The butterfly effect in spin chains and 2d CFT

 Strings 2015Dan Roberts

MIT

June 25, 2015

Work with Douglas Stanford and Lenny Susskind.

Can a small perturbation W have a macroscopic effect on the system?

Can a small perturbation W have a macroscopic effect on the system?

Does any small perturbation W have a macroscopic effect on the system?

Objective

The goal of this talk is to understand the time evolution of simple local operators in a "generic" quantum system.

$$
W(t)=e^{i H t} W e^{-i H t}
$$

Objective

The goal of this talk is to understand the time evolution of simple local operators in a "generic" quantum system.

$$
W(t)=e^{i H t} W e^{-i H t}
$$

- $W(t)$ is a precursor of W.
- $W(t)$ will be a nonlocal sum of products of local operators.
- Growth of operator \Longleftrightarrow butterfly effect.

Work on the quantum butterfly effect

Quantum chaos

- Larkin/Ovchinnikov, "Quasiclassical method in the theory of superconductivity," (1969).
- Kitaev, "Hidden correlations in the hawking radiation and thermal noise," talk at the Fundamental Physics Prize Symposium (2014).
- DR/Stanford, "Two-dimensional conformal field theory and the butterfly effect," arXiv:1412.5123.
- Maldacena/Shenker/Stanford, "A bound on chaos," arXiv:1503.01409.

Black holes and chaos

- Shenker/Stanford, "Black holes and the butterfly effect," arXiv:1306.0622.
- Shenker/Stanford, "Multiple shocks," arXiv:1312.3296.
- Leichenauer, "Disrupting Entanglement of Black Holes," arXiv:1405.7365.
- DR/Stanford/Susskind, "Localized shocks," arXiv:1409.8180.
- Shenker/Stanford, "Stringy effects in scrambling," arXiv:1412.6087.
- Polchinski, "Chaos in the black hole S-matrix," arXiv:1505.08108.

Work on the quantum butterfly effect

- DR/Stanford, "Two-dimensional conformal field theory and the butterfly effect," arXiv:1412.5123.
- DR/Stanford/Susskind, "Localized shocks," arXiv:1409.8180.

Plan: understand the butterfly effect in a simple qubit system and in 1 + 1-dimensional CFT

Spin chain

$$
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i}
$$

X_{i}, Y_{i}, Z_{i}, are the Pauli operators on the i th site, $i=1,2, \ldots, n$.

Spin chain

$$
Z_{1}(t)=e^{-i H t} Z_{1} e^{i H t}
$$

Spin chain

$$
\begin{gathered}
Z_{1}(t)=e^{-i H t} Z_{1} e^{i H t} \\
Z_{1}(t) \approx Z_{1}-i t\left[H, Z_{1}\right]-\frac{t^{2}}{2!}\left[H,\left[H, Z_{1}\right]\right]+\frac{i t^{3}}{3!}\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]+\ldots
\end{gathered}
$$

Nested commutators

$$
H=-\sum_{i} z_{i} Z_{i+1}+g X_{i}+h Z_{i}
$$

$$
\left[H, Z_{1}\right]=Y_{1}
$$

Nested commutators (2)

$$
\begin{aligned}
& H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i} \\
& {\left[H,\left[H, Z_{1}\right]\right]=\begin{array}{ll}
X_{1} \\
Z_{1}
\end{array} \quad X_{1} Z_{2}}
\end{aligned}
$$

Nested commutators (3)

$$
\begin{gathered}
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i} \\
{\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]=\begin{array}{ll}
Y_{1} & X_{1} Y_{2} \\
Y_{1} Z_{2}
\end{array}}
\end{gathered}
$$

Nested commutators (4)

$$
\begin{gathered}
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i} \\
{\left[H,\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]\right]=\begin{array}{lll}
X_{1} & X_{1} X_{2} \quad X_{1} X_{2} Z_{3} \\
Z_{1} & X_{1} Z_{2} \\
& Y_{1} Y_{2} \\
Z_{1} Z_{2}
\end{array}}
\end{gathered}
$$

Nested commutators (5)

$$
\begin{aligned}
& H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i} \\
& {\left[H,\left[H,\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]\right]\right]=\begin{array}{lll}
Y_{1} & X_{1} Y_{2} & X_{1} X_{2} Y_{3}
\end{array}} \\
& Y_{1} X_{2} \quad X_{1} Y_{2} Z_{3} \\
& \begin{array}{ll}
Y_{1} Z_{2} & Y_{1} X_{2} Z_{3}
\end{array} \\
& Z_{1} Y_{2}
\end{aligned}
$$

Nested commutators (6)

$$
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i}
$$

$\left[H,\left[H,\left[H,\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]\right]\right]\right]=\begin{array}{llll}X_{1} & X_{1} X_{2} & X_{1} X_{2} X_{3} & X_{1} X_{2} X_{3} Z_{4}\end{array}$ $Z_{1} \quad x_{1} Z_{2} \quad X_{1} X_{2} Z_{3}$ $Y_{1} Y_{2} \quad X_{1} Y_{2} Y_{3}$
$Z_{1} X_{2} \quad X_{1} Z_{2} Z_{3}$
$Z_{1} Z_{2} \quad Y_{1} X_{2} Y_{3}$
$I_{1} X_{2} \quad Y_{1} Y_{2} Z_{3}$
$Z_{1} X_{2} Z_{3}$

Nested commutators (7)

$$
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i}
$$

$\left[H,\left[H,\left[H,\left[H,\left[H,\left[H,\left[H, Z_{1}\right]\right]\right]\right]\right]\right]\right]=\begin{array}{rllll}Y_{1} & X_{1} Y_{2} & X_{1} X_{2} Y_{3} & X_{1} X_{2} X_{3} Y_{4}\end{array}$ $Y_{1} X_{2} \quad X_{1} Y_{2} X_{3} \quad X_{1} X_{2} Y_{3} Z_{4}$ $Y_{1} Z_{2} \quad X_{1} Y_{2} Z_{3} \quad X_{1} Y_{2} X_{3} Z_{4}$ $Z_{1} Y_{2} \quad X_{1} Z_{2} Y_{3} \quad Y_{1} X_{2} X_{3} Z_{4}$ $I_{1} Y_{2} \quad Y_{1} X_{2} X_{3}$ $Y_{1} X_{2} Z_{3}$ $Y_{1} Y_{2} Y_{3}$
$Y_{1} Z_{2} Z_{3}$
$Y_{1} I_{2} Z_{3}$
$Z_{1} X_{2} Y_{3}$
$Z_{1} Y_{2} Z_{3}$
$I_{1} Y_{2} Z_{3}$

Growth of precursor operator

Group strings by length.

$$
\begin{gathered}
Z_{1}(t)=\ldots \alpha(t) X_{1} X_{2}+\beta(t) X_{1} Z_{2}+\gamma(t) Y_{1} Y_{2}+\ldots \\
p_{2}(t)=\alpha(t)^{2}+\beta(t)^{2}+\gamma(t)^{2}
\end{gathered}
$$

Growth of precursor operator

Group strings by length.

$$
\begin{gathered}
Z_{1}(t)=\ldots \alpha(t) X_{1} X_{2}+\beta(t) X_{1} Z_{2}+\gamma(t) Y_{1} Y_{2}+\ldots \\
p_{2}(t)=\alpha(t)^{2}+\beta(t)^{2}+\gamma(t)^{2}
\end{gathered}
$$

Size of a precursor

- Average string length:

$$
\langle k\rangle=\sum_{k} k p_{k}(t)
$$

Measuring the butterfly effect

$-\left\langle\left[Z_{1}(t), Z_{j}\right]^{2}\right\rangle_{\beta}$ measures strength of the butterfly effect at j.

$$
\langle\cdot\rangle_{\beta} \equiv \frac{\operatorname{tr}\left\{e^{-\beta H} \cdot\right\}}{\operatorname{tr} e^{-\beta H}}
$$

Size of a precursor (2)

- Average string length:

$$
\langle k\rangle=\sum_{k} k p_{k}(t)
$$

- Natural definition in terms of commutator:

$$
\operatorname{size}\left[Z_{1}(t)\right]=j^{*}, \quad-\left\langle\left[Z_{1}(t), Z_{j^{*}}\right]^{2}\right\rangle_{\beta}=" 1 "
$$

Speed of growth in chaotic spin chain

Operator growth is ballistic.
Size of operator

Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having $O(1)$ energy and localized at x and y, this commutator should grow:

$$
-\left\langle[V, W(t)]^{2}\right\rangle_{\beta}
$$

Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having $O(1)$ energy and localized at x and y, this commutator should grow:

$$
\begin{aligned}
-\left\langle[V, W(t)]^{2}\right\rangle_{\beta}= & \langle V W(t) W(t) V\rangle_{\beta}+\langle W(t) V V W(t)\rangle_{\beta} \\
& -\langle V W(t) V W(t)\rangle_{\beta}-\langle W(t) V W(t) V\rangle_{\beta}
\end{aligned}
$$

Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having $O(1)$ energy and localized at x and y, this commutator should grow:

$$
\begin{aligned}
-\left\langle[V, W(t)]^{2}\right\rangle_{\beta}= & \langle V W(t) W(t) V\rangle_{\beta}+\langle W(t) V V W(t)\rangle_{\beta} \\
& -\langle V W(t) V W(t)\rangle_{\beta}-\langle W(t) V W(t) V\rangle_{\beta}
\end{aligned}
$$

At $t \gg|x-y|$:

- norm of a perturbed thermal state
- approaches $\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}=" 1$ "

Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having $O(1)$ energy and localized at x and y, this commutator should grow:

$$
\begin{aligned}
-\left\langle[V, W(t)]^{2}\right\rangle_{\beta}= & \langle V W(t) W(t) V\rangle_{\beta}+\langle W(t) V V W(t)\rangle_{\beta} \\
& -\langle V W(t) V W(t)\rangle_{\beta}-\langle W(t) V W(t) V\rangle_{\beta}
\end{aligned}
$$

At $t \gg|x-y|$:

- norm of a perturbed thermal state
- approaches $\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}=$ " 1 "
- inner product of two different states
- decays like $\sim e^{- \text {const.(} t-|x-y|)}$

Butterfly effect in quantum systems

For all simple Hermitian operators W, V, having $O(1)$ energy and localized at x and y, this commutator should grow:

$$
\begin{aligned}
-\left\langle[V, W(t)]^{2}\right\rangle_{\beta}= & \langle V W(t) W(t) V\rangle_{\beta}+\langle W(t) V V W(t)\rangle_{\beta} \\
& -\langle V W(t) V W(t)\rangle_{\beta}-\langle W(t) V W(t) V\rangle_{\beta}
\end{aligned}
$$

At $t \gg|x-y|$:

- norm of a perturbed thermal state
- approaches $\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}=" 1 "$
- inner product of two different states
- decays like $\sim e^{- \text {const.(}(-|x-y|)}$

Basic diagnostic of quantum chaos.

2d CFT and the butterfly effect

Compute 4-point correlators for model $1+1$-dimensional systems

- large c and sparse spectrum
- 2d Ising model

$$
\frac{\langle W(t) V W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}
$$

$\frac{\langle V W(t) W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}$

A related quantity

$$
\langle W(0,0) W(z, \bar{z}) V(1,1) V(\infty, \infty)\rangle
$$

A related quantity

$$
\langle W(0,0) W(z, \bar{z}) V(1,1) V(\infty, \infty)\rangle
$$

Using a conformal transformation to map the cylinder to the plane, we can relate z to x, t.

$$
z \sim e^{-\frac{2 \pi}{\beta}(x-t)}
$$

The limit $z \rightarrow 0$ corresponds to late times, $t \gg x$.

Analytic continuation

Paths of the cross-ratio z

$$
\frac{\langle W(t) V W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}
$$

$\frac{\langle V W(t) W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}$

Chaotic behavior is determined by the second sheet of planar four-point function.

Euclidean correlator

Correlator is a function of conformally invariant cross ratios, z, \bar{z}

$$
\frac{\langle W(0,0) W(z, \bar{z}) V(1,1) V(\infty, \infty)\rangle}{\langle W(0,0) W(z, \bar{z})\rangle\langle V(1,1) V(\infty, \infty)\rangle} \equiv f(z, \bar{z})
$$

$S L(2)$ conformal block expansion: expand for small z, \bar{z}.

$$
f(z, \bar{z})=\sum_{h, \bar{h}} p(h, \bar{h})|G(h, z)|^{2}
$$

Euclidean correlator

Only including the identity and the universal contribution given by the stress tensor in the sum

$$
f(z, z)=1+\frac{2 h_{w} h_{v}}{c} z^{2}{ }_{2} F_{1}(2,2,4, z)+\ldots
$$

Euclidean correlator

Only including the identity and the universal contribution given by the stress tensor in the sum

$$
f(z, z)=1+\frac{2 h_{w} h_{v}}{c} z^{2}{ }_{2} F_{1}(2,2,4, z)+\ldots
$$

Taking z small, we find

$$
\begin{gathered}
\approx 1+O\left(z^{2}\right) \\
\frac{\langle V W(t) W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}=1
\end{gathered}
$$

The second sheet

The hypergeometric function has a branch cut at $z=1$ on the complex plane. Following the contour around $z=1$ and then taking z small, we find

$$
f(z, z) \approx 1+\frac{48 \pi i h_{w} h_{v}}{c z}+\ldots
$$

The second term becomes $O(1)$ at $t=x+\frac{\beta}{2 \pi} \log c$. To determine behavior, we need to consider more terms in the expansion.

The second sheet

The hypergeometric function has a branch cut at $z=1$ on the complex plane. Following the contour around $z=1$ and then taking z small, we find

$$
f(z, z) \approx 1+\frac{48 \pi i h_{w} h_{v}}{c z}+\ldots
$$

The second term becomes $O(1)$ at $t=x+\frac{\beta}{2 \pi} \log c$. To determine behavior, we need to consider more terms in the expansion.

$$
\frac{\langle W(t) V W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}=?
$$

Large c and sparse spectrum

We can regroup the conformal block sum to be over Virasoro primaries. The identity block includes the contribution of all powers and derivatives of the stress tensor.

$$
f(z, \bar{z})=\mathcal{F}(z) \overline{\mathcal{F}}(\bar{z})+\ldots
$$

For large c,

$$
\mathcal{F}(z) \approx\left(\frac{z}{1-(1-z)^{1-12 h_{w} / c}}\right)^{2 h_{v}}[\text { Fitzpatrick/Kaplan/Walters]. }
$$

For an appropriately sparse low-lying spectrum, this approximates the full correlator.

Large c and sparse spectrum

For $t \gtrsim x+t_{*}$,

$$
\frac{\langle W(t) V W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}} \sim e^{-\frac{4 \pi h_{v}}{\beta}\left(t-t_{*}-x\right)} \quad \frac{\langle V W(t) W(t) V\rangle_{\beta}}{\langle W W\rangle_{\beta}\langle V V\rangle_{\beta}}=1
$$

$$
\operatorname{size}[W(t)]=t-t_{*}
$$

With the "fast scrambling time" [Hayden/Preskill and Sekino/Susskind]

$$
t_{*}=\frac{\beta}{2 \pi} \log c
$$

2d Ising model

Has three Virasoro primary operators: l, σ, and ϵ. We can compute the correlators exactly.

$$
\begin{aligned}
f_{\sigma \sigma}(z, \bar{z}) & =\frac{1}{2}(|1+\sqrt{1-z}|+|1-\sqrt{1-z}|) \\
f_{\sigma \epsilon}(z, \bar{z}) & =\left|\frac{2-z}{2 \sqrt{1-z}}\right|^{2} \\
f_{\epsilon \epsilon}(z, \bar{z}) & =\left|\frac{1-z+z^{2}}{1-z}\right|^{2}
\end{aligned}
$$

On the second sheet, only $\langle\sigma \sigma \sigma \sigma\rangle_{\beta}$ vanishes at large t, consistent with not being chaotic.

$$
\frac{\langle\sigma \sigma \sigma \sigma\rangle_{\beta}}{\langle\sigma \sigma\rangle_{\beta}^{2}}=0, \quad \frac{\langle\sigma \epsilon \sigma \epsilon\rangle_{\beta}}{\langle\sigma \sigma\rangle_{\beta}\langle\epsilon \epsilon\rangle_{\beta}}=-1, \quad \frac{\langle\epsilon \epsilon \epsilon \epsilon\rangle_{\beta}}{\langle\epsilon \epsilon\rangle_{\beta}^{2}}=1
$$

Can a small perturbation W have a macroscopic effect on the system?

Does any small perturbation W have a macroscopic effect on the system?

Summary

- The butterfly effect in quantum systems corresponds to the growth of simple operators under time evolution.
- For chaotic systems, any small perturbation grows to have a macroscopic effect on the system.
- Strength of butterfly effect measured by $-\left\langle[W(t), V]^{2}\right\rangle_{\beta}$.
- Chaotic behavior in CFT is controlled by the second sheet of the Euclidean four-point function, giving the Lorentzian ordering $\langle W(t) V W(t) V\rangle_{\beta}$.
- We showed an example of the butterfly effect in a spin chain.
- We contrasted the chaotic behavior of large c 2d CFT with a sparse low-lying spectrum to the non-chaotic behavior in the 2d Ising model.

This slide is intentionally left blank.

Lieb-Robinson bound

Using the Lieb-Robinson bound

$$
\left\|\left[W_{x}(t), V_{y}\right]\right\| \leq a_{0}\left\|W_{x}\right\|\left\|V_{y}\right\| e^{a_{1} t-a_{2}|x-y|}
$$

and our commutator definition of size, we see that an operator can grow no faster than linearly

$$
\operatorname{size}\left[W_{x}(t)\right] \leq\left(a_{1} / a_{2}\right) t
$$

This slide is intentionally left blank.

Integrable vs. chaotic spin chain growth

$$
H=-\sum_{i} Z_{i} Z_{i+1}+g X_{i}+h Z_{i}
$$

integrable: $g=1, h=0$, chaotic: $g=-1.05, h=0.5$

This slide is intentionally left blank.

Tensor networks

Tensor network for a single localized precursor.

Tensor networks

Tensor network for a single localized precursor.

Tensor networks

Tensor network for a product of three localized precursors

$$
W_{x_{3}}\left(t_{3}\right) W_{x_{2}}\left(t_{2}\right) W_{x_{1}}\left(t_{1}\right)
$$

Matches holographic geometry dual to state perturbed by multiple local precursors. [DR/Stanford/Susskind]

