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How is quantum information organized in: 
• Ground states? 
• Energy eigenstates? 
• Thermal / thermalizing states?
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Entanglement entropy of every possible subsystem “maps out” 
the storage of quantum information. 
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In local systems, this entanglement map and its dynamics have 
an intricate structure. 

This structure is not something we directly measure in experiment — 
but it is the background arena for all of the more detailed questions 
about the system (correlation functions).



In local systems, this entanglement map and its dynamics have 
an intricate structure. 

In holographic QFTs, it is closely related to emergent geometry: 

• Thermofield double for eternal black holes 

• Holographic entanglement entropy formula

Maldacena ’01

Ryu, Takayanagi ’06; Hubeny, Rangamani, Takayanagi ’07; 
Lewkowycz, Maldacena ’13; etc. 

This structure is not something we directly measure in experiment — 
but it is the background arena for all of the more detailed questions 
about the system (correlation functions).
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This suggests that 

Gravity <—> Entanglement Dynamics

Point of this talk:  

• In several interesting situations, we can derive nonlinear 3d 
gravity directly from the entanglement dynamics of 2d CFT.

• Similar methods lead to new results in non-holographic 2d 
CFTs.

TH ‘13;  
Asplund, Bernamonti, Galli, TH ‘14

Asplund, Bernamonti, Galli, TH ’15



Mostly based on 1410.1392 and 1506.03772, with: 

Curtis Asplund 

Alice Bernamonti 

Federico Galli. 



We are in 1+1d, so space is a line and subsystem A consists of 
one or more intervals: 

Or, we can put the theory on a circle: 
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We are in 1+1d, so space is a line and subsystem A consists of 
one or more intervals: 

Or, we can put the theory on a circle: 

A A …

A

⇢ = | ih |

SA = �Tr⇢A log ⇢A, ⇢A ⌘ TrAC⇢

The full system is in a pure state: 

and we want to compute the entanglement entropy



Calculating Entanglement Entropy



Entanglement entropy is computed from a correlation 
function of infinitesimal conical defects: 

The “twist operator”       has conformal dimension

SA ⇠ � lim

✏!0

1

✏

logh |�✏(0)�̄✏(x)| i

�✏

� =
c

12
✏

[Calabrese, Cardy ’04]
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In general, these correlators cannot be computed.  They 
depend on all the details of the CFT. 

But in holographic CFTs: 

• Large central charge c >> 1 

• Sparse spectrum of low-dimension operators 

Dominant contribution comes from stress-tensor exchange 
and can be computed analytically in several interesting 
states. 

—> Universality



In general, these correlators cannot be computed.  They 
depend on all the details of the CFT. 

But in holographic CFTs: 

• Large central charge c >> 1 

• Sparse spectrum of low-dimension operators 

Dominant contribution comes from stress-tensor exchange 
and can be computed analytically in several interesting 
states. 

—> Universality

*with caveats



Two intervals in vacuum:
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Single interval in an excited state:

[Headrick ’10;   
TH ’13] 



The sum of stress-tensor exchanges, 

is, by definition, the Virasoro conformal block for the vacuum 
representation. 

This function is not known in general; but can be computed 
in the relevant limit (large c, vanishing defect) using a 
method of Zamolodchikov.

1, T, T 2, @T, etc.

X O

Virasoro block

SA $ logFvac(z)Fvac(z̄)



Zamolodchikov’s method to calculate        (rephrased slightly): 

• Find a flat SL(2,C) connection with defects at the interval 
endpoints 

• Impose trivial holonomy around region A 

• …etc…  

This is identical to constructing a 3d hyperbolic geometry, and 
evaluating the on-shell Einstein action! 

Therefore: geodesic lengths are encoded in the Virasoro 
vacuum block.

[TH ’13; Faulkner ’13]

F



Results



Insert a high-dimension operator at the center of a disk: 

 

Application 1: Black hole Microstates

This creates a high-energy eigenstate 
on a circle.
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Application 1: Black hole Microstates

This creates a high-energy eigenstate 
on a circle.

A

SA =
area

4

Entanglement from RT:

Dual = black hole microstate

[Asplund, Bernamonti, Galli, TH’14;  Fitzpatrick, Kaplan, Walters ’14] 

This is reproduced by  
the Virasoro block.



Inject a large O(c) amount of energy into a CFT at the 
origin.  

How does entanglement evolve with time?

Application 2: Local operator quench

A



State is created by operator inserted near the unit disk: 

Almost the same problem as the black hole, but need to be 
careful with operator ordering in Lorentzian signature. 

When the dust settles, entanglement is computed by a 
monodromy of the Virasoro vacuum block: 

 

Fvac(z)
��
z 1,z!0



This gives 

which agrees with the holographic formula applied to 
a boosted particle or black hole.

SA(t)

Gravity: Nozaki, Numasawa, Takayanagi ’13  
CFT: Asplund, Bernamonti, Galli, TH’14 

A



Application 3: Thermalization
Asplund, Bernamonti, Galli, TH’15 



t

Bell pairs

Initial state: Finite energy density, but 
only short-distance entanglement. 

“Global quench” 
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How does this state thermalize? 

t



For a single interval: 

• Entanglement grows linearly, then saturates at the 
thermal value. 

• in any CFT; holographic or not 

SA(t)

[CFT]  
Calabrese, Cardy ‘05 

[Holography] 
Abajo-Arriasta et al ’10 
Balasubramanian et al ’11 
TH, Maldacena ’13 
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For two intervals: 

A B

IAB = SA + SB � SAB

IAB(t)
Free quasiparticles

Holographic calculation

no scrambling

maximal scrambling



General CFT results 

“Bump” comes from singularity in  

The strength of this singularity depends on the central 
charge compared to # of conserved currents: 

Asplund, Bernamonti, Galli, TH’15 
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General CFT results 

“Bump” comes from singularity in  

The strength of this singularity depends on the central 
charge compared to # of conserved currents: 

Asplund, Bernamonti, Galli, TH’15 

Fvac(z)
��
z!1

Entanglement scrambles maximally in  
holographic 2d CFTs

c ! 1•              and sparseness: holographic answer

c  Ncurrents•                        : free quasiparticle answer



For moderate c > 1: 

• Entanglement scrambles 

• This was not thought to be possible in 2d CFT, due to 
“factorization” of left and right-movers 

• Condensed matter incarnation?

Asplund, Bernamonti, Galli, TH’15 
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Concluding comments

• We have seen some cases where entanglement dynamics of 
2d CFT reproduces semiclassical gravity.

• Methods do not apply to higher dimensions

• Ultimately, the most interesting question is how/when 
geometry breaks down in quantum gravity — eg, info loss.

• This question can be asked in 3d; presumably the answer is 
similar to higher dimensions.

• To address this in AdS/CFT we need to understand where 
semiclassical geometry came from in the first place; then we 
can ask how this approximation breaks down.


