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Example: 3d Ising model �⌧gap ' 0.02

We would like to understand this case 

HS

�⌧gap log s � 1

(strong coupling)

�⌧gap log s ⌧ 1

(weak coupling)



Plan

Find anomalous dimensions of higher spin currents 
in theories with slightly broken higher spin symmetry 
using conformal bootstrap

⌧ = �� s = d� 2 + �s, �s ⌧ 1



Plan

Find anomalous dimensions of higher spin currents 
in theories with slightly broken higher spin symmetry 
using conformal bootstrap

⌧ = �� s = d� 2 + �s, �s ⌧ 1

High spin behavior is controlled by the low twist 
operators in the dual channel.



Plan

Find anomalous dimensions of higher spin currents 
in theories with slightly broken higher spin symmetry 
using conformal bootstrap

⌧ = �� s = d� 2 + �s, �s ⌧ 1

High spin behavior is controlled by the low twist 
operators in the dual channel.

(In some interesting cases s=4 is already large)
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• Microscopically, these are composed of operators 
with twists       and       that are mapped into each 
other under crossing

f(u, v)HS = u
d�2
2 v

d�2
2

• Higher spin currents are self-dual under crossing
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Double Light-Cone Limit
When we turn on the coupling g the correlator becomes 
(perturbatively)

tree-level twists

new operators

crossing

f(u, v) =
X
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Whereas at L-th order we have

c(L)
mn = gL

LX

i,j=0

c(L)
mn|ij(log u)

i
(log v)j ,

c(L)
mn|ij = c(L)

nm|ji

Generically, we think of g ⇠ �s ⌧ 1

(light higher spin currents)
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Self-duality of Higher Spin Currents
Let us consider a situation when higher spin currents 
are the lowest twist operators that appear in the OPE

f(u, v) = u
d�2
2 v

d�2
2 h(log u, log v), h(log u, log v) = h(log v, log u)

[Alday, Bissi ’13]

• Case 1: O = �2, �
ext

= d� 2

(microscopically: gauge theories)

• Case 2: 

(microscopically: critical O(N), 3d Ising)

O = �, �
ext

=
d� 2

2

fixed by the microscopic theory
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2 c⌧,sf⌧,s(v) =

f(u, v)

vd�2
=

u
d�2
2

v
d�2
2

h(log u, log v)

• Collinear blocks have log(v) divergence for small v

• Power-like divergences can only come from 
a sum over an infinite set of operators

• The relevant spins are s =
hp
v
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Log(S) From Bootstrap

This becomes an equation for anomalous dimensions 
(and 3pt functions) of higher spin currents

�s = d� 2 + s+ �s, �s ⌧ 1.

4

�(

d
2 � 1)

2

Z 1

0
dh hd�3u

1
2� hp

v

0

B@
a hp

v

a(0)hp
v

1

CAK0(2h) = h(log u, log v)

The consistent form of the correction is

�s = �(1)
log s+ �(2)

log

2 s+ �(3)
log

3 s+ ...,
as

a(0)s

= 1 + a(1) log s+ a(2) log2 s+ a(3) log3 s+ ... .

collinear conformal blockthree-point functions

sum over spins
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The solution is
[Alday, Maldacena ’07]
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(g) log s,
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The solution is
[Alday, Maldacena ’07]

[Alday, Bissi ’13]�s = �(1)
(g) log s,

as

a(0)s

=

�(

d
2 � 1� �s

2 )

2

�(

d
2 � 1)

2

[Alday, Eden, Korchemsky, Maldacena, Sokatchev ’10]

f(u, v) = u
d�2
2 v

d�2
2 e�

f(g)
4 log u log v

It implies the following form of the corrected correlator
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Z2-preserving Theory
Consider external operators

• No power-like divergences, so we cannot apply  
the previous method directly

O = �,�
ext

=
d� 2

2

X

⌧,s

u
⌧
2 c⌧,sf⌧,s =

f(u, v)

v
d�2
2

= u
d�2
2 h(log u, log v)

Let us act with the Casimir operator on both  
sides of the sum rule. We get

X

⌧,s

u
⌧
2 c⌧,s(s

2 � 1

4

)f⌧,s(v) = D
⇣
u

d�2
2 h(log u, log v)

⌘

Z2 : � ! ��
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the following form 

D
⇣
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d�2
2

log u(log v)k
⌘
⇡ k(k � 1)u

d�2
2

log u (log v)k�2

v

This can only come from an infinite set of operators!

The sum rule takes the form

1

2

4

�(d/2� 1)

2

Z 1

0
dh hd�3

✓
h2

v

◆
K0(2h)�(

hp
v
) = (log v)k�2v

d�4
2 .
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Z2-preserving Theory

The sum rule requires anomalous dimensions 
of the higher spin currents to have the following structure

[Lang, Rühl ’93]

Microscopically, the theory of this type is  
the critical O(N) model. HS currents are in the symmetric 
traceless representation of O(N) and g =

1

N

�s =
↵0(g) + ↵1(g) log s+ ↵2(g) (log s)

2
+ ...

sd�2
,

↵0(g) ⇠ g2, ↵1(g) ⇠ g3, ↵2(g) ⇠ g4
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For   the          term dominates!1 ⌧ s4�d ⌧ N 1
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3d Ising Model

• Conformal invariance and         invarianceZ2

From this it follows that the theory contains an  
infinite set of light higher spin currents

�s = 1 + s+ �s s = 2, 4, 6, ...

0  �s < 2�� ⌧ 1
[Nachtmann ’73]

[Callan, Gross ’73]

• Contains in the spectrum a scalar operator �

�� =
1

2
+ �� �� ' 0.018

Z2 : � ! ��
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• We consider perturbation theory in 

• The leading correction to �s at large spin 
comes from current themselves  (critical O(N))

HS = HS

�� = g

As we argued above in this case we get

c(1) ' 8.5 c0 =?

, �2
� ' 3 · 10�4�s =

c(log s)�2
�

s
=

�2
�

s
(c0 + c1 log s+ ...)
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• The next operator in the spectrum is "
�" ' 1.41

Comparing f2
��"

s�"

�2
�

s
with we find that for 

2  s  104
f2
��"

s�"
>

�2
�

s

(strongly coupled)

Thus, we expect the higher spin currents to be 
irrelevant for small spins (which are accessible 
experimentally). [similar to the O(N) case]
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3d Ising Model

Moreover, we can treat the contribution of      exactly! "

The result is

�s ' 2�� � 2�(�")

�(�"
2 )2

�(��)2

�(�� � �"
2 )2

f2
��"

s�"

We expect an infinite number of corrections 
to this formula. However, they are all very small 
for large s. 

(not a ``precise photography’’, but a ``very good caricature’’)
s=4 is already large!
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Corrections:

�s ' 2�� � 2�(�")

�(�"
2 )2

�(��)2

�(�� � �"
2 )2

f2
��"

s�"

• From heavier operators 1

s⌧

• From higher spin currents c(log s)�2
�

s

• From the descendants of �"
1

s�"+n

�s ' 0.0363� 0.0926

s1.4126
+

0.0012

s2.4126
� 0.0220

s3.4126
� 0.0003c0

s



3d Ising Model

We can determine c0 from spin-4 anomalous dimension.
[Numerical bootstrap predictions, unpublished]

(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)

c0=4.036
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Conclusions

• Higher spin currents can be self-dual under  
crossing

• Double light-cone limit has a simple structure 
in weakly coupled conformal field theories

(also 2d minimal models)

• Anomalous dimensions of higher spin currents are 
computable from the crossing equation
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Conclusions

• Possible ``phases’’ of higher spin symmetry breaking  
depend on the symmetries and the spectrum of the theory

�s ⇠ log s (gauge theories/no scalar in the spectrum)

�s ⇠
c(log s)

sd�2
(critical O(N) models/scalar in the spectrum)

is preservedZ2

�s ⇠
c2���
s��

(Yang-Lee type models/scalar in the spectrum)

is violatedZ2

• Sometimes for low enough spins not the smallest 
twist operators are the most relevant ones  
(critical O(N), 3d Ising) 

all-loop
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Some Further Directions

Understand better the double light-cone limit in a 
generic CFT

Can all perturbative solutions of crossing be classified? 
(Mellin amplitudes) 

Lagrangians and crossing. Can the sharp bound d>6  
be seen at the level of the crossing equation? 



Thank you for the attention!

[Numerical bootstrap predictions, unpublished]
(3d Ising collaboration: S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi)



Back Up



Operators With High Twist

Consider operators made of n fields. We can 
ask what is the number of primary operators  
of this type exist. There is sharp transition

N(n, s) ⇠ sn�2

�(n� 1)�(n+ 1)

• Low twist operators live on finite number of  
Regge trajectories

• The number of high twist operators grows with spin



Anomalous Dimension of External Operator

When the external operator receives anomalous dimension 
we get

v�0+�
extG(u, v) = u�0+�

extG(v, u)
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