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• Since the seminal work of Rattazzi, 
Rychkov, Tonni and Vichi in 2008, many 
interesting results have emerged using 
conformal bootstrap.

• Most of these impressive results rely 
heavily on (clever) numerics.

• I will talk about some analytic results that 
follow from conformal bootstrap.



• Work done with Apratim Kaviraj, Kallol Sen 
arXiv:1502.01437, 1504.00772 and in 
progress.

• Builds on work by Fitzpatrick, Kaplan, 
Poland, Simmons-Duffin; Komargodski, 
Zhiboedov.

• Related work by Alday, Bissi, Lukowski for 
N=4 SYM.

See Apratim’s poster and cf Kallol’s gong show talk



Summary of main results

• Given a (4d for most part) CFT with a scalar operator 
of dimension      and a spin-2 (minimal) twist-2 
operator there is an infinite sequence of large spin 
operators of dimension
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• For large N, we can think of these 
operators as double trace operators of the 
form

• However the CFT bootstrap analysis of 
course only yields conformal dimension, 
spin and the OPE coefficients and not the 
precise form of these operators.

Heemskerk, Penedones, 
Polchinski, Sully; El-Showk, 

Papadodimas



Camanho, Edelstein, Maldacena, 
Zhiboedov

Why is this interesting?

• Result is universal. Does not depend on lagrangian 
or the dimension of the seed operator. Just 
assumes twist gap of these operators from other 
operators in the spectrum.

• Anomalous dimension of double trace operators is 
related to bulk Shapiro time delay. Sign of 
anomalous dimension is related to causality. 
Interplay between unitarity of CFT and causality of 
bulk.

• Can be extended to arbitrary (eg. 3d) dimensions. 
May be relevant for 3d Ising model at criticality.

El-Showk, Paulos, Poland, Rychkov, 
Simmons-Duffin, Vichi



• Can compare with AdS/CFT.  Two different 
ways to calculate the anomalous dimensions  
a) Eikonal approximation of 2-2 scattering.     
b) Energy shift in a black hole background.

• Turns out that the result matches exactly with 
the AdS/CFT prediction.

Cornalba, Costa, 
Penedones, Schiappa

Fitzpatrick, Kaplan, 
Walters; Kaviraj, Sen, AS

Kaviraj, Sen, AS
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4
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where the derivatives are defined w.r.t u. For the crossed conformal blocks the analogous function

F (d)(⌧, v) is generated by the same di↵erential equation in (2.2) under the replacement u $ v. We
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where c1 and c2 are constants. The boundary condition is that for v ! 0, F (d)(⌧, v) ! 1, which
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further define,

g(⌧, v) = (1� v)
d�2
2 F (d)(⌧, v) , (2.3)

to yield the di↵erential equation for F (d) given by,

v(1�v)2F 00(d)(⌧, v)�(1�v)[(d�1)�(1�v)(⌧+1)]F 0(d)(⌧, v)� 1

4
[(1�v)⌧2�(d�2)2]F (d)(⌧, v) = 0 ,

(2.4)

where now the derivatives are w.r.t v. The solution for the above equation is given by,

F (d) =
(�1 + v)1/2

(1� v)
d�1
2

✓
c1v

d�1�⌧

2F1


d� ⌧

2
,
d� ⌧

2
, d�⌧, v

�
+c2 2F1


1

2
(⌧�d+2),

1

2
(⌧�d+2), ⌧�d+2, v

�◆
,

(2.5)

where c1 and c2 are constants. The boundary condition is that for v ! 0, F (d)(⌧, v) ! 1, which

fixes the integration constants. The final solution for F (d)(⌧, v) after putting in these boundary

conditions become,

F (d)(⌧, v) =
2⌧

(1� v)
d�2
2

2F1


1

2
(⌧ � d+ 2),

1

2
(⌧ � d+ 2), ⌧ � d+ 2, v

�
. (2.6)

The general recursion relation, relating the conformal blocks for d dimensions to those in d � 2

dimensions are worked out in section 5 of [1]. We write down the relation for the crossed conformal

blocks for convenience,
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��2,`(v, u)�

4(`� 2)(d+ `� 3)
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�,`

(v, u)

�
.

(2.7)

In the limit when ` ! 1 at fixed ⌧ = � � `, and for z ! 0 and z̄ = 1 � v + O(z), the above

relation simplifies to,
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◆2

g(d)
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(v, u) = g(d�2)
⌧�4,`+2(v, u)�g(d�2)

⌧�2,` (v, u)�
1

16
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(v, u) .

(2.8)
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Dolan, Osborn;

Recursion relations for blocks in any dimension

Solution to recursion relations in closed form 
known only in even d.

In the large spin limit and                   the recursion 
relation simplifies.

u ⌧ 1, v < 1

Crossed 
channel

Inserting the ansatz for the factorized form of the conformal blocks at large ` given by,

g(d)
⌧,`

(v, u) = k2`(1� u)v
⌧
2F (d)(⌧, v) , (2.9)

at ` � 1 and u ⌧ 1 into the above recursion relation and noticing that k2(`+2)(1�u) = 24k2`(1�u),

we arrive at the following recursion relation satisfied by the functions F (d)(⌧, v) given in [2],

(1�v)2F (d)(⌧, v) = 16F (d�2)(⌧�4, v)�2vF (d�2)(⌧�2, v)+
(d� ⌧ � 2)2

16(d� ⌧ � 3)(d� ⌧ � 1)
v2F (d�2)(⌧, v) .

(2.10)

As we have explicitly checked, the solutions in (2.6) satisfy these recursion relations for general d

dimensions.

3 Anomalous dimensions for general d

Modulo the overall factor of 2⌧/(1� v)(d�2)/2 the remaining part of F (d)(⌧, v) can be written as,

F (d)(⌧, v) =
2⌧

(1� v)
d�2
2

1X

k=0

d
⌧,k

vk, where, d
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=
((⌧ � d)/2 + 1)

k

2

(⌧ � d+ 2)
k

k!
, (3.1)

where (a)
b

= �(a+b)/�(a). The MFT coe�cients for general d, after the large ` expansion (modulo

the ` dependent part) takes the form,

q̃��,n = 23�⌧
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n!�(�
�

)2�(�
�
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�

+ 2n� d+ 1)
. (3.2)

On the lhs of the bootstrap equation, we will determine the coe�cients of v↵ as follows. To start

with, we move the part (1� v)���(d�2)/2 on the lhs to get the log v dependent part,

(1� v)b
�(⌧
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)
n

n!
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vn log v . (3.3)

We can carry out the sum due to the term (1 � v)b by regrouping various powers of v taking

n+ k = ↵ and performing the sum over the index k from 0 to 1,
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m
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m
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(3.4)

where for general d dimensions, the coe�cient b = ⌧m
2 + `

m

+ d�2
2 ��

�

. When b is positive integer,

the sum over k truncates from 0 to b. On the rhs of the bootstrap equation the coe�cient of

3
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Gauss Hypergeometric

Bootstrap equation demands at leading order

To match powers of v, we 
must have 

⌧ = 2�� + 2n Same as what appears in 
MFT. OPE’s known. 

New results from bootstrap
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We can go to 
subleading order

It can be shown that the anomalous dimension at 
large spin goes like an inverse power of the spin for 
spacetime dimension>2.

This means that we can treat the inverse spin as an 
expansion parameter and this result is true even for 
theories which do not have a “large N”.

Our objective is to determine the n-dependence for 
the anomalous dimension.



�(n, `)`⌧m =
nX

m=0

C(d)
n,mB(d)

m

: Since k is a positive integer, this is a 
polynomial.

After some clever detective work we find

⌧m
Twist of 

exchanged 
operator

nested 
sums
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So effectively we just 
need to do the integral

which can be easily done by going to polar 
coordinates.

This is negative and monotonically decreasing 
with n for any conformal dimension satisfying the 

unitarity bound

d=4



n � 3
Always negative for

�n(��)

��

  

  

n = 1   

   

   n = 0

n = 2



If unitarity bound is violated anomalous 
dimensions can be positive.

n � 3
Always negative for

�n(��)

��

  

  

n = 1   

   

   n = 0

n = 2



Comments on general dimensions
Assume minimal twist for stress tensor 
exchange d-2

For this to match with the AdS 
Eikonal calculation, we need

With some effort this can be derived 
analytically in all d. In terms of cT:

A1 = A2 = 0 and the expression for �
n

becomes,

�
n

= 6n2 + 6(�� 1)n+�(�� 1) . (5.17)

Thus the leading order result starts from n2. Clearly we are retrieving nd/2 part of the result for

4d.

6 Relation between GN and Pm for matching

We can now address the question of what is the relation between the overall constant P
m

appearing

in the CFT bootstrap equations and the constant G
N

appearing in [?, ?, ?]. To start with, note

that the anomalous dimension from the holographic calculation turns out to be,

�
h,h̄

= �16G
N

(hh̄)j�1⇧?(h, h̄) , (6.1)

where ⇧(h, h̄) is the graviton propagator given by,

⇧?(h, h̄) =
1

2⇡
d
2�1

�(�� 1)

�(�� d

2 + 1)


(h� h̄)2

hh̄

�1��

2F1


�� 1,

2�� d+ 1

2
, 2�� d+ 1;� 4hh̄

(h� h̄)2

�
,

(6.2)

where ⇧?(h, h̄) is the transverse propagator for the minimal spin field and j is the minimal spin

given by j = 2. Also � = d for the minimal spin and minimal twist field. Thus the overall factors

multiplying �
h,h̄

are given by,

�
h,h̄

= � 8G
N

⇡
d
2�1

�(d� 1)

�(d2 + 1)
(hh̄)g(h, h̄) (6.3)

From the CFT side, the leading order n dependence of the coe�cients �
n

are given in (4.18).

Equating the two expressions we have,

P
m

�(d+ 1)�(d+ 2)

2�(1 + d

2)
4�2

�

=
8G

N

⇡
d
2�1

�(d� 1)

�(d2 + 1)
, (6.4)

which gives the relation between P
m

and G
N

as,

P
m

=
16G

N

⇡

�(d� 1)�(1 + d

2)
3

�(d+ 1)�(d+ 2)
�2

�

. (6.5)

Using G
N

= ⇡

2N2 we get,

P
m

=
8

N2

�(d� 1)�(1 + d

2)
3

�(d+ 1)�(d+ 2)
�2

�

. (6.6)

As a check we put d = 4 and find that,

P
m

=
8

N2

�(3)4

�(5)�(6)
�2

�

=
2

45N2
�2

�

, (6.7)
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Exactly expected from AdS/CFT



Universality at 
large twist



Plots in diverse spacetime dimensions for 
various conformal dimensions. Asymptotes 

indicate same intercept independent of 
conformal dimension.

Universality at 
large twist



�n�d�1 < 0
Negativity violated if unitarity 

violated



Subleading terms (d=4)

Starting with the differential equation one can 
also get the subleading terms in 1/`

t-channel

not in s-
channel



universal
�(n, `) = �160

cT

n4

`2
(1� ⌧m

n

`
)

In principle we can extract order by order.



h = �� + n+ `, h̄ = �� + nIntroduce

Using saddle 
point methods 
and the other 
limit we find 

Valid for large spin, twist

For

�(n, `) / �n2`m+⌧m�2(`+ n)2�⌧m

`(`+ 2n)

�(n, `) / �n2`m�1

`
Depends only on spin!

Agrees exactly with AdS/CFT 
results of Cornalba, Costa, 
Penedones, Schiappa ‘07

Role of higher spin exchange from CFT

`m = 0
allows small 
anom. dim



Comes from OPE 
coefficient of higher 
spin=4 exchange

This means that adding a finite set 
of higher spin modes will not 
change the sign of the anomalous 
dimension. 
Anom. dims.  will not be small for 
some very large twist.
To allow for perturbative unitarity 
we may need to add an infinite set of 
higher spin modes.

�(n, `) ⇠ �n3

`
(
1

N2
+

#

�2
+#

n4

�4
+ · · · )

From massive spin=2

cf Camanho, Edelstein, 
Maldacena, Zhiboedov

`m = 2



• It will be very interesting to see what a 
consistent CFT spectrum can be which 
leads to perturbatively small anomalous 
dimensions in a theory with large N and a 
gap.
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of as two massive particles in AdS rotating 
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dimension arises due to the interacting 
energy of these particles.

Holography



• Fitzpatrick, Kaplan and Walters suggested 
the following simple calculation.

• The double trace operators can be thought 
of as two massive particles in AdS rotating 
around each other. The anomalous 
dimension arises due to the interacting 
energy of these particles.

• Essential idea is to do perturbation theory 
in inverse distance corresponding to a 
Newtonian approximation in AdS.

Holography



• It has been shown that for n=0, the result 
of the calculation agrees with the bootstrap 
prediction. (Unlike Eikonal where both spin 
and n needed to be large)

• Non-zero n is quite hard. However, we have 
been able to make progress (barring overall 
constants) at large n, i.e.,  

• It turns out to give exactly the same 
universal behaviour predicted by bootstrap!



coming from the ↵0 corrections to the metric. This will modify the metric by adding corrections

to the factor r2�d(1 + ↵0hr�2h) where h is the order of correction in ↵0.

The general descendant scalar state derived from the primary is given by,
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Using the transformation tan ⇢ = r we can write the scalar operator as,
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where,
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Putting (5.8) in (5.4) and carrying out the other integrals we are left with just the radial part of

the integral,
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(5.9)

where I1 and I2 are the contributions from the first and the second parts of the above integral.

The leading ` dependence comes from the first part of the integral which is also true for n 6= 0

case. Thus we can just concentrate on the first part of the integral for the leading spin dominance

of the energy shifts. Thus the integral I1 can be written as,

I1 = � µ

2N2
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nX
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The r integral gives,

Z 1
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(5.11)
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Higher derivative correction

Non-renormalization from holography
` � n � 1
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case. Thus we can just concentrate on the first part of the integral for the leading spin dominance

of the energy shifts. Thus the integral I1 can be written as,

I1 = � µ

2N2
�n`

nX

k,↵=0

(�n)
k

(�n)
↵

(�+ n+ `)
k

(�+ n+ `)
↵

(`+ d

2)k(`+
d

2)↵ k!↵!

Z 1

0
r(1+↵0hr�2h)dr

r2`+2k+2↵

(1 + r2)2+�+`+k+↵

.

(5.10)

The r integral gives,

Z 1

0
r(1+↵0hr�2h)dr

r2`+2k+2↵

(1 + r2)2+�+`+k+↵

=
�(1 +�)�(1 + `+ k + ↵) + ↵0h�(1 + h+�)�(1 + `+ k + ↵� h)

2�(2 +�+ `+ k + ↵)
.

(5.11)
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Hence the integral I1 becomes,

I1 =� µ

4N2
�n`

nX

k,↵=0

(�n)
k

(�n)
↵

(�+ n+ `)
k

(�+ n+ `)
↵

(`+ d

2)k(`+
d

2)↵ k!↵!

⇥ �(1 + `+ k + ↵)�(1 +�) + ↵0h�(1 + h+�)�(1 + `+ k + ↵� h)

�(2 +�+ `+ k + ↵)
.

(5.12)

Using the reflection formula for the �-functions we can write,

(�n)
k

(�n)
↵

= (�1)k+↵

�(n+ 1)2

�(n+ 1� k)�(n+ 1� ↵)
. (5.13)

Putting in the normalization and performing the first sum over ↵ we get,

I1 =�
µ(`+ 2n)2�(`+ d

2 + n)

4�(`+ d

2)�(1�
d

2 + n+�)

nX

k=0

(�1)k
�(k + `+ n+�)

�(`+ d

2 + k)�(n+ 1� k)�(2 + k + `+�)�(k + 1)

⇥

�(1 + `+ k)�(1 +�)3F2

✓
� n, k + `+ 1, `+ n+�; `+

d

2
, 2 + k + `+�; 1

◆

+ ↵0h�(1 + `+ k � h)�(1 +�+ h)3F2

✓
� n, k + `+ 1� h, `+ n+�; `+

d

2
, 2 + k + `+�; 1

◆�
.

(5.14)

To the leading order in `
orb

(after the exapnsion in large `
orb

) this is the expression for �E
n,`

orb

or

equivalently �
n,`

from the CFT for general d dimensions. Putting d = 4 in the above calculation,

we get,

�E4
n,`

orb

=� µ(`+ 2n)2�(`+ 2 + n)

4�(`+ 2)�(n+�� 1)

nX

k=0

(�1)k
�(k + `+ n+�)

�(`+ 2 + k)�(n+ 1� k)�(2 + k + `+�)�(k + 1)

⇥

�(1 + `+ k)�(1 +�)3F2

✓
� n, k + `+ 1, `+ n+�; `+ 2, 2 + k + `+�; 1

◆

+ ↵0h�(1 + `+ k � h)�(1 +�+ h)3F2

✓
� n, k + `+ 1� h, `+ n+�; `+ 2, 2 + k + `+�; 1

◆�
.

(5.15)

We have calculated the first few terms n = 0, 1, 2 · · · etc. of �E
n,`

orb

and after the large `
orb

expansion

we can see that the correction in ↵0 contributes at an order 1/`h+1
orb

(where h > 1) while the leading

order dependence is 1/`
orb

. So it does not change the leading order result. Using the first few terms

in �E
n,`

orb

we can try to fit a polynomial expression for the coe�cients �
n

. The CFT intuition

predicts that for 4d the polynomial expression should take the form,

�
n

= A1n
4 +A2n

3 +A3n
2 +A4n+A5 . (5.16)

By matching this with the first few coe�cients of �E
n,`

orb

after the large `
orb

expansion we see that
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The spin dependence for the Einstein term 
can be shown to be     while the higher 
derivative term gives        . Thus no ’t Hooft 
coupling dependence! 

Prediction for susy bootstrap: N=4 ’t Hooft 
coupling shows up at 

` � n � 1



• The                  result exactly agrees with 
the CFT calculation. 

• It will be interesting to do the other limit 
to check non-universality due to higher 
derivative corrections and compare with 
causality constraints.

` � n � 1



• We have derived certain interesting 
universal results using conformal bootstrap.

• We should understand the large twist limit 
better both from the CFT side (what is a 
consistent spectrum) and from the gravity 
side (role of higher derivative corrections).

Summary





Thank you for listening




