Some analytic results
 from conformal bootstrap

Aninda Sinha
Indian Institute of Science, Bangalore

Strings 2015. 7e75. Bangalare

Strings 2015. 7C75.

- Since the seminal work of Rattazzi, Rychkov, Tonni and Vichi in 2008, many interesting results have emerged using conformal bootstrap.
- Most of these impressive results rely heavily on (clever) numerics.
- I will talk about some analytic results that follow from conformal bootstrap.
- Work done with Apratim Kaviraj, Kallol Sen arXiv:I502.01437, I 504.00772 and in progress.

See Apratim's poster and cf Kallol's gong show talk

- Builds on work by Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Komargodski, Zhiboedov.
- Related work by Alday, Bissi, Lukowski for $\mathrm{N}=4$ SYM.

Summary of main results

Given a (4d for most part) CFT with a scalar operator of dimension Δ_{ϕ} and a spin-2 (minimal) twist-2 operator there is an infinite sequence of large spin operators of dimension
$\ell \gg n \gg 1$

$$
\begin{aligned}
& \Delta=2 \Delta_{\phi}+2 n+\ell+\gamma(n, \ell) \text {-Anomalous dim. } \\
& \gamma(n, \ell)=-\frac{160}{c_{T}} \frac{n^{4}}{\ell^{2}} \longleftarrow \quad \begin{array}{l}
\text { UNIVERSAL } \\
\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle=\frac{c_{T}}{\left|x-x^{\prime}\right|^{\prime 2 d}} \mathcal{I}_{a b, c d}\left(x-x^{\prime}\right)
\end{array}
\end{aligned}
$$

$n \gg \ell 1$

$$
\gamma(n, \ell)=-\frac{80}{c_{T}} \frac{n^{3}}{\ell} \longleftarrow \substack{\text { ?UNIVERSAL? } \\ \text { assume large } \mathrm{N}}^{\substack{\text { U }}}
$$

- For large N , we can think of these operators as double trace operators of the form

$$
O_{1} \partial_{\mu_{1}} \cdots \partial_{\mu_{\ell}}\left(\partial^{2}\right)^{n} O_{1}
$$

- However the CFT bootstrap analysis of course only yields conformal dimension, spin and the OPE coefficients and not the precise form of these operators.

Why is this interesting?

- Result is universal. Does not depend on lagrangian or the dimension of the seed operator. Just assumes twist gap of these operators from other operators in the spectrum.
- Anomalous dimension of double trace operators is related to bulk Shapiro time delay. Sign of anomalous dimension is related to causality. Interplay between unitarity of CFT and causality of bulk.
- Can be extended to arbitrary (eg. 3d) dimensions. May be relevant for 3d Ising model at criticality.

[^0]- Can compare with AdS/CFT. Two different ways to calculate the anomalous dimensions a) Eikonal approximation of 2-2 scattering. Perambah Cosin

- Turns out that the result matches exactly with the AdS/CFT prediction.

Quick review of bootstrap

Quick review of bootstrap

Quick review of bootstrap

"s-channel"
"t-channel"
even spin

Quick review of bootstrap

$$
\begin{aligned}
& \left.\left.\sum_{O}{ }_{\phi}^{\phi}\right\rangle^{\phi}=\sum_{o}^{\phi}\right\rangle_{\phi} \\
& \text { "s-channel" "t-channel" } \\
& \text { even spin } \\
& 1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)
\end{aligned}
$$

Quick review of bootstrap

"s-channel" "t-channel"
even spin

$$
\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)\right.
$$

Quick review of bootstrap

Can only be

 reproduced upon considering large spin operators on$$
\begin{aligned}
& \text { "s-channel", "t-channel" even spin } \\
& (1)+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)
\end{aligned}
$$

Quick review of bootstrap

Quick review of bootstrap

Quick review of bootstrap

Can only be

 reproduced upon considering large spin operators on the RHS\downarrow

$$
(1)+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{24}^{2} x_{13}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{24}^{2} x_{13}^{2}}
$$

Conformal cross ratios

Twist
$\tau=\Delta-\ell$

Quick review of bootstrap

Can only be

 reproduced upon considering large spin operators on the RHS\downarrow

Crossing
$u \leftrightarrow v$
even spin
"s-channel"
"t-channel"

$$
(1)+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{24}^{2} x_{13}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{24}^{2} x_{13}^{2}}
$$

Conformal cross ratios

Twist
$\tau=\Delta-\ell$
$P_{\tau, \ell}$
OPE x OPE

Quick review of bootstrap

Can only be

 reproduced upon considering large spin operators on the RHS\downarrow

Crossing
$u \leftrightarrow v$
even spin
"s-channel"
"t-channel"

$$
(1)+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}}\left(1+\sum_{\tau, \ell} P_{\tau, \ell} g_{\tau, \ell}(v, u)\right)
$$

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{24}^{2} x_{13}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{24}^{2} x_{13}^{2}}
$$

Conformal cross ratios

Twist

$$
\tau=\Delta-\ell
$$

$$
P_{\tau, \ell}
$$

OPE x OPE

$$
g_{\tau, \ell}(u, v)
$$

Blocks

Closed form expressions for conformal blocks are known only in even dimensions.

Closed form expressions for conformal blocks are known only in even dimensions.

However, simplifications occur in certain limits

Closed form expressions for conformal blocks are known only in even dimensions.

However, simplifications occur in certain limits

In the crossed
channel we
interchange u, v

Closed form expressions for conformal blocks are known only in even dimensions.

However, simplifications occur in certain limits

Closed form expressions for conformal blocks are known only in even dimensions.

However, simplifications occur in certain limits

$$
\begin{array}{cc}
\ell \gg 1 & \begin{array}{c}
\text { In the crossed } \\
\text { channel we } \\
\text { interchange u,v }
\end{array} \\
u \ll 1, v<1 & \\
g_{\tau, \ell}^{(d)}(u, v)=u^{\frac{\tau}{2}}(1-v)^{\ell}{ }_{2} F_{1}\left(\frac{\tau}{2}+\ell, \frac{\tau}{2}+\ell, \tau+2 \ell, 1-v\right) F^{(d)}(\tau, u) \\
\text { "factorizes" } & \text { (twist,spin,v) } \times \text { (twist, u, d) }
\end{array}
$$

Recursion relations for blocks in any dimension

Recursion relations for blocks in any dimension

$$
\begin{aligned}
\left(\frac{\bar{z}-z}{(1-z)(1-\bar{z})}\right)^{2} g_{\Delta, \ell}^{(d)}(v, u)= & g_{\Delta-2, \ell}^{(d-2)}(v, u)-\frac{4(\ell-2)(d+\ell-3)}{(d+2 \ell-4)(d+2 \ell-2)} g_{\Delta-2, \ell}^{(d-2)}(v, u) \\
& -\frac{4(d-\Delta-3)(d-\Delta-2)}{d-2 \Delta-2)(d-2 \Delta)}\left[\frac{(\Delta+\ell)^{2}}{16(\Delta+\ell-1)(\Delta+\ell+1)} g_{\Delta, \ell+2}^{(d-2)}(v, u)\right. \\
& \left.-\frac{(d+\ell-4)(d+\ell-3)(d+\ell-\Delta-2)^{2}}{4(d+2 \ell-4)(d+2 \ell-2)(d+\ell-\Delta-3)(d+\ell-\Delta-1)} g_{\Delta, \ell}^{(d-2)}(v, u)\right]
\end{aligned}
$$

Recursion relations for blocks in any dimension

$$
\left(\frac{\bar{z}-z}{(1-z)(1-\bar{z})}\right)^{2} g_{\Delta, \ell}^{(d)}(v, u)=g_{\Delta-2, \ell}^{(d-2)}(v, u)-\frac{4(\ell-2)(d+\ell-3)}{(d+2 \ell-4)(d+2 \ell-2)} g_{\Delta-2, \ell}^{(d-2)}(v, u)
$$

$$
-\frac{4(d-\Delta-3)(d-\Delta-2)}{d-2 \Delta-2)(d-2 \Delta)}\left[\frac{(\Delta+\ell)^{2}}{16(\Delta+\ell-1)(\Delta+\ell+1)} g_{\Delta, \ell+2}^{(d-2)}(v, u)\right.
$$

$$
\left.-\frac{(d+\ell-4)(d+\ell-3)(d+\ell-\Delta-2)^{2}}{4(d+2 \ell-4)(d+2 \ell-2)(d+\ell-\Delta-3)(d+\ell-\Delta-1)} g_{\Delta, \ell}^{(d-2)}(v, u)\right]
$$

Recursion relations for blocks in any dimension

$$
\left(\frac{\bar{z}-z}{(1-z)(1-\bar{z})}\right)^{2} g_{\Delta, \ell}^{(d)}(v, u)=g_{\Delta-2, \ell}^{(d-2)}(v, u)-\frac{4(\ell-2)(d+\ell-3)}{(d+2 \ell-4)(d+2 \ell-2)} g_{\Delta-2, \ell}^{(d-2)}(v, u)
$$

$$
\begin{aligned}
& -\frac{4(d-\Delta-3)(d-\Delta-2)}{d-2 \Delta-2)(d-2 \Delta)}\left[\frac{(\Delta+\ell)^{2}}{16(\Delta+\ell-1)(\Delta+\ell+1)} g_{\Delta, \ell+2}^{(d-2)}(v, u)\right. \\
& \left.-\frac{(d+\ell-4)(d+\ell-3)(d+\ell-\Delta-2)^{2}}{4(d+2 \ell-4)(d+2 \ell-2)(d+\ell-\Delta-3)(d+\ell-\Delta-1)} g_{\Delta, \ell}^{(d-2)}(v, u)\right]
\end{aligned}
$$

Solution to recursion relations in closed form known only in even d.

Recursion relations for blocks in any dimension

$$
\left(\frac{\bar{z}-z}{(1-z)(1-\bar{z})}\right)^{2} g_{\Delta, \ell}^{(d)}(v, u)=g_{\Delta-2, \ell}^{(d-2)}(v, u)-\frac{4(\ell-2)(d+\ell-3)}{(d+2 \ell-4)(d+2 \ell-2)} g_{\Delta-2, \ell}^{(d-2)}(v, u)
$$

$$
\begin{aligned}
& -\frac{4(d-\Delta-3)(d-\Delta-2)}{d-2 \Delta-2)(d-2 \Delta)}\left[\frac{(\Delta+\ell)^{2}}{16(\Delta+\ell-1)(\Delta+\ell+1)} g_{\Delta, \ell+2}^{(d-2)}(v, u)\right. \\
& \left.-\frac{(d+\ell-4)(d+\ell-3)(d+\ell-\Delta-2)^{2}}{4(d+2 \ell-4)(d+2 \ell-2)(d+\ell-\Delta-3)(d+\ell-\Delta-1)} g_{\Delta, \ell}^{(d-2)}(v, u)\right]
\end{aligned}
$$

Solution to recursion relations in closed form known only in even d.

In the large spin limit and $u \ll 1, v<1$ the recursion relation simplifies.

Recursion relations for blocks in any dimension

$$
\left(\frac{\bar{z}-z}{(1-z)(1-\bar{z})}\right)^{2} g_{\Delta, \ell}^{(d)}(v, u)=g_{\Delta-2, \ell}^{(d-2)}(v, u)-\frac{4(\ell-2)(d+\ell-3)}{(d+2 \ell-4)(d+2 \ell-2)} g_{\Delta-2, \ell}^{(d-2)}(v, u)
$$

$$
\begin{aligned}
& -\frac{4(d-\Delta-3)(d-\Delta-2)}{d-2 \Delta-2)(d-2 \Delta)}\left[\frac{(\Delta+\ell)^{2}}{16(\Delta+\ell-1)(\Delta+\ell+1)} g_{\Delta, \ell+2}^{(d-2)}(v, u)\right. \\
& \left.-\frac{(d+\ell-4)(d+\ell-3)(d+\ell-\Delta-2)^{2}}{4(d+2 \ell-4)(d+2 \ell-2)(d+\ell-\Delta-3)(d+\ell-\Delta-1)} g_{\Delta, \ell}^{(d-2)}(v, u)\right]
\end{aligned}
$$

Solution to recursion relations in closed form known only in even d.

In the large spin limit and $u \ll 1, v<1$ the recursion relation simplifies.

$$
(1-v)^{2} F^{(d)}(\tau, v)=16 F^{(d-2)}(\tau-4, v)-2 v F^{(d-2)}(\tau-2, v)+\frac{(d-\tau-2)^{2}}{16(d-\tau-3)(d-\tau-1)} v^{2} F^{(d-2)}(\tau, v) .
$$

New results from bootstrap

New results from bootstrap

Gauss Hypergeometric

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}}} 2_{2} F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}} 2} F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Kaviraj, Sen, AS

Bootstrap equation demands at leading order

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}}} 2 F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Kaviraj, Sen, AS

Bootstrap equation demands at leading order

$$
1 \approx(\text { function of } u) \times v^{\tau / 2-\Delta_{\phi}}(1-v)^{\Delta_{\phi}} F^{(d)}(\tau, v)
$$

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}}} 2 F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Kaviraj, Sen, AS

Bootstrap equation demands at leading order

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}}} 2 F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Kaviraj, Sen, AS

Bootstrap equation demands at leading order
 must have

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}}} 2 F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Bootstrap equation demands at leading order
 must have

$$
\tau=2 \Delta_{\phi}+2 n
$$

New results from bootstrap

Gauss Hypergeometric

$$
F^{(d)}(\tau, v)=\frac{2^{\tau}}{(1-v)^{\frac{d-2}{2}} 2} F_{1}\left(\frac{1}{2}(\tau-d+2), \frac{1}{2}(\tau-d+2),(\tau-d+2), v\right)
$$

Bootstrap equation demands at leading order
 must have

$$
\tau=2 \Delta_{\phi}+2 n
$$

Same as what appears in MFT. OPE's known.

$$
\Delta=2 \Delta_{\phi}+2 n+\ell+\gamma(n, \ell)
$$

We can go to subleading order

$$
P_{m}=P_{M F T}+c(n, \ell)
$$

It can be shown that the anomalous dimension at large spin goes like an inverse power of the spin for spacetime dimension>2.
This means that we can treat the inverse spin as an expansion parameter and this result is true even for theories which do not have a "large N".

Our objective is to determine the n -dependence for the anomalous dimension.

After some clever detective work we find
\(\tau_{\substack{Twist of

exchanged

operator}}^{\substack{mested

m=0}} \quad \gamma(n, \ell) \ell^{\tau_{m}}=\sum_{n, m}^{n} B_{m}^{(d)} \quad\)| nester |
| :---: |

$$
\begin{array}{r}
C_{n, m}^{(d)}=\frac{(-1)^{m+n}}{8}\left(\frac{\Gamma\left[\Delta_{\phi}\right]}{\left(\Delta_{\phi}-d / 2+1\right)_{m}}\right)^{2} \frac{n!}{m!(n-m)!}\left(2 \Delta_{\phi}+n+1-d\right)_{m} \\
B_{k}^{(d)}=-\frac{16 P_{m} \Gamma\left[\tau_{m}+2 \ell_{m}\right] \Gamma\left[\tau_{m} / 2+\ell_{m}+k\right]^{2}}{\Gamma[1+k]^{2} \Gamma\left[\tau_{m} / 2+\ell_{m}\right]^{4}} \\
\times_{3} F_{2}\left(-k,-k,-\frac{\tau_{m}}{2}-\ell_{m}-\frac{d-2}{2}+\Delta_{\phi} ; 1-\ell_{m}-\frac{\tau_{m}}{2}-k, 1-\ell_{m}-\frac{\tau_{m}}{2}-k ; 1\right)
\end{array}
$$

${ }_{3} F_{2}$: Since k is a positive integer, this is a polynomial.

Progress is possible in $4 d$ (and similar techniques apply in even d)

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right)=\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]}
$$

Progress is possible in $4 d$ (and similar techniques

 apply in even d)$\begin{aligned}{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) & =\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\ \text { Use basic defn } & =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}\end{aligned}$

Progress is possible in $4 d$ (and similar techniques apply in even d)

$\begin{aligned}{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) & =\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\ \text { Use basic defn } & =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}\end{aligned}$
To reduce to one sum

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
\begin{aligned}
{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) & =\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\
\text { Use basic defn } & =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}
\end{aligned}
$$

To reduce to one sum

$$
\begin{aligned}
& \gamma(n, \ell) \ell^{2}=-(-1)^{n} \frac{80}{3 c_{T}} \sum_{m=0}^{n}(-1)^{m}\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right] \\
& \times \frac{\Gamma\left[\Delta_{\phi}\right] \Gamma[n+1] \Gamma\left[2 \Delta_{\phi}+m+n-3\right]}{\Gamma[m+1] \Gamma[n-m+1] \Gamma\left[\Delta_{\phi}+m-1\right] \Gamma\left[2 \Delta_{\phi}+n-3\right]}
\end{aligned}
$$

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
\begin{aligned}
& \begin{array}{l}
{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right)=\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\
\quad \text { Use basic defn }
\end{array} \\
& =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}
\end{aligned}
$$

To reduce to one sum

$$
\begin{aligned}
& \quad \gamma(n, \ell) \ell^{2}=-(-1)^{n} \frac{80}{3 c_{T}} \sum_{m=0}^{n}(-1)^{m}\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right] \\
& \\
& \quad \times \frac{\Gamma\left[\Delta_{\phi}\right] \Gamma[n+1] \Gamma\left[2 \Delta_{\phi}+m+n-3\right]}{\Gamma[m+1] \Gamma[n-m+1] \Gamma\left[\Delta_{\phi}+m-1\right] \Gamma\left[2 \Delta_{\phi}+n-3\right]}
\end{aligned}
$$

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
\begin{aligned}
& { }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) \\
& \begin{aligned}
\text { Use basic defn } & \sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\
& =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}
\end{aligned}
\end{aligned}
$$

To reduce to one sum

$$
\gamma(n, \ell) \ell^{2}=-(-1)^{n} \frac{80}{3 c_{T}} \sum_{m=0}^{n}(-1)^{m}\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]
$$

Using the following:

$$
\times \frac{\Gamma\left[\Delta_{\phi}\right] \Gamma[n+1] \Gamma\left[2 \Delta_{\phi}+m+n-3\right]}{\Gamma[m+1] \Gamma[n-m+1] \Gamma\left[\Delta_{\phi}+m-1\right] \Gamma\left[2 \Delta_{\phi}+n-3\right]}
$$

$$
\Gamma[x] \Gamma[1-x]=\frac{\pi}{\sin \pi x}
$$

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
\begin{aligned}
{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) & =\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\
\text { Use basic defn } & =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}
\end{aligned}
$$

To reduce to one sum

$$
\begin{aligned}
& \quad \gamma(n, \ell) \ell^{2}=-(-1)^{n} \frac{80}{3 c_{T}} \sum_{m=0}^{n}(-1)^{m}\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right] \\
& \\
& \quad \times \frac{\Gamma\left[\Delta_{\phi}\right] \Gamma[n+1] \Gamma\left[2 \Delta_{\phi}+m+n-3\right]}{\Gamma[m+1] \Gamma[n-m+1] \Gamma\left[\Delta_{\phi}+m-1\right] \Gamma\left[2 \Delta_{\phi}+n-3\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma[x] \Gamma[1-x]=\frac{\pi}{\sin \pi x} \\
& \sum_{m=0}^{n} z^{m} \frac{n!}{m!(n-m)!}=\frac{1}{n!}(1+z)^{n}
\end{aligned}
$$

Progress is possible in $4 d$ (and similar techniques apply in even d)

$$
\begin{aligned}
{ }_{3} F_{2}\left(-m,-m-4+\Delta_{\phi} ;-2-m,-2-m ; 1\right) & =\sum_{k=0}^{m} \frac{(m+1-k)^{2}(m+2-k)^{2}}{(m+1)^{2}(m+2)^{2}} \frac{\Gamma\left[\Delta_{\phi}-4+k\right]}{\Gamma[k+1] \Gamma\left[\Delta_{\phi}-4\right]} \\
\text { Use basic defn } & =\frac{4\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right]}{(m+1)(m+2) \Gamma[m+3]} \frac{\Gamma\left[m+\Delta_{\phi}-1\right]}{\Gamma\left[\Delta_{\phi}+1\right]}
\end{aligned}
$$

To reduce to one sum

$$
\begin{aligned}
& \quad \gamma(n, \ell) \ell^{2}=-(-1)^{n} \frac{80}{3 c_{T}} \sum_{m=0}^{n}(-1)^{m}\left[6 m^{2}+6 m\left(\Delta_{\phi}-1\right)+\Delta_{\phi}\left(\Delta_{\phi}-1\right)\right] \\
& \\
& \quad \times \frac{\Gamma\left[\Delta_{\phi}\right] \Gamma[n+1] \Gamma\left[2 \Delta_{\phi}+m+n-3\right]}{\Gamma[m+1] \Gamma[n-m+1] \Gamma\left[\Delta_{\phi}+m-1\right] \Gamma\left[2 \Delta_{\phi}+n-3\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma[x] \Gamma[1-x]=\frac{\pi}{\sin \pi x} \\
& \sum_{m=0}^{n} z^{m} \frac{n!}{m!(n-m)!}=\frac{1}{n!}(1+z)^{n} \\
& \Gamma[x]=\int_{0}^{\infty} t^{x-1} e^{-t} d t
\end{aligned}
$$

So effectively we just need to do the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} d x d y b(n, x, y) e^{-(x+y)} x^{a} y^{b}
$$

which can be easily done by going to polar coordinates.

$d=4$

So effectively we just need to do the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} d x d y b(n, x, y) e^{-(x+y)} x^{a} y^{b}
$$

which can be easily done by going to polar coordinates.

$d=4$

$$
\begin{array}{r}
\gamma(n, \ell) \ell^{2}=-\frac{80}{3 c_{T}}\left(6 n^{4}+12 n^{3}\left(2 \Delta_{\phi}-3\right)+6 n^{2}\left(11-14 \Delta_{\phi}+5 \Delta_{\phi}^{2}\right)+6 n\left(2 \Delta_{\phi}-3\right)\left(\Delta_{\phi}^{2}-2 \Delta_{\phi}+2\right)\right. \\
\left.+\Delta_{\phi}^{2}\left(\Delta_{\phi}-1\right)^{2}\right)
\end{array}
$$

So effectively we just need to do the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} d x d y b(n, x, y) e^{-(x+y)} x^{a} y^{b}
$$

which can be easily done by going to polar coordinates.

```
d=4
```

$$
\begin{array}{r}
\gamma(n, \ell) \ell^{2}=-\frac{80}{3 c_{T}}\left(6 n^{4}+12 n^{3}\left(2 \Delta_{\phi}-3\right)+6 n^{2}\left(11-14 \Delta_{\phi}+5 \Delta_{\phi}^{2}\right)+6 n\left(2 \Delta_{\phi}-3\right)\left(\Delta_{\phi}^{2}-2 \Delta_{\phi}+2\right)\right. \\
\left.+\Delta_{\phi}^{2}\left(\Delta_{\phi}-1\right)^{2}\right)
\end{array}
$$

This is negative and monotonically decreasing with n for any conformal dimension satisfying the unitarity bound

If unitarity bound is violated anomalous dimensions can be positive.

Comments on general dimensions

Assume minimal twist for stress tensor exchange d-2
$\ell \gg n \gg 1$

$$
\gamma(n, \ell) \ell^{d-2}=-P_{m} \frac{\Gamma[d+1] \Gamma[d+2]}{2 \Gamma\left[1+\frac{d}{2}\right] \Delta_{\phi}^{2}} n^{d}
$$

With some effort this can be derived analytically in all d . In terms of c_{T} :

$$
\gamma(n, \ell)=-\frac{d^{2}}{2(d-1)^{2} c_{T}} \frac{\Gamma[d+1] \Gamma[d+2]}{\Gamma\left[1+\frac{d}{2}\right]^{4}} \frac{n^{d}}{\ell^{d-2}}
$$

For this to match with the AdS $P_{m}=\frac{16 G_{N}}{\pi} \frac{\Gamma(d-1) \Gamma\left(1+\frac{d}{2}\right)^{3}}{\Gamma(d+1) \Gamma(d+2)} \Delta_{\phi}^{2}$
Eikonal calculation, we need

Plots in diverse spacetime dimensions for various conformal dimensions.Asymptotes indicate same intercept independent of conformal dimension.

Subleading terms ($\mathrm{d}=4$)

Starting with the differential equation one can also get the subleading terms in $1 / \ell$

$$
\gamma(n, \ell)=\frac{\gamma_{n}^{0}}{\ell^{\tau_{m}}}+\frac{\gamma_{n}^{1}}{\ell^{\tau_{m}+1}}+\frac{\gamma_{n}^{2}}{\ell^{\tau_{m}+2}}+\ldots
$$

t-channel

$$
\begin{array}{r}
z^{\left(\tau_{m}+1\right) / 2} \sum_{n}\left[\left(1-2 \Delta_{\phi}+\left(2 n+2 \Delta_{\phi}\right) \tau_{m}\right) \gamma_{n}^{0}+2 \gamma_{n}^{1}\right] \\
\\
\hline
\end{array} \frac{\left(\Delta_{\phi}-1\right)_{n}^{2} \Gamma\left(\Delta_{\phi}-\frac{1}{2}-\frac{\tau_{m}}{2}\right)^{2}}{2 \Gamma(n+1) \Gamma\left(\Delta_{\phi}\right)^{2} \Gamma\left(2 \Delta_{\phi}+n-3\right)_{n}}, \quad \times v^{n} \log v F^{(d)}\left[2 \Delta_{\phi}+2 n, v\right] .
$$

not in s channel

$$
\gamma(n, \ell)=-\frac{160}{c_{T}} \frac{n^{4}}{\ell^{2}}\left(1-\tau_{m} \frac{n}{\ell}\right){ }_{\text {universal }}
$$

In principle we can extract order by order.

Role of higher spin exchange from CFT $n \gg \ell>1$

Introduce $\quad h=\Delta_{\phi}+n+\ell, \bar{h}=\Delta_{\phi}+n$

Using saddle

$$
\gamma(n, \ell) \propto-\frac{n^{2 \ell_{m}+\tau_{m}-2}(\ell+n)^{2-\tau_{m}}}{\ell(\ell+2 n)}
$$

Agrees exactly with AdS/CFT results of Cornalba, Costa, Penedones, Schiappa ‘07
Valid for large spin, twist
For $\quad n \gg \ell \gg 1$

$$
\gamma(n, \ell) \propto-\frac{n^{2 \ell_{m}-1}}{\ell}
$$

point methods and the other limit we find

$$
\ell_{m}=0
$$

$\ell_{m}=0$
allows small anom. dim
Depends only on spin!
$\ell_{m}=2$
$n \gg \ell \gg 1$

$$
\gamma(n, \ell) \sim-\frac{n^{3}}{\ell}(\frac{1}{N^{2}}+\underbrace{\Delta^{2}}_{\text {From massive spin=2 }}+\# \frac{\#}{n^{4}}+\cdots)
$$

This means that adding a finite set of higher spin modes will not change the sign of the anomalous dimension.

Anom. dims. will not be small for some very large twist.
To allow for perturbative unitarity
cf Camanho, Edelstein, Maldacena, Zhiboedov
we may need to add an infinite set of higher spin modes.

- It will be very interesting to see what a consistent CFT spectrum can be which leads to perturbatively small anomalous dimensions in a theory with large N and a gap.

Holography

Holography

- Fitzpatrick, Kaplan and Walters suggested the following simple calculation.

Holography

- Fitzpatrick, Kaplan and Walters suggested the following simple calculation.
- The double trace operators can be thought of as two massive particles in AdS rotating around each other.The anomalous dimension arises due to the interacting energy of these particles.

Holography

- Fitzpatrick, Kaplan and Walters suggested the following simple calculation.
- The double trace operators can be thought of as two massive particles in AdS rotating around each other. The anomalous dimension arises due to the interacting energy of these particles.
- Essential idea is to do perturbation theory in inverse distance corresponding to a Newtonian approximation in AdS.
- It has been shown that for $\mathrm{n}=0$, the result of the calculation agrees with the bootstrap prediction. (Unlike Eikonal where both spin and n needed to be large)
- Non-zero n is quite hard. However, we have been able to make progress (barring overall constants) at large n , i.e., $\quad \ell \gg n \gg 1$
- It turns out to give exactly the same universal behaviour predicted by bootstrap!

Non-renormalization from holography

$\ell \gg n>1$
Higher derivative correction

$$
\delta E_{n, \ell_{o r b}}^{d}=-\frac{\mu}{2} \int r\left(1+\alpha^{\prime h} r^{-2 h} d r\left[\sum_{k, \alpha=0}^{n}\left(\frac{E_{n, \ell}^{2}}{\left(1+r^{2}\right)^{2}} \psi_{k}(r) \psi_{\alpha}(r)+\partial_{r} \psi_{k}(r) \partial_{r} \psi_{\alpha}(r)\right)\right]=\mathcal{I}_{1}+\mathcal{I}_{2},\right.
$$

Non-renormalization from holography

$\ell \gg n \gg 1$

$$
\begin{aligned}
\delta E_{n, \ell_{o r b}}^{d}= & -\frac{\mu}{2} \int r\left(1+\alpha^{\prime h} r^{-2 h}\right) d r\left[\sum_{k, \alpha=0}^{n}\left(\frac{E_{n, \ell}^{2}}{\left(1+r^{2}\right)^{2}} \psi_{k}(r) \psi_{\alpha}(r)+\partial_{r} \psi_{k}(r) \partial_{r} \psi_{\alpha}(r)\right)\right]=\mathcal{I}_{1}+\mathcal{I}_{2} \\
\delta E_{n, \ell_{o r b}}^{4}= & -\frac{\mu(\ell+2 n)^{2} \Gamma(\ell+2+n)}{4 \Gamma(\ell+2) \Gamma(n+\Delta-1)} \sum_{k=0}^{n}(-1)^{k} \frac{\Gamma(k+\ell+n+\Delta)}{\Gamma(\ell+2+k) \Gamma(n+1-k) \Gamma(2+k+\ell+\Delta) \Gamma(k+1)} \\
& \times\left[\Gamma(1+\ell+k) \Gamma(1+\Delta)_{3} F_{2}(-n, k+\ell+1, \ell+n+\Delta ; \ell+2,2+k+\ell+\Delta ; 1)\right. \\
& \left.+\alpha^{\prime h} \Gamma(1+\ell+k-h) \Gamma(1+\Delta+h)_{3} F_{2}(-n, k+\ell+1-h, \ell+n+\Delta ; \ell+2,2+k+\ell+\Delta ; 1)\right]
\end{aligned}
$$

The spin dependence for the Einstein term can be shown to be $\frac{1}{2}$ while the higher derivative term gives $\frac{\overline{\ell^{2}} 1}{!^{2 h+2}}$ Thus no 't Hooft coupling dependence!
Prediction for susy bootstrap: $\mathrm{N}=4$ 't Hooft coupling shows up at ℓ^{-8}

- The $\ell \gg n \gg 1$ result exactly agrees with the CFT calculation.
- It will be interesting to do the other limit to check non-universality due to higher derivative corrections and compare with causality constraints.

Summary

- We have derived certain interesting universal results using conformal bootstrap.
- We should understand the large twist limit better both from the CFT side (what is a consistent spectrum) and from the gravity side (role of higher derivative corrections).

Thank you for listening

[^0]: El-Showk, Paulos, Poland, Rychkov,

