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Can a small perturbation W have a macroscopic effect on the
system?

Does any small perturbation W have a macroscopic effect on the
system?



Can a small perturbation W have a macroscopic effect on the
system?

Does any small perturbation W have a macroscopic effect on the
system?



Objective

The goal of this talk is to understand the time evolution of simple
local operators in a “generic” quantum system.

W (t) = e iHtWe−iHt

I W (t) is a precursor of W .

I W (t) will be a nonlocal sum of products of local operators.

I Growth of operator ⇐⇒ butterfly effect.
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Work on the quantum butterfly effect
Quantum chaos

I Larkin/Ovchinnikov, “Quasiclassical method in the theory of
superconductivity,” (1969).

I Kitaev, “Hidden correlations in the hawking radiation and thermal
noise,” talk at the Fundamental Physics Prize Symposium (2014).

I DR/Stanford, “Two-dimensional conformal field theory and the butterfly
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arXiv:1306.0622.

I Shenker/Stanford, “Multiple shocks,” arXiv:1312.3296.
I Leichenauer, “Disrupting Entanglement of Black Holes,”

arXiv:1405.7365.
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I Polchinski, “Chaos in the black hole S-matrix,” arXiv:1505.08108.
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Plan: understand the butterfly effect in a simple qubit system and
in 1 + 1-dimensional CFT



Spin chain

H = −
∑
i

ZiZi+1 + gXi + hZi

Xi , Yi , Zi , are the Pauli operators on the ith site, i = 1, 2, . . . , n.



Spin chain

Z1(t) = e−iHtZ1e
iHt

Z1(t) ≈ Z1− it [H,Z1]− t2

2!
[H, [H,Z1]] +

it3

3!
[H, [H, [H,Z1]]] + . . .
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Growth of precursor operator
Group strings by length.

Z1(t) = . . . α(t)X1X2 + β(t)X1Z2 + γ(t)Y1Y2 + . . .

p2(t) = α(t)2 + β(t)2 + γ(t)2
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Size of a precursor

I Average string length:

〈k〉 =
∑
k

k pk(t)

I Natural definition in terms of commutator:

size[Wx(t)] = |y∗ − x |, “1” = −〈[Wx(t),Vy∗ ]2〉β

〈·〉β ≡
tr {e−βH · }
tr e−βH



Measuring the butterfly effect

−〈[Z1(t),Zj ]
2〉β measures strength of the butterfly effect at j .

〈·〉β ≡
tr {e−βH · }
tr e−βH



Size of a precursor (2)

I Average string length:

〈k〉 =
∑
k

k pk(t)

I Natural definition in terms of commutator:

size[Z1(t)] = j∗, −〈[Z1(t),Zj∗ ]2〉β = “1”



Speed of growth in chaotic spin chain

Operator growth is ballistic.
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Butterfly effect in quantum systems

For all simple Hermitian operators W , V , having O(1) energy and
localized at x and y , this commutator should grow:

−〈[V ,W (t)]2〉β=〈V W (t)W (t)V 〉β + 〈W (t)V V W (t)〉β
− 〈V W (t)V W (t)〉β − 〈W (t)V W (t)V 〉β

At t � |x − y |:

I norm of a perturbed thermal state

I approaches 〈W W 〉β〈V V 〉β = “1”

I inner product of two different states

I decays like ∼ e−const.(t−|x−y |)

Basic diagnostic of quantum chaos.
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2d CFT and the butterfly effect

Compute 4-point correlators for model 1 + 1-dimensional systems

I large c and sparse spectrum

I 2d Ising model

W

V
x

t

〈W (t)V W (t)V 〉β
〈W W 〉β〈V V 〉β

〈V W (t)W (t)V 〉β
〈W W 〉β〈V V 〉β



A related quantity

〈W (0, 0)W (z , z̄)V (1, 1)V (∞,∞)〉

Using a conformal transformation to map the cylinder to the plane,
we can relate z to x , t.

z ∼ e−
2π
β

(x−t)

The limit z → 0 corresponds to late times, t � x .
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Analytic continuation

Paths of the cross-ratio z

1 1

z

〈W (t)V W (t)V 〉β
〈W W 〉β〈V V 〉β

〈V W (t)W (t)V 〉β
〈W W 〉β〈V V 〉β

Chaotic behavior is determined by the second sheet of planar
four-point function.



Euclidean correlator

Correlator is a function of conformally invariant cross ratios, z , z̄

〈W (0, 0)W (z , z̄)V (1, 1)V (∞,∞)〉
〈W (0, 0)W (z , z̄)〉〈V (1, 1)V (∞,∞)〉

≡ f (z , z̄)

SL(2) conformal block expansion: expand for small z , z̄ .

f (z , z̄) =
∑
h,h̄

p(h, h̄) |G (h, z)|2

G (h, z) =
h

hw

hw

hv

hv



Euclidean correlator

Only including the identity and the universal contribution given by
the stress tensor in the sum

f (z , z) = 1 +
2hwhv

c
z2

2F1(2, 2, 4, z) + . . .

Taking z small, we find

≈ 1 + O(z2)

〈V W (t)W (t)V 〉β
〈W W 〉β〈V V 〉β

= 1
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The second sheet

The hypergeometric function has a branch cut at z = 1 on the
complex plane. Following the contour around z = 1 and then
taking z small, we find

f (z , z) ≈ 1 +
48πihwhv

cz
+ . . .

The second term becomes O(1) at t = x + β
2π log c . To determine

behavior, we need to consider more terms in the expansion.

〈W (t)V W (t)V 〉β
〈W W 〉β〈V V 〉β

= ?
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Large c and sparse spectrum

We can regroup the conformal block sum to be over Virasoro
primaries. The identity block includes the contribution of all
powers and derivatives of the stress tensor.

f (z , z̄) = F(z)F̄(z̄) + . . .

For large c ,

F(z) ≈
(

z

1− (1− z)1−12hw/c

)2hv

[Fitzpatrick/Kaplan/Walters].

For an appropriately sparse low-lying spectrum, this approximates
the full correlator.



Large c and sparse spectrum

For t & x + t∗,

〈W (t)V W (t)V 〉β
〈W W 〉β〈V V 〉β

∼ e−
4πhv
β

(t−t∗−x) 〈V W (t)W (t)V 〉β
〈W W 〉β〈V V 〉β

= 1

size[W (t)] = t − t∗

With the “fast scrambling time” [Hayden/Preskill and Sekino/Susskind]

t∗ =
β

2π
log c



2d Ising model

Has three Virasoro primary operators: I , σ, and ε. We can
compute the correlators exactly.

fσσ(z , z̄) =
1

2

(∣∣1 +
√

1− z
∣∣+
∣∣1−√1− z

∣∣),
fσε(z , z̄) =

∣∣∣∣ 2− z

2
√

1− z

∣∣∣∣2,
fεε(z , z̄) =

∣∣∣∣1− z + z2

1− z

∣∣∣∣2,
On the second sheet, only 〈σσσσ〉β vanishes at large t, consistent
with not being chaotic.

〈σσσσ〉β
〈σσ〉2β

= 0,
〈σεσε〉β
〈σσ〉β〈εε〉β

= −1,
〈εεεε〉β
〈εε〉2β

= 1.



Can a small perturbation W have a macroscopic effect on the
system?

Does any small perturbation W have a macroscopic effect on the
system?



Summary

I The butterfly effect in quantum systems corresponds to the
growth of simple operators under time evolution.

I For chaotic systems, any small perturbation grows to have a
macroscopic effect on the system.

I Strength of butterfly effect measured by −〈[W (t),V ]2〉β.

I Chaotic behavior in CFT is controlled by the second sheet of
the Euclidean four-point function, giving the Lorentzian
ordering 〈W (t)V W (t)V 〉β.

I We showed an example of the butterfly effect in a spin chain.

I We contrasted the chaotic behavior of large c 2d CFT with a
sparse low-lying spectrum to the non-chaotic behavior in the
2d Ising model.

Thank you!
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Lieb-Robinson bound

Using the Lieb-Robinson bound

‖[Wx(t),Vy ]‖ ≤ a0‖Wx‖ ‖Vy‖ ea1t−a2|x−y |,

and our commutator definition of size, we see that an operator can
grow no faster than linearly

size[Wx(t)] ≤ (a1/a2)t.
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Integrable vs. chaotic spin chain growth

H = −
∑
i

ZiZi+1 + gXi + hZi

integrable: g = 1, h = 0, chaotic: g = −1.05, h = 0.5
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Tensor networks

t

x

e−Ht eHtWW (t) =

Lorenz system:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

I nonlinear

I looks like a butterfly

t

x

Tensor network for a single localized precursor.
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Tensor networks

t1t1|t2|

t3

x

t3

Tensor network for a product of three localized precursors

Wx3(t3)Wx2(t2)Wx1(t1)

Matches holographic geometry dual to state perturbed by multiple
local precursors. [DR/Stanford/Susskind]
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