The
 Ternacular

Jacob Bourjaily

Niels Bohr International Academy and Discovery Center

Stuings 2015

ICTS-TIFR, Bengaluru
June 25, 2015

Organization and Outline

(1) Spiritus Movens: the Discovery of On-Shell Physics

- Using Generalized Unitarity to Compute One-Loop Amplitudes
(2) Upgrading Unitarity at One-Loop: the Chiral Box Expansion
- Chiral Boxes Expansion for One-Loop Integrands
- Making Manifest the Finiteness of All Finite Observables
(3) Generalizing Unitarity for Two-Loop Amplitudes \& Integrands
- The Two-Loop Chiral Integrand Expansion
- Novel Contributions at Two-Loops and Transcendentality
- Local, Integrand-Level Representations of All Two-Loop Amplitudes

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

$$
I_{a, b, c, d}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

The Scalar Box Decomposition

$$
\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

The Scalar Box Decomposition

$$
\int_{T_{a}^{1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

The Scalar Box Decomposition

$$
\int_{T_{a}^{1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

The Scalar Box Decomposition

$$
\int_{T_{a, b}^{2}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

The Scalar Box Decomposition

$$
\int_{T_{a, b}^{2}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

> The Scalar Box Decomposition
> $\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}$ $T_{a, b, c}^{3}$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

> The Scalar Box Decomposition
> $\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}$ $T_{a, b, c}^{3}$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

```
The Scalar Box Decomposition
\(\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}\)
\(T_{a, b, c, d}^{4}\)
```


Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

```
The Scalar Box Decomposition
\(\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}\)
\(T_{a, b, c, d}^{4}\)
```


Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

```
The Scalar Box Decomposition
    \(\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}\)
\(T_{a, b, c, d}^{4}\)
```


Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{T_{a, b, c, d}^{4}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\quad f_{a, b, c, d}
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

```
The Scalar Box Decomposition
\(\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\)
\(f_{a, b, c, d}^{1}\)
\(T_{a, b, c, d}^{4}\)
```


Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

```
The Scalar Box Decomposition
\(\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\)
\(f_{a, b, c, d}^{2}\)
\(T_{a, b, c, d}^{4}\)
```


Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{T_{a, b, c, d}^{4}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\quad\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams Disadvantages:

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams

Disadvantages:

- all widely-used methods of regularization severely obscure the finiteness and dual-conformal invariance of finite observables
- breaks the symmetries of the actual, field-theory loop i

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams

Disadvantages:

- all widely-used methods of regularization severely obscure the finiteness and dual-conformal invariance of finite observables
- breaks the symmetries of the actual, field-theory loop integrand

Spiritus Movens: One-Loop Generalized Unitarity

Historically, on-shell functions were first studied in the context of using generalized unitarity to determine (integrated) one-loop amplitudes:

$$
\begin{aligned}
& \text { The Scalar Box Decomposition } \\
& \int_{\mathbb{R}^{3,1}} d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
\end{aligned}
$$

Advantages:

- each standardized, scalar integral need only be computed once
- all coefficients are easy to compute as on-shell diagrams

Disadvantages:

- all widely-used methods of regularization severely obscure the finiteness and dual-conformal invariance of finite observables
- breaks the symmetries of the actual, field-theory loop integrand

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
$$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
$$

Consider for example the 'MHV' amplitude

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
$$

Consider for example the 'MHV' amplitude ($k=2$)

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, b, c, d} I_{a, b, c, d}\left(f_{a, b, c, d}^{1}+f_{a, b, c, d}^{2}\right)
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, b, c, d} I_{a, b, c, d} f_{a, b, c, d}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$$
f_{a, a+1, c, c+1}^{1}=
$$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}}$
$\mathcal{I}_{a, a+1, c, c+1}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}}$
$\mathcal{I}_{a, a+1, c, c+1}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}}$
$\mathcal{I}_{a, a+1, c, c+1}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}}$
$\mathcal{I}_{a, a+1, c, c+1}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)}}$
$\mathcal{I}_{a, a+1, c, c+1}$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$$
\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)} \frac{\left(\ell, Q_{2}\right)\left(X, Q_{1}\right)}{(\ell, X)\left(Q_{2}, Q_{1}\right)}}_{\mathcal{I}_{a, a+1, c, c+1}^{1}}
$$

A 'Box'-Expansion for One-Loop Integrands

The Scalar Box Expansion for the One-Loop Amplitude

$$
\int d^{4} \ell \mathcal{A}_{n}^{(2), 1}=\sum_{a, c} I_{a, a+1, c, c+1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$$
\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)} \frac{\left(\ell, Q_{2}\right)\left(X, Q_{1}\right)}{(\ell, X)\left(Q_{2}, Q_{1}\right)}}_{\mathcal{I}_{a, a+1, c, c+1}^{1}}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(2), 1} \stackrel{i ?}{=} \sum_{a, c} \mathcal{I}_{a, a+1, c, c+1}^{1} f_{a, a+1, c, c+1}^{1}
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i}{\underline{i}} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

Consider for example the 'MHV' amplitude ($k=2$), for which $f_{a, b, c, d}^{2}=0$, and the only non-vanishing $f_{a, b, c, d}^{1}$ are:

$$
\Leftrightarrow \int d^{4} \ell \underbrace{\frac{(a, c)(a, a+1)-(a, c+1)(c, a+1)}{(\ell, a)(\ell, a+1)(\ell, c)(\ell, c+1)} \frac{\left(\ell, Q_{2}\right)\left(X, Q_{1}\right)}{(\ell, X)\left(Q_{2}, Q_{1}\right)}}_{\mathcal{I}_{a, a+1, c, c+1}^{1}}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i^{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i^{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i^{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators.

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1 \stackrel{i}{i} ?} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite!

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{\stackrel{i}{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i^{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1 \stackrel{i}{i}}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i i^{?}}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i}{\underline{i}} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

and the residue about the point $\ell \rightarrow x_{a}$ must be the tree amplitude: $\mathcal{A}_{n}^{(k), 0}$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i}{\underline{i}} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

and the residue about the point $\ell \rightarrow x_{a}$ must be the tree amplitude: $\mathcal{A}_{n}^{(k), 0}$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i ?}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

$$
\mathcal{I}_{\text {div }}^{a} \equiv: \Leftrightarrow \int_{a} d^{4} \ell \frac{(a-1, a+1)(a, X)}{(\ell, a-1)(\ell, a)(\ell, a+1)(\ell, X)}
$$

and the residue about the point $\ell \rightarrow x_{a}$ must be the tree amplitude: $\mathcal{A}_{n}^{(k), 0}$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1} \stackrel{i ?}{=} \sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

$$
\mathcal{I}_{\text {div }}^{a} \equiv: \Leftrightarrow \int_{a} d^{4} \ell \frac{(a-1, a+1)(a, X)}{(\ell, a-1)(\ell, a)(\ell, a+1)(\ell, X)}
$$

and the residue about the point $\ell \rightarrow x_{a}$ must be the tree amplitude: $\mathcal{A}_{n}^{(k), 0}$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

This ansatz matches the correct integrand on all co-dimension four residues involving four distinct propagators. However, each chiral box is IR-finite! There are also co-dimension four residues involving only three propagators:

$$
\mathcal{I}_{\text {div }}^{a} \equiv: \Leftrightarrow \int d^{4} \ell \frac{(a-1, a+1)(a, X)}{(\ell, a-1)(\ell, a)(\ell, a+1)(\ell, X)}
$$

and the residue about the point $\ell \rightarrow x_{a}$ must be the tree amplitude: $\mathcal{A}_{n}^{(k), 0}$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\mathrm{div}}^{a}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\mathrm{div}}^{a}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k)}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k), 1}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 1}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k), 1}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 1}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k), 1}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 1}
$$

Because the divergences are universal, the ratio function is manifestly finite!

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k), 1}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 1}
$$

Because the divergences are universal, the ratio function is manifestly finite!

$$
\mathcal{R}_{n}^{(k), 1} \equiv \mathcal{A}_{n}^{(k), 1}-\mathcal{A}_{n}^{(k), 0} \times \mathcal{A}_{n}^{(2), 1}
$$

A 'Box'-Expansion for One-Loop Integrands

A Chiral 'Box'-Expansion for the One-Loop Amplitude Integrand

$$
\mathcal{A}_{n}^{(k), 1}=\sum_{a, b, c, d}\left(\mathcal{I}_{a, b, c, d}^{1} f_{a, b, c, d}^{1}+\mathcal{I}_{a, b, c, d}^{2} f_{a, b, c, d}^{2}\right)+\mathcal{A}_{n}^{(k), 0} \sum_{a} \mathcal{I}_{\text {div }}^{a}
$$

$$
\mathcal{A}_{n, \text { fin }}^{(k), 1}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 1}
$$

Because the divergences are universal, the ratio function is manifestly finite!

$$
\begin{aligned}
\mathcal{R}_{n}^{(k), 1} & \equiv \mathcal{A}_{n}^{(k), 1}-\mathcal{A}_{n}^{(k), 0} \times \mathcal{A}_{n}^{(2), 1} \\
& =\mathcal{A}_{n, \mathrm{fin}}^{(k), \mathcal{A}_{n}^{(k), 0} \times \mathcal{A}_{n, \mathrm{fin}}^{(2), 1}}
\end{aligned}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders.

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders.

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { iviv }}^{(k), \ell}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \mathrm{fin}}^{(k), \ell}+\mathcal{A}_{n, \mathrm{div}}^{(k), \ell}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\underline{\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { ivi }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { iv }}^{(2), 1}\right)^{q}}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\underline{\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { ivi }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { iv }}^{(2), 1}\right)^{q}}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\left.\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell}\right) \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\left.\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell}\right) \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \mathrm{fin}}^{(k), \ell}+\mathcal{A}_{n, \mathrm{div}}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \mathrm{div}}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \mathrm{fin}}^{(k), \ell-q}\left(\mathcal{A}_{n, \mathrm{div}}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell} \quad \text { where } \quad \mathcal{A}_{n}^{(k)} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{A}_{n}^{(k), \ell}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \mathrm{fin}}^{(k), \ell}+\mathcal{A}_{n, \mathrm{div}}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \mathrm{div}}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \mathrm{fin}}^{(k), \ell-q}\left(\mathcal{A}_{n, \mathrm{div}}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell} \quad \text { where } \quad \mathcal{A}_{n}^{(k)} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{A}_{n}^{(k), \ell}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell} \quad \text { where } \quad \mathcal{A}_{n}^{(k)} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{A}_{n}^{(k), \ell}
$$

Using the separation of $\mathcal{A}_{n}^{(k), \ell}$ together with the form of $\mathcal{A}_{n, \text { div }}^{(k), \ell}$ given above, it can be shown that:

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell} \quad \text { where } \quad \mathcal{A}_{n}^{(k)} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{A}_{n}^{(k), \ell}
$$

Using the separation of $\mathcal{A}_{n}^{(k), \ell}$ together with the form of $\mathcal{A}_{n, \text { div }}^{(k), \ell}$ given above, it can be shown that:

$$
\mathcal{R}_{n}^{(k), \ell}=\mathcal{A}_{n, \mathrm{fin}}^{(k), \ell}-\sum_{q=1}^{\ell} \mathcal{R}_{n}^{(k), \ell-q} \mathcal{A}_{n, \mathrm{fin}}^{(2), q}
$$

Manifesting the Exponentiation of Divergences to All Orders

The separation of amplitudes into manifestly finite and manifestly divergent parts can be done at all loop orders. Moreover, all divergences exponentiate:

$$
\mathcal{A}_{n}^{(k), \ell} \equiv \mathcal{A}_{n, \text { fin }}^{(k), \ell}+\mathcal{A}_{n, \text { div }}^{(k), \ell} \quad \text { with } \quad \mathcal{A}_{n, \text { div }}^{(k), \ell} \equiv \sum_{q=1}^{\ell} \mathcal{A}_{n, \text { fin }}^{(k), \ell-q}\left(\mathcal{A}_{n, \text { div }}^{(2), 1}\right)^{q}
$$

And this separation makes manifest the finiteness of all finite observables e.g. the ℓ-loop ratio function:

$$
\mathcal{R}_{n}^{(k)} \equiv \frac{\mathcal{A}_{n}^{(k)}}{\mathcal{A}_{n}^{(2)}} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{R}_{n}^{(k), \ell} \quad \text { where } \quad \mathcal{A}_{n}^{(k)} \equiv \sum_{\ell=0}^{\infty} g^{\ell} \mathcal{A}_{n}^{(k), \ell}
$$

Using the separation of $\mathcal{A}_{n}^{(k), \ell}$ together with the form of $\mathcal{A}_{n, \text { div }}^{(k), \ell}$ given above, it can be shown that:

$$
\mathcal{R}_{n}^{(k), \ell}=\mathcal{A}_{n, \mathrm{fin}}^{(k), \ell}-\sum_{q=1}^{\ell} \mathcal{R}_{n}^{(k), \ell-q} \mathcal{A}_{n, \mathrm{fin}}^{(2), q}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

```
The Two-Loop Chiral Expansion
    \(\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}\)
```

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

```
The Two-Loop Chiral Expansion
    \(\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}\)
```

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify

Constructing Local Integrands for Two-Loop Amplitudes

```
The Two-Loop Chiral Expansion
    \(\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}\)
```

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

Constructing Local Integrands for Two-Loop Amplitudes

```
The Two-Loop Chiral Expansion
    \(\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}\)
```

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:

$$
\mathcal{A}_{n, \mathrm{div}}^{(k), 2}=
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \operatorname{div}}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0}\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0}\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right) \quad+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:
(As we saw above, this form guarantees the finiteness of the ratio-function.)

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0}\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right) \quad+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:
(As we saw above, this form guarantees the finiteness of the ratio-function.)

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0}\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right) \quad+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:
(As we saw above, this form guarantees the finiteness of the ratio-function.)

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0}\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right) \quad+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

All the divergent contributions, $\mathcal{A}_{n, \text { div }}^{(k), 2}$, are easy to identify:
(As we saw above, this form guarantees the finiteness of the ratio-function.)

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

$$
\begin{aligned}
& \text { The Two-Loop Chiral Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
\end{aligned}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

$$
\begin{aligned}
& \text { The Two-Loop Chiral Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
\end{aligned}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands
 $$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}+\mathcal{A}_{n, \mathrm{div}}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

III

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

$$
\frac{(b-1, b+1)(b, X)}{\left(\ell_{1}, b-1\right)\left(\ell_{1}, b\right)\left(\ell_{1}, b+1\right)\left(\ell_{1}, X\right)} \otimes \frac{(X, a)(a-1, a+1)}{\left(X, \ell_{2}\right)\left(\ell_{2}, a-1\right)\left(\ell_{2}, a\right)\left(\ell_{2}, a+1\right)}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

$$
\begin{gathered}
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}_{\text {III }}+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text {,.in }}^{(k), 1}\right) \\
\frac{(b-1, b+1)(b, a)(a-1, a+1)}{\left(\ell_{1}, b-1\right)\left(\ell_{1}, b\right)\left(\ell_{1}, b+1\right)\left(\ell_{1}, \ell_{2}\right)\left(\ell_{2}, a-1\right)\left(\ell_{2}, a\right)\left(\ell_{2}, a+1\right)}
\end{gathered}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

$$
\begin{gathered}
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}_{\text {III }}+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text {,.in }}^{(k), 1}\right) \\
\frac{(b-1, b+1)(b, a)(a-1, a+1)}{\left(\ell_{1}, b-1\right)\left(\ell_{1}, b\right)\left(\ell_{1}, b+1\right)\left(\ell_{1}, \ell_{2}\right)\left(\ell_{2}, a-1\right)\left(\ell_{2}, a\right)\left(\ell_{2}, a+1\right)}
\end{gathered}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

"Merging" One-Loop, Chiral (X-dependent) Integrands

$$
\mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}+\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\mathcal{A}_{n, \mathrm{div}}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \mathrm{div}}^{(2), 1} \otimes \mathcal{A}_{n, \mathrm{iiv}}^{(2), 1}\right)}+\underbrace{\left(\mathcal{A}_{n, \mathrm{div}}^{(2), 1} \otimes \mathcal{A}_{n, \text { fin }}^{(k), 1}\right)}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}+\underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \mathrm{fin}}^{(k), 1}\right)}_{a}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}+\underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \mathrm{fin}}^{(k), 1}\right)}_{a}
$$

The Two-Loop Chiral Integrand Expansion

Constructing Local Integrands for Two-Loop Amplitudes

The Two-Loop Chiral Expansion
 $$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { fin }}^{(k), 2}+\mathcal{A}_{n, \text { div }}^{(k), 2}
$$

$$
\begin{aligned}
& \text { "Merging" One-Loop, Chiral (X-dependent) Integrands } \\
& \mathcal{I}_{L}(X) \otimes \mathcal{I}_{R}(X) \equiv \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, X\right)}{\left(\ell_{1}, X\right)} \otimes \frac{\left(X, \mathcal{N}_{R}\right)}{\left(X, \ell_{2}\right)} \mathcal{I}_{R}^{\prime} \mapsto \mathcal{I}_{L}^{\prime} \frac{\left(\mathcal{N}_{L}, \mathcal{N}_{R}\right)}{\left(\ell_{1}, \ell_{2}\right)} \mathcal{I}_{R}^{\prime}
\end{aligned}
$$

$$
\mathcal{A}_{n, \text { div }}^{(k), 2}=\mathcal{A}_{n}^{(k), 0} \underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \text { div }}^{(2), 1}\right)}+\underbrace{\left(\mathcal{A}_{n, \text { div }}^{(2), 1} \otimes \mathcal{A}_{n, \mathrm{fin}}^{(k), 1}\right)}_{a}
$$

Finite Integrand Contributions to Two-Loop Amplitudes

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

2. Finite Penta-Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

2. Finite Penta-Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

2. Finite Penta-Boxes:

The Two-Loop Chiral Integrand Expansion

Finite Integrand Contributions to Two-Loop Amplitudes

1. "Kissing" Boxes:

2. Finite Penta-Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Finite Integrand Contributions to Two-Loop Amplitudes

3. Finite Double-Boxes:

2. Finite Penta-Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Finite Integrand Contributions to Two-Loop Amplitudes

3. Finite Double-Boxes:

2. Finite Penta-Boxes:

Finite Integrand Contributions to Two-Loop Amplitudes

3. Finite Double-Boxes:

2. Finite Penta-Boxes:

Finite Integrand Contributions to Two-Loop Amplitudes

3. Finite Double-Boxes:

2. Finite Penta-Boxes:

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion
Novel Integrand Contributions at Two-Loops and Transcendentality
Local, Integrand-Level Representations of All Two-Loop Amplitudes

Novel Contributions Required

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Novel Contributions Required

4. "Shifted" Double-Boxes:

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as
'superfunction' \times 'integral'.

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:

$$
\begin{aligned}
& \mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right) \\
& \propto\left(\widetilde{\eta}_{1}^{1} \widetilde{\eta}_{1}^{2}\right)\left(\widetilde{\eta}_{2}^{1} \widetilde{\eta}_{2}^{2}\right)\left(\widetilde{\eta}_{3}^{1} \widetilde{\eta}_{3}^{2}\right)\left(\widetilde{\eta}_{4}^{2} \widetilde{\eta}_{4}^{3}\right)\left(\widetilde{\eta}_{5}^{2} \widetilde{\eta}_{5}^{3}\right)\left(\widetilde{\eta}_{6}^{3} \widetilde{\eta}_{6}^{4}\right)\left(\widetilde{\eta}_{7}^{3} \widetilde{\eta}_{7}^{4}\right)\left(\widetilde{\eta}_{8}^{3} \widetilde{\eta}_{8}^{4}\right)\left(\widetilde{\eta}_{9} \widetilde{\eta}_{9}^{1}\right)\left(\widetilde{\eta}_{10}^{4} \widetilde{\eta}_{10}^{1}\right)
\end{aligned}
$$

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:

$$
\begin{aligned}
& \mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right) \\
& \propto\left(\widetilde{\eta}_{1}^{1} \widetilde{\eta}_{1}^{2}\right)\left(\widetilde{\eta}_{2}^{1} \widetilde{\eta}_{2}^{2}\right)\left(\widetilde{\eta}_{3}^{1} \widetilde{\eta}_{3}^{2}\right)\left(\widetilde{\eta}_{4}^{2} \widetilde{\eta}_{4}^{3}\right)\left(\widetilde{\eta}_{5}^{2} \widetilde{\eta}_{5}^{3}\right)\left(\widetilde{\eta}_{6}^{3} \widetilde{\eta}_{6}^{4}\right)\left(\widetilde{\eta}_{7}^{3} \widetilde{\eta}_{7}^{4}\right)\left(\widetilde{\eta}_{8}^{3} \widetilde{\eta}_{8}^{4}\right)\left(\widetilde{\eta}_{9} \widetilde{\eta}_{9}^{1}\right)\left(\widetilde{\eta}_{10}^{4} \widetilde{\eta}_{10}^{1}\right)
\end{aligned}
$$

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$
Problem: all (isolated) on-shell functions vanish on this component!

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$
Problem: all (isolated) on-shell functions vanish on this component!

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction'×'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Novel Contributions Required: the Shifted Double-Boxes

4. "Shifted" Double-Boxes:

It turns out that here are contributions to $\mathcal{A}_{n, \text { fin }}^{(k), 2}$ which cannot be written as 'superfunction' \times 'integral'. To see this, consider the following 10-particle all-scalar, component amplitude:
$\mathcal{A}_{10}^{(5)}\left(\varphi_{12}, \varphi_{12}, \varphi_{12}, \varphi_{23}, \varphi_{23}, \varphi_{34}, \varphi_{34}, \varphi_{34}, \varphi_{41}, \varphi_{41}\right)$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
\end{aligned}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

The Two-Loop Chiral Integrand Expansion

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Local Integrand Expansion for All Two-Loop Amplitudes

$$
\begin{aligned}
& \text { Local Integrand Expansion } \\
& \qquad \mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
\end{aligned}
$$

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \text { div }}^{(k), 2}+\mathcal{A}_{n, \text { fin }}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

Upgrading Unitarity at One-Loop: the Chiral Box Expansion Generalizing Unitarity to 2-Loop Amplitudes \& Integrands

Local Integrand Expansion for All Two-Loop Amplitudes

Local Integrand Expansion

$$
\mathcal{A}_{n}^{(k), 2}=\mathcal{A}_{n, \mathrm{div}}^{(k), 2}+\mathcal{A}_{n, \mathrm{fin}}^{(k), 2}
$$

