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® Since the seminal work of Rattazzi,
Rychkov, Tonni and Vichi in 2008, many
interesting results have emerged using
conformal bootstrap.

® Most of these impressive results rely
heavily on (clever) numerics.

® | will talk about some analytic results that
follow from conformal bootstrap.




® Work done with Apratim Kaviraj, Kallol Sen

arXiv:1502.01437, 1504.00772 and in
progress.

See Apratim’s poster and cf Kallol’s gong show talk

® Builds on work by Fitzpatrick, Kaplan,

Poland, Simmons-Duffin; Komargodski,
Zhiboedov.

® Related work by Alday, Bissi, Lukowski for
N=4 SYM.




Summary of main results

® Given a (4d for most part) CFT with a scalar operator
of dimension A, and a spin-2 (minimal) twist-2
operator there is an infinite sequence of large spin
operators of dimension

A =204 +2n+ ¢ +—Anomalous dim.

160 n*«— UNIVERSAL
(>>n>1 v(n,l) =

(Tap(x)Tea(z’)) =

n>0>1 = YUNIVERSAL?

assume large N




® For large N, we can think of these
operators as double trace operators of the

form

Olaﬂl T a,ue (32)77,01

® However the CFT bootstrap analysis of
course only yields conformal dimension,
spin and the OPE coefficients and not the
precise form of these operators.




Why is this interesting?

® Result is universal. Does not depend on lagrangian
or the dimension of the seed operator. Just
assumes twist gap of these operators from other
operators in the spectrum.

® Anomalous dimension of double trace operators is
related to bulk Shapiro time delay. Sign of
anomalous dimension is related to causality.
Interplay between unitarity of CFT and causality of

Camanho, Edelstein, Maldacena,
b U I I(. Zhiboedov

Can be extended to arbitrary (eg. 3d) dimensions.
May be relevant for 3d Ising model at criticality.

El-Showk, Paulos, Poland, Rychkov,
Simmons-Duffin,Vichi




® Can compare with AdS/CFT. Two different
ways to calculate the anomalous dimensions

Cornalba, Costa,

a) Eikonal approximation of 2-2 scattering. s

Fitzpatrick, Kaplan,

b) Energy shift in a black hole background. ..

® Turns out that the result matches exactly with
the AdS/CFT prediction. Kavir, Sen AS
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However, simplifications occur in certain limits

! > 1 In the crossed

channel we
<< 1l,v<1 interchange u, v

T
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Solution to recursion relations in closed form
known only in even d.

In the large spin limit and v < 1,v <1 the recursion
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Gauss Hypergeometric

27 1 1
F(d)(T,”U) — d—2 2F1 <§(T o d+2)7 5(7_ - d+2)7(7_ - d+2)7?})

(1—v) =z

Bootstrap equation demands at leading order

1 ~((function of u))x v™/272¢ (1 — v)2¢ F4) (7 0v)

To match po , We Needs large ¢

must have .
r— 27y + 21 Same as what appears in

Fitzpatrick et al; Komargodski, M F-I-. O P E’S I(n OWn °

Zhiboedov




A=2Ay+2n+ L+ v(n,t)

We can go to
subleading order

Pm :PMFT—I_C(nvg)

It can be shown that the anomalous dimension at
large spin goes like an inverse power of the spin for
spacetime dimension>2.

This means that we can treat the inverse spin as an
expansion parameter and this result is true even for
theories which do not have a “large N”.

Our objective is to determine the n-dependence for
the anomalous dimension.




After some clever detective work we find

Twist of v (n, )07 = Z (@) gld) nested
m=0

Tm exchanged n,m=—m
operator SUMS

[[Ag]
A, —dj2+1

2
nl
) ) m!(n_m)!(2A¢+n—|—1—d)m

6P, [1 4 260 [T (700 /2 + Loy + K]
(1 + k2T [1,, /2 + £,,]%

m d— 2 m
x 5 ) (—k,—k,—%—ém——+A¢;1—€m—%—k,1—€m—7—k;l)

B\Y =

2

s F» :Since k is a positive integer, this is a
polynomial.
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So effectively we just /OO /OO dzdy b(n, z, y)e—(x+y)xayb
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So effectively we just /OO /OO dzdy b(n, z, y)e_(x+y)$a’yb
0 0

need to do the integral

which can be easily done by going to polar
coordinates.

d=4
80

v(n, 0)0* = — (6n4 +12n°(2A4 — 3) + 60 (11 — 14A4 + 5AZ) + 6n(284 — 3) (A7 — 244 + 2)
T

+AS(Ay — 1)2)

This is negative and monotonically decreasing
with n for any conformal dimension satisfying the
unitarity bound




Always negative for




Always negative for
n >3

If unitarity bound is violated anomalous
dimensions can be positive.




Comments on general dimensions

Assume minimal twist for stress tensor
exchange d-2
C>n>1
I'ld + 1|I'\/d + 2
,V(TL,g)gd—Q — P [ + ] d[ _|_2 ]nd
2[1 + 4]A2
With some effort this can be derived
analytically in all d. In terms of cr:
d? I[d + 11T(d + 2] n¢
1(n,0) = ks

2(d —1)2cr  T[14 44 (d-2

For this to match with the AdS
Eilkonal calculation, we need

_ 166Gy T(d -1+ §)°

P
r T(d+1DIC(d+2) ¢

Exactly expected from AdS/CFT
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1 L L L L 1 L " L L 1 i i 1 1 1 i
) -
1 2 3 4 logn 5

Plots in diverse spacetime dimensions for
various conformal dimensions. Asymptotes
indicate same intercept independent of
conformal dimension.




Negativity violated if unitarity
violated Tn>d-1 <




Subleading terms (d=4)

Starting with the differential equation one can
also get the subleading terms in 1/¢

0 1 2
" ) Tn Tn
/ (n’ E) o g'r'm. + g'r'ru +1 + g'r'ru +2 + .

t-channel
(Ac,b - I)nQF(Aqb — % o %)2

(T-ru "}‘])/2 1 — 2A 2 2A ) 0 2'-\ :
P Z[( 6+ ( n + cf,)ﬂn) Yo, T n] 2I‘(n n 1)P(A¢)2F(2A(j) +n— 3)71.

mn

. x v" logv FI9[2A4 + 2n,v].
not in s-

channel




\

7(”7 6) —

CT 52
universal

In principle we can extract order by order.




Role of higher spin exchange from CFT

n>0>1

Introduce h=Ay+n+Llh=As+n

Using saddle p
point methods V(n, €) 00 + 2n)
and the Other Agrees exactly with AdS/CFT

results of Cornalba, Costa,

limit we find Penedones, Schiappa ‘07
Valid for large spin, twist

FOI" n > 14 > 1 W(na f) X / allows small

anom. dim

n2€m+fm—2 (é n)2—7m

Depends only on spin!




Uy = 2

n>/0>1 YNl ~

From massive spin=2

This means that adding a finite set
of higher spin modes will not

change the sign of the anomalous
dimension.

Anom. dims. will not be small for
some very large twist.

To allow for perturbative unitarity
we may need to add an infinite set of
hisher spin modes.

Comes from OPE
coefficient of higher
spin=4 exchange

cf Camanho, Edelstein,
Maldacena, Zhiboedov




® |t will be very interesting to see what a
consistent CFT spectrum can be which
leads to perturbatively small anomalous

dimensions in a theory with large N and a
gap.
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Holography

® Fitzpatrick, Kaplan and Walters suggested
the following simple calculation.

The double trace operators can be thought
of as two massive particles in AdS rotating
around each other.The anomalous
dimension arises due to the interacting
energy of these particles.

Essential idea is to do perturbation theory
in inverse distance corresponding to a
Newtonian approximation in AdS.




® |t has been shown that for n=0, the result
of the calculation agrees with the bootstrap
prediction. (Unlike Eikonal where both spin
and n needed to be large)

Non-zero n is quite hard. However, we have
been able to make progress (barring overall
constants) at large n,i.e.,, £>n>1

It turns out to give exactly the same
universal behaviour predicted by bootstrap!




Non-renormalization from holography

{>n>1

2
B

: (1+nr2)2¢k(r)wa(r)+ar¢k(r)aT¢a(r))] 741,




Non-renormalization from holography

{>n>1

Higher derivative correction

6By, = —5 cﬁ ’”2¢wwaw+aw<wwa> — T+ 1Ty,
ﬂ /H Ol 00 | <54

SEL, - w+me£+2+m)§]_Dk IF'k+0+n+A)
ndors T AT (0 + 2)T(n + A 1) &~ Fl+24+k(n+1—-kEITR2+k+0+AT(k+1)

X Fﬂ+€+@Fﬂ+Ah&<—n%+€+LE+n+A%+ZQ+k+€+Aﬂ)

%%WTO+€+k—@ﬂj+A+hh&(—n$+€+1—h£+n+A%+2£+k+£+Aﬂ)]

The spin dependence for the Einstein term
can be shown to be 1 whlle the higher
derivative term glvesf 2hH.Thus no 't Hooft
coupling dependence!é

Prediction for susy bootstrap: N=4 "t Hooft
coupling shows up at ¢—8




® The (> n> lresult exactly agrees with
the CFT calculation.

® |t will be interesting to do the other limit
to check non-universality due to higher

derivative corrections and compare with
causality constraints.




Summary

® VWe have derived certain interesting
universal results using conformal bootstrap.

® We should understand the large twist limit
better both from the CFT side (what is a
consistent spectrum) and from the gravity
side (role of higher derivative corrections).
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