Generalized F-Theorem
and the Epsilon-Expansion

Simone Giombi

' Princeton University

Talk at Strings 2015
Bangalore, June 24, 2015

Based mainly on SG, Klebanov, arXiv:1409.1937

Fei, SG, Klebanov, Tarnopolsky, to appear



The c-theorem

 Adeep problemin QFT is how to define a “good”
measure of the number of degrees of freedom which
decreases along RG flows

* In d=2, this was solved by Alexander Zamolodchikov, who
constructed a c-function which monotonically decreases
under RG flow and is stationary at fixed points. At RG
fixed points, this c-function is equal to the CFT central
charge, which is also the Weyl anomaly
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* The central charge can also be found from the Euclidean
path integral on a two-sphere of radius R

F=—logZsg=—c/3 logR+ ...



The a-theorem
In d=4 there are two Weyl anomaly coefficients
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The a-coefficient, which multiplies the 4d Euler density, can
be extracted from the Euclidean path integral on the 4d
sphere:

F=—logZgt=a logR+ ...
Cardy conjectured that a decreases along any RG flow
Ay = Arp

A proof was provided a few years ago (komargodski, Schwimmer)

Natural to propose a generalization to all even d . In d=6, no

general proof, but evidence from supersymmetric CFT’s
(Cordova, Dumitrescu, Yin; Cordova, Dumitrescu, lntriligator)



The F-theorem

How do we extend these successes to odd dimensions
where there are no anomalies? This is physically
interesting, especially in d=3 where there are many CFTs,
some of them describing critical points in statistical
mechanics and condensed matter physics

Consider the free energy on the 3-sphere
F'=—log Zgs
In a CFT, after removing power-like divergences (e.g. by

zeta or dimensional regulator), it is a well-defined, finite
and radius independent number



The F-theorem

Guided by evidence from N=2 susy models, perturbative
fixed points and holography, it was proposed that any RG
flow between unitary CFT’s satisfies the F-theorem
(Myers, Sinha; Jafferis, Klebanov, Pufu, Safdi)

Fyv > Fig
F is also related to the universal term in the entanglement

entropy across a circle of radius R in any 2+1 dimensional
CFT (Casini, Huerta, Myers)
This connection was used to prove the d=3 F-theorem

(Casini, Huerta)

Conjectural extension for all odd d: what decreases under
. ~ d+1 d—1
RGis F=(=1)7 F=(=1)7 log Z (Klebanov, Pufu, Safdi)



Sphere free energy in continuous d

Is there some interpolation between “F-theorems” in odd d and
“a-theorems” in even d?

It is natural to study the dimensional continuation of the sphere
free energy: the Euclidean path integral of the CFT on S9,
continued to non-integer d

Consider the quantity (sG, klebanov)

e

F =sin(nd/2)log Zga = —sin(wd/2)F

In even d, F has a pole in dimensional regularization whose
residue is related to the Weyl a-anomaly. The multiplication by
the factor sin(7d/2) removes the pole and yields the anomaly
coefficient

In odd d, it yields the F-values F = (-1)
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F = (-1)7 log Zsa



Generalized F-theorem in continuous d?

Therefore, F smoothly interpolates between g-anomaly
coefficients in even d and “F-values” in odd d

Based on the existing F- and a-theorems, it is natural to ask
whether a “generalized F-theorem” holds in arbitrary dimension

d . .
Fuv > Frg

We have calculated F in several examples of CFTs that can be
defined in continuous dimension, including double-trace flows

at large N, weakly relevant flows, and perturbative fixed points
in the g-expansion

In all unitary examples we considered, we find that F indeed
decreases under RG flow. (For non-unitary fixed points, the
inequality £y, > F;» typically does not hold.)

Note: this is a statement about the value of F at fixed points.

We do not construct a monotonic function defined along the RG
trajectory



Free conformal scalar in continuous d

For a free conformally coupled scalar on S¢, the free
energy in general d can be computed to be (s, kiebanov)

F, = =logdet (—vi + ia’-(d - 2))
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Near even d, it has simple poles whose coefficients
are the a-anomalies.
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Free conformal scalar in continuous d

e Thevalue of F=-sin(rd/2)F jsthen given by
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* This is positive for all d and smoothly interpolates

between g and F
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Double-Trace Flows

Consider a large N CFT perturbed by a double-trace
operator

ScrT, = ScFT + A / dd.;rOi

(A is a single trace scalar primary with dimension A in the
unperturbed CFT

When A < d/2 the perturbation is relevant, and there is a
flow to an IR fixed point where O has dimension
d-A+O(1/N) (Gubser, Klebanov )

The change in F on S? between UV and IR at large N is
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Double-Trace Flows

* The 2-point function on the sphere is fixed in terms of the
chordal distance s(x,y)
1

(OA(2)OA(y))o = s(z.9)A

e |ts determinant can be computed explicitly by
decomposing in spherical harmonics. In arbitrary d one

gets the result (Gubser, Klebanov; Diaz, Dorn)
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Double-Trace Flows

In terms of F = —sin(xd/2)F , we then find
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In a unitary CFT, A>d/2-1, and recall A < d/2 for relevant
perturbations. Then one can see that 0FA<0 for all d, or:

Fov > Fip

This shows that double-trace flows in large N unitary CFT’s
obey the generalized F-theorem in arbitrary d

An analogous calculation applies to the large N unitary UV
fixed points that arise when d/2 < A<d/2+1
(e.g. the d=3 critical Gross-Neveu model)



Interacting O(N) models in 4<d<6

Consider the O(N) models with quartic interaction

S = /dd;r: (%(@q&i)g + g[@i{bif)

In 4<d<6, the model has large N unitary UV fixed points
(Parisi 75), well defined to all orders in 1/N

Dual to Vasiliev higher spin gravity in AdS, with non-standard
boundary conditions (A=2) on the bulk scalar (s, kiebanov, safdi)

The same 4<d<6 fixed points can be described as IR fixed
points of the cubic model (rei, sG, kiebanov)

S = /ddi' (.(Umf)g + g(f)ﬂa)z + %J{f}*fﬁi + %53)



Interacting O(N) models in 4<d<6

* In the cubic description, RG flow is from the free theory of
N+1 scalars in the UV to the O(N) interacting theory in the
IR. Perturbatively unitary in d=6-¢ for sufficiently large N
(Fei, SG, Klebanov; Fei, SG, Klebanov, Tarnopo/sky)

 The two descriptions, as either the IR fixed point of the
cubic theory or UV fixed point of the quartic theory, imply
that F should satisfy the inequalities

A'Tﬁfree sc. < j;::.'Jl"it. < (*?\'T + 1)ﬁTfI'EE SC.



A test of the 5d F-theorem

In d=5, using the large N results for double-trace flows, one
finds
3¢(5) + 7¢(3)
9674
We see that the correction is positive, so that the left side of
the inequality N Fhee se. < Fait. < (N + 1) Free 5. 1S Satisfied
The right hand side is also satisfied, because
3¢(5) +7°¢(3)
0674
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is smaller than the value of ' for a 5d free scalar

log2  ¢(3) _ 15¢(5)
128 12872  2567*

Using the continuous d results, one can also show that the
same inequalities are satisfied in the full range 4<d<®6,
supporting the generalized F-theorem

~ (0.00574
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Weakly Relevant Flows

* Another general class of RG flows that one can study are
those obtained by perturbing a CFT by a slightly relevant
operator O(x) with dimension A=d-¢ (e<<1)

Sq = ScrT, + 9 / d%z O(x)

* Working in conformal perturbation theory, the relation
between bare coupling g, and renormalized one, and the
corresponding 3 function, are
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Weakly Relevant Flows

* Thereis a perturbative IR fixed point, 3(g.) =0, at
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* To compute the change in F from UV to IR, we conformally
map to the sphere S¢ and obtain

2 3
SF = F — [y = —%Cgfg(d " %Cgfg(d —€) + O(g})

* [,and /5 are the 2-point and 3-point integrals on S° (caray)
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Weakly Relevant Flows

In terms of the renormalized coupling g, one obtains the
result for the change of ' = —sin(nd/2)F

gty |1, 1 owE i+, (9
SF = ——eg® + = Cg| == B(qg)dg
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At the fixed point g=g. we find

2
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0F = Fir — Fuv = —

In a unitary CFT, C: is positive and Cis real, so we find
agreement with the generalized F-theorem in all d:

FUV - FIR_

This generalizes to continuous d previous computations in
odd d (K/ebanov, Pufu, Safdi) and even d (Komargodski)



Sphere free energy and the g-expansion

 The fact that 7 is a smooth function of dimension suggests
that, in the spirit of the Wilson-Fisher g-expansion, it may
provide us with a useful tool to estimate the value of F for
interacting CFT’s for which it is hard to make calculations
directly in the physical dimension

* For example, we can consider the 3d Ising model, and more
generally the critical O(N) CFT’s in d=3

 They are strongly coupled CFT’s in d=3, but they have a
perturbative description in d=4-¢



The O(N) models in d=4-¢

N+8, 3BN+14),
3= A
GAd i
st 24(3N + 14)x%
A, = g :
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 For N=1, e=1 we get the 3d Ising model. N=1, =2
corresponds to the 2d Ising CFT with central charge c=1/2

* The g-expansion (coupled with resummation techniques)
has proved successful for estimating operator dimensions
and critical exponents in the d=3 interacting CFT’s

* Following a similar approach, we can compute the
sphere free energy perturbatively and extrapolate the
results to =1 to estimate the value of F for 3d Ising and
related models



The Wilson-Fisher fixed points in curved space

* Torenormalize the theory in curved space in d=4-¢, one
starts with the bare action (8rown-collins 80; Hathrell ‘82)

]_ Y d— 2 i /‘\ ioui 1 (1 7
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* Divergences in the free energy are removed by expressing
all bare couplings in terms of renormalized ones

. N +8)
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The Wilson-Fisher fixed points in curved space

e Each renormalized coupling A, g, b,... then acquires a non-
trivial beta function f3,, B,, By, -
 The renormalized free energy is a finite function of the

renormalized couplings and renormalization scale u that
satisfies the Callan-Symanzik equation

o 8 0 0 0 o\ .
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 The conformally invariant IR fixed point is obtained by setting
to zero all beta functions in d=4-¢
By=Ba=B=B.=p,=0
* The sphere free-energy at the IR fixed point in d=4-¢
Fir(€) = F(As. ays, by, Co, 1. LR)
is then a R-independent quantity which is a function of € only



F for the O(N) scalar theory in d=4-¢

* We performed a perturbative calculation of F to order A°
(Fei, SG, Klebanov, Tarnpolsky, to appear), l.e. up to 6-|oops

 The poles in the above diagrams fix the curvature beta
functions to the needed order. At the IR fixed point, we get
the final result for F' = —sin(wd/2)F :

Fin =NFy(e) — 0N 2)’  mN(N +2)(13N? + 370N + 1588)€*
TR T BTN + 8 6912(N + 8)2
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Estimating F for the 3d Ising model

e Extracting precise estimates from the e—expansion typically
requires some resummation technique. A simple approach
is to use Pade approximants

Pz-uhf'[ ]{,E) _ Ao+ Are + Ao + ...+ A, €™

e 1+ Bie+ Boe2 + ...+ B, e

* For the Ising model (N=1), we expect F to be a smooth
function of d, such that near d=4 it reproduces the
perturbative e—expansion, and in d=2 it reproduces the
exact central charge of the 2d Ising CFT, c=1/2

 The accuracy of the Pade approximants can be greatly
improved if we impose the exact value c=1/2 (which in
terms of F corresponds to F=m/12) as a boundary
condition at d=2
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— Pade approx. with d=2 b.c.

______ e-expansion to O(e°)

" " " " 1 " " " " 1
20 25 30 40

=Fy+ Fing = ETU + 0.0205991¢ + 0.0136429¢* + 0.00670643€¢” + 0.00264883¢* + 0.000927589¢° + O

180 +0.0205991¢ + 0.0136429¢* + 0.00690843€¢* + 0.00305846¢* + 0.0012722¢° + O(€°)

(%)



Estimating F for the 3d Ising model

e Using the constrained Pade approximant method, we get
the estimate

__ Fid Lsine o o
Fiq 1sing = 0.0623 2d lsing  ().97
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* The value of F (and hence of the disk entanglement
entropy) for 3d Ising appears to be extremely close to the
free field value!

* A qualitatively similar result was found for C;in the
conformal bootstrap approach

3d Ising ; - ol ,
cr blﬂ%/ﬂ%d free scalar ~ 09466

(E/-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi)



Conclusion and summary

We studied dimensional continuation of the sphere free
energy and provided evidence for a generalized F-theorem in
continuous d, interpolating between F-theorems in odd d and
a-theorems in even d.

The quantity that decreases under RG flow is

—t

F =sin(nd/2)log Zga = —sin(mwd/2)F

The e—expansion of F can be used to estimate the values of F
for interesting CFTs

For the critical 3d Ising model it is only a few percent lower
than for the free conformal scalar

Can this result be compared with a numerical calculation of
the Entanglement Entropy for the 3d Ising model?



Comments on SUSY theories

e Using the dimensional reduction scheme in d=4-¢ (which
preserves SUSY), one can smoothly connect theories with 4
supercharges in d=4,3,2

* For models with several chiral superfields (no gauge fields),

and with U(1), symmetry, we proposed a natural version of
localization in 2<d<4 (s, Klebanov). The exact F is given by

F= Z _7:_(&1) trial R-charges: I; = 2A;/(d — 1)

chirals

h i ) /ﬂ. . ['(d—1—2x)T (x)sin (?T(I — 5))
d/2—1 ! r (d o ]')

* If the A, are not all determined by superpotential, they are
fixed by extremizing F with respect the A



Comments on SUSY theories

* This smoothly interpolates between the known results in
d=4,3,2:
d=4: F(A=3/2R)=

3T
16

(R—1)(3(R—-1)*—1)
d=3: F(A)=—((1-A) (Jafferis’ /(=) function)
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* For explicit examples suchas W =X’ W= YZZZ , Which
have non-trivial IR fixed points in d=4-¢ (“ super Ising”, “super
O(N)”), we checked that this “interpolating localization”
prescription precisely agrees with existing loop calculations of
anomalous dimensions in these SCFT’s (Ferreira, Jack, Jones), and
with direct perturbative calculation of F in the g-expansion
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