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Objective

The goal of this talk is to understand the time evolution of simple
local operators in a “generic’ quantum system.
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» W(t) is a precursor of W.
» W(t) will be a nonlocal sum of products of local operators.
» Growth of operator <= butterfly effect.
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Plan: understand the butterfly effect in a simple qubit system and
in 1 + 1-dimensional CFT



Spin chain

H=— Z ZiZiy1+gXi+ hZ;

Xi, Yi, Z;j, are the Pauli operators on the ith site, i =1,2,...,n.
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Nested commutators (2)
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Nested commutators (4)
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Nested commutators (5)
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Nested commutators (6)

H=— Z ZiZii1+ gXi + hZ;

[Hv [H’ [H7 [H> [H7 [Hv Zl]]]]]] = X1
4]

X1X2
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X1.X2X;
X1 XoZs
X1YsYs
X12»75
Y1X Ys
Y1YsZs
Z1 X275

X1 XoX324



Nested commutators (7)

H==) ZZ.+gXi+hZ

[H,[H,[H,[H,[H,[H,[H, ] =

Y1

X1Y2
Y1 X2
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X1Y2X3
X1Y2Z3
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Y1 X2 X3
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YiY2Y3
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X1 XoX3Ya
X1 XoYsZs
X1 Yo X324
YiXoX3Zs



Growth of precursor operator
Group strings by length.
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Growth of precursor operator
Group strings by length.

Zl(t) =.. .a(t) X1 X + ,B(t) X12> + "y(t) YiYo+ ...

p2(t) = a(t)® + B(t)* +(t)?

Weight of strings of length k

ONOUTRWN

ARRARXRXRARXRAX

pk(t)




Size of a precursor

» Average string length:



Measuring the butterfly effect

—([Z1(t), Z;)?) 5 measures strength of the butterfly effect at j.

r{e PH .
()p= e 2

commutator at fixed j commutator at fixed t
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Size of a precursor (2)

» Average string length:

(k) =" kpi(t)
k

» Natural definition in terms of commutator:

size[Z1(t)] = J", —([Z1(t), Z+)P)p = 17



Speed of growth in chaotic spin chain

Operator growth is ballistic.

Size of operator

—<k)
— size[Z4(t)]

sites




Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having O(1) energy and
localized at x and y, this commutator should grow:
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Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having O(1) energy and
localized at x and y, this commutator should grow:

(V. W(e)2)s =(V W(t) W(t) V)5 + (W(t) VV W(L))s
— (VW) VW(t))s — (W()VW(t)V)s

At t> |x—y|:
» norm of a perturbed thermal state
» approaches (W W)g(V V)g = "1"
» inner product of two different states
» decays like ~ e—const-(t=Ix—yl)

Basic diagnostic of quantum chaos.



2d CFT and the butterfly effect

Compute 4-point correlators for model 1 + 1-dimensional systems
> large ¢ and sparse spectrum
> 2d Ising model




A related quantity
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A related quantity

(W(0,0)W(z,2)V(L,1)V(c0, 00))

Using a conformal transformation to map the cylinder to the plane,
we can relate z to x, t.

27
z~e BT

The limit z — 0 corresponds to late times, t >> x.



Analytic continuation

Paths of the cross-ratio z

— )
(W(t)VW(t)V)s (VW(t)W(t) V)s
(WW)s(V V)g (WW)p(V V)g

Chaotic behavior is determined by the second sheet of planar
four-point function.



Euclidean correlator

Correlator is a function of conformally invariant cross ratios, z, z

(W(0,0)W(z,2)V(L,1)V(c0, 0))
(W(0,0)W(z,2))(V(L,1)V(c0, 0))

=f(z,2)

SL(2) conformal block expansion: expand for small z, z.

f(z,2) =) p(hh)|G(h,z)]

hw hy



Euclidean correlator

Only including the identity and the universal contribution given by
the stress tensor in the sum

2hy,hy
c

f(z,z) =1+ 225F1(2,2,4,2) + ...



Euclidean correlator

Only including the identity and the universal contribution given by
the stress tensor in the sum

2h hv2

f(z,z) =14+ ——2z°2F1(2,2,4,2) + . ..

Taking z small, we find




The second sheet

The hypergeometric function has a branch cut at z =1 on the
complex plane. Following the contour around z =1 and then
taking z small, we find

48mihy b, n
cz

f(z,z) =1+

The second term becomes O(1) at t = x + % log c. To determine
behavior, we need to consider more terms in the expansion.
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Large ¢ and sparse spectrum

We can regroup the conformal block sum to be over Virasoro
primaries. The identity block includes the contribution of all
powers and derivatives of the stress tensor.

For large c,

2h,
z
f(Z) ~ (1 — (1 — Z)ll2hw/C) [Fitzpatrick/Kaplan/Walters].

For an appropriately sparse low-lying spectrum, this approximates
the full correlator.



Large ¢ and sparse spectrum

For t 2 x + t,,

size[W(t)] =t — t.

With the “fast scrambling time” [Hayden/Preskill and Sekino/Susskind]

B

t. = —logc
27 &



2d Ising model

Has three Virasoro primary operators: /, o, and ¢. We can
compute the correlators exactly.

fool2,2) = 5 (|14 VI =2 + 1~ VI~ 2]).

f(nz) = | 22|

ge Y - zm Y
1—z—i—z22

f;G(Z,Z)_' 1~ s

On the second sheet, only (cooo)g vanishes at large t, consistent
with not being chaotic.

(cooo)s (oeoe)s _ (eeee) 3 _
oy 0 Teovtes 0 (ed &



Can a small perturbation W have a macroscopic effect on the
system?

Does any small perturbation W have a macroscopic effect on the
system?



Summary

» The butterfly effect in quantum systems corresponds to the
growth of simple operators under time evolution.

» For chaotic systems, any small perturbation grows to have a
macroscopic effect on the system.

» Strength of butterfly effect measured by —([W(t), V]?)5.

» Chaotic behavior in CFT is controlled by the second sheet of
the Euclidean four-point function, giving the Lorentzian
ordering (W(t) V W(t) V)z.

» We showed an example of the butterfly effect in a spin chain.

» We contrasted the chaotic behavior of large ¢ 2d CFT with a
sparse low-lying spectrum to the non-chaotic behavior in the
2d Ising model.

Thank you!
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Lieb-Robinson bound

Using the Lieb-Robinson bound
1IWa(2). VIl < aol| Wi [y | et

and our commutator definition of size, we see that an operator can
grow no faster than linearly

size[Wi(t)] < (a1/a2)t.
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Integrable vs. chaotic spin chain growth

H==) ZZ.+gXi+hZ

Size of operator

7,
6,
0 5
]
=~
w4 — integrable
3l —— chaotic
2,
]
o ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8

integrable: g =1, h=0, chaotic: g = —1.05, h=0.5
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Tensor networks

Tensor network for a single localized precursor.



Tensor networks

XKL

XSS

KHXXRK
IRIRRRK

RS

%

KRR

Tensor network for a single localized precursor.



Tensor networks

Tensor network for a product of three localized precursors

WX3(t3) WXQ(t2) le(tl)

Matches holographic geometry dual to state perturbed by multiple
local precursors. [DR/Stanford/Susskind]
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