum) } \\
\gamma_{s} \sim \frac{c(\log s)}{s^{d-2}} & \text { (critical } \mathrm{O}(\mathrm{~N}) \text { models/scalar in the spectrum) } \\
\gamma_{s} \sim \frac{c_{\phi \phi \phi}^{2}}{s^{\Delta_{\phi}}} & Z_{2} \text { is preserved } \\
& \text { (Yang-Lee type models/scalar in the spectrum) } \\
\underline{\text { all-lOOP }} & Z_{2} \text { is violated }
\end{array}
$$

Conclusions

- Possible "phases" of higher spin symmetry breaking depend on the symmetries and the spectrum of the theory

$$
\begin{array}{cc}
\gamma_{s} \sim \log s & \text { (gauge theories/no scalar in the spectrum) } \\
\gamma_{s} \sim \frac{c(\log s)}{s^{d-2}} & \text { (critical O(N) models/scalar in the spectrum) } \\
\gamma_{s} \sim \frac{c_{\phi \phi \phi}^{2}}{s^{\Delta_{\phi}}} & Z_{2} \text { is preserved } \\
& \text { (Yang-Lee type models/scalar in the spectrum) } \\
& Z_{2} \text { is violated }
\end{array}
$$

- Sometimes for low enough spins not the smallest twist operators are the most relevant ones (critical $\mathrm{O}(\mathrm{N})$, 3d Ising)

Some Further Directions

Understand better the double light-cone limit in a generic CFT

Some Further Directions

Understand better the double light-cone limit in a generic CFT

Lagrangians and crossing. Can the sharp bound $d>6$ be seen at the level of the crossing equation?

Some Further Directions

Understand better the double light-cone limit in a generic CFT

Lagrangians and crossing. Can the sharp bound $d>6$ be seen at the level of the crossing equation?

Can all perturbative solutions of crossing be classified? (Mellin amplitudes)

Thank you for the attention!

(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)

Back Up

Operators With High Twist

Consider operators made of n fields. We can ask what is the number of primary operators of this type exist. There is sharp transition

$$
N(n, s) \sim \frac{s^{n-2}}{\Gamma(n-1) \Gamma(n+1)}
$$

- Low twist operators live on finite number of Regge trajectories
- The number of high twist operators grows with spin

Anomalous Dimension of External Operator

When the external operator receives anomalous dimension we get

$$
\begin{aligned}
& v^{\Delta_{0}+\gamma_{e x t}} G(u, v)=u^{\Delta_{0}+\gamma_{e x t}} G(v, u) \\
& v^{\Delta_{0}} u^{\frac{d-2}{2}} \log u \sum_{s} \frac{\gamma_{s}-2 \gamma_{e x t}}{2} a_{s}^{(0)} f_{s}(v) \\
& =u^{\Delta_{0}}\left(\sum_{\tau_{i}^{(0)}} v^{\frac{\tau_{i}^{(0)}}{2}} \delta F_{\tau_{i}}^{(0)}(u)+\log v \sum_{\tau_{i}^{(0)}, s} v^{\frac{\tau_{0}^{(0)}}{2}} \frac{\gamma_{\tau_{i}^{(0)}, s}-\gamma_{e x t}}{2} F_{\tau_{i}}^{(0)}(u)\right)
\end{aligned}
$$

Thus, the trivial effect is

$$
\gamma_{s} \rightarrow \gamma_{s}-2 \gamma_{e x t}
$$

