A topological gauge theory for the entropy current

R. Loganayagam

School of Natural Sciences, Institute for Advanced Study, Princeton. Work done with Mukund Rangamani, Felix Haehl [1412.1090], [1502.00636] & [work in progress].

> Parallell Session, Strings 2015, Bengaluru. 25th June, 2015.

> > イロト イポト イヨト イヨト

R. Loganayagam

Introduction

Microscopic story : Schwinger Keldysh Macroscopic story : Fluid description Gravitational story : BH description Conclusion

Motivation

 For me, this story begins a few years ago, when we were trying to understand how parity odd part of Cardy formula generalises to higher dimensions.

Kristan Jensen, R. L., Amos Yarom. arXiv:1311.2935 [hep-th]

ヘロト ヘ戸ト ヘヨト ヘヨト

- We noticed that parity odd Cardy formula can be stated as an anomaly of a new abelian (say U(1)_T) gauge field coupled to the entropy current with temperature as its chemical potential.
- It was a curious (and a convenient) fact which I thought had no broader consequences.

Introduction Microscopic story : Schwinger Keldysh

Macroscopic story : Fluid description Gravitational story : BH description Conclusion

- But, already there were evidences pointing to a broader structure.
- In his paper on the famous black hole entropy formula, Wald had argued long ago that BH entropy is the U(1)_T charge on the horizon.
- In a paper which came immediately after ours, Sayantani constructed an entropy current for time-independent fluid configurations (hydrostatics) which can immediately be interpreted as the U(1)_T current.

Sayantani Bhattacharyya. arXiv:1312.0220 [hep-th]

ヘロト 人間 とくほとくほとう

Introduction

Microscopic story : Schwinger Keldysh Macroscopic story : Fluid description Gravitational story : BH description Conclusion

 Recently, we gave a complete classification of fluid equations admitting an entropy current [cf. Mukund's talk]

Felix M. Haehl, R. L., Mukund Rangamani.arXiv:1412.1090 (summary)

Felix M. Haehl, R. L., Mukund Rangamani. arXiv:1502.00636 (detailed)

イロン イロン イヨン イヨン

- The entropy current in our classification occurs naturally as the U(1)_T current.
- Further U(1)_T seemed to implement in fluid equations, Kubo-Martin-Schwinger (KMS) like conditions (analytic continuation of Euclidean periodicity to real time).

The $U(1)_T$ conjecture

We will take these hints seriously and propose the following :

A fluid (or its dual black hole) is characterised by the emergence of a new abelian $U(1)_T$ gauge symmetry.

Its microscopic origins lie in KMS conditions.

Its macroscopic manifestation is entropy and its current is the entropy current.

Fluids do not have any propagating $U(1)_T$ photon. So we add

Its dynamics is of a topological *BF* type gauge theory coupled to an appropriate sigma model of fluid modes.

イロト イポト イヨト イヨト 三日

This talk is about to how this would work and what its consequences would be for both fluid dynamics and BH dynamics

イロト イポト イヨト イヨト

æ

Schwinger Keldysh field theory

- Let us start our story with a field theory whose fluid (or dual BHs) we want to describe.
- Interested in mixed state evolution (in canonical ensemble).
- Correct formalism for this is Schwinger-Keldysh field theories (also in-in formalism, doubled path integral, path integral for density matrix).

イロト イポト イヨト イヨト

Fundamental features of SK theories

- Doubling : All fields and symmetries occur in pairs (called left and right fields/symmetries)
- Topological limit : Often stated as ordering prescription on the correlators. A more useful version is

Correlators of difference operators are topological.

SK version of Veltman's 'largest time equation'. **Encode** unitarity/causality.

KMS conditions : for thermal/near-thermal systems. Non-local conditions which guarantee correct analytic continuation to euclidean periodic correlators. Encode the right entanglement.

<ロト <回 > < 注 > < 注 > 、

Topological limit via Quadrupling

- Easiest way to realise the second feature is in fact to quadruple by adding ghost pairs to SK pairs.
- Grassmann odd, nilpotent, mutually anti-commuting $\{Q_{s\kappa}, \overline{Q}_{s\kappa}\}$ such that

 All known SK effective theories use this quadrupling to achieve topological limit.

Long distance limit

- We want to figure out what is the long distance description of this SK theory.
- Standard belief is that this gives fluid dynamics but how this happens is not understood.
- We will propose the following happens :
 - Doubled symmetries are spontaneously broken to their diagonal. Fluid dynamics is the sigma model of resultant goldstone modes (coresponding to broken difference symmetries).
 - There is a topological limit of this sigma model which is inherited from microscopic theory.
 - KMS conditions become local at long distances and can be recast as an emergent U(1)_T gauge invariance. Entropy current is the corresponding gauge current.

Long distance limit II

- Our goal : A U(1)_T gauged sigma model (with an appropriate target space) which is a deformation of a U(1)_T gauged *topological* sigma model with {Q_{SK}, Q_{SK}}.
- Next step : does this give fluid dynamics ? Does U(1)_T current agree with entropy current ?
- Answer : A qualified Yes !
- The sigma model itself is straightforward to write down and we have done various checks which work out very well.
- A detailed classification of allowed terms and their exact mapping to fluid transport would convert this to an unqualified Yes - work in progress.

ヘロン ヘアン ヘビン ヘビン

The $U(1)_T$ gauge dynamics

- Will briefly describe some features of our sigma model in the topological limit.
- Presence of $\{Q_{SK}, \overline{Q}_{SK}\}$ means this is a *balanced* TQFT R. Dijkgraaf, G. Moore. arXiv:9608169 [hep-th]
- The paradigmatic gauge theory which is also a balanced TQFT is the Vafa-Witten twist of $\mathcal{N} = 4_{4d}$ SYM which localises on to Anti-Self-Dual instantons with $F_{ab}^+ = 0$.

Cumrun Vafa, Edward Witten. arXiv:9408074 [hep-th]

・ロット (雪) () () () ()

• We require localisation to hydrostatics with $(F_{ab})_{U(1)_T} = 0$. Given the amount of topological invariance required, one basically gets a *BF* type theory which is Vafa-Witten $\mathcal{N} = 4_{4d}$ without self-duality condition.

The $U(1)_T$ gauge dynamics II

Let us pause a bit to see the remarkable statement we have argued ourselves into from very reasonable assumptions

Within every relativistic fluid, entropy dynamics is associated with a topological gauge theory which is a twisted cousin of $\mathcal{N} = 4_{4d}$ SYM.

- This obviously calls for further exploration and checks.
- One crucial check is whether it reproduces the correct anomaly induced transport and parity odd Cardy formula.
- In the remaining time, let me turn to speculations on the gravitational side and the implications to black hole physics.

Gravitational story

 Let us try now to implement the three features of Schwinger-Keldysh to BH description

Doubling, Topological limit & KMS conditions.

- The first two conditions imply that we should begin with a doubled topological string theory which localises on to Hartle-Hawking vacuum and then deform it by sources.
- This is the search for a Ooguri-Strominger-Vafa (OSV) type statement for large AdS BHs dual to CFT fluids.
- The doubled topological string theory of OSV should in general replaced by some kind of a 'balanced topological string theory'

Gravitational story II

- We should now implement KMS conditions. Let us do this by taking seriously the idea that U(1)_T emerges in IR.
- This can be implemented in string theory by putting an IR brane carrying this U(1)_T gauge theory.
- The statement that the $U(1)_T$ gauge theory looks very similar to $\mathcal{N} = 4_{4d}$ SYM suggests that this $U(1)_T$ brane is an appropriate topological version of D3 brane.
- Thus we have arrived at another interesting statement

Large AdS₅ BHs are described by a deformation of a balanced topological *IIB* theory along with a 3-Brane carrying ' $U(1)_T$ open strings'. It is dual to $\mathcal{N} = 4_{4d}$ SYM fluid dynamical sigma model.

Gravitational story III

- This is essentially 'membrane paradigm' with the U(1)_T open strings realizing the 'strings on the horizon' idea of Susskind and others.
- In the fluid limit, this might make precise the membrane paradigm ideas by

Dominik Nickel, Dam T. Son. arXiv:1009.3094

ヘロト ヘアト ヘビト ヘビト

- It would obviously be enormously interesting to make these ideas precise.
- A good check would be to derive Wald formula by localisation or more ambitiously, a coherent description of the BH interior.

Gravitational story IV

- Let me end with a fun application which illustrates how various BH ideas fit nicely into this story.
- Since entropy is the U(1)_T charge, the objects carrying entropy are naturally endpoints of 'U(1)_T open string'.
- Comparing this against ER = EPR idea of Maldacena-Susskind, we identify $U(1)_T$ open string' with their 'quantum wormhole'.
- A large number of U(1)_T open strings stretched between two locations should then be dual to a wormhole via usual re-interpretation of open string diagrams as closed string diagrams.

Conclusions

- We took seriously Schwinger-Keldysh, its topological limit and an emergent gauge theory for the entropy current.
- And this leads to many tantalising statements and a calculable formalism for fluids (and presumably BHs).
- This is in fact a broad programme, **the fluid manifesto** if you wish, to understand fluid effective theories and the effective string theories for BHs.
- While we work out the computational details, we intend to put out a short paper with an outline of these ideas soon.
- We hope that a detailed examination of these ideas will lead us to answers to more mystifying questions like small BHs and dS gravity.

Thank you !

R. Loganayagam