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Introduction

The Big Question:

Planar N = 4 super-Yang-Mills theory is supposed to be
“integrable”, but we don’t yet know, operationally, the full extent
of what exactly this fact implies for its more complicated
observables, including correlation functions and Wilson loops.

What exactly would it mean to say that the problem of computing
scattering amplitudes is “solved”? When would we be content that
we have found the “solution”, and what might it look like?
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Introduction

What does it mean to “solve” amplitudes in N = 4 SYM?

Since SYM theory is unique, there should exist some collection of
principles, or properties, both physical and mathematical, which
ought to determine amplitudes uniquely.

For the moment, this is a question which we approach
“experimentally”, by seeking out and exploiting hidden symmetries
and mathematical structures, with great progress in recent years
coming from a variety of complementary approaches, including

I twistor string theory,
I Grassmannia and amplituhedra,
I the amplitude bootstrap,
I the flux tube OPE,
I scattering equations,
I and others ...
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Cluster Algebras and Scattering Amplitudes

Today I will review a series of papers

James M. Drummond

[1305.1617: JG, AG, MS, CV, AV] John Golden

[1306.1833: JG, MS] Alexander Goncharov

[1401.6446: JG, MFP, MS, AV] Georgios Papathanasiou

[1406.2055: JG, MS] Daniel Parker

[1411.3289: JG, MS] Miguel F. Paulos

[1412.3764: JMD, GP, MS] Adam Scherlis

[15??.????: DP, AS, MS, AV] Cristian Vergu

Anastasia Volovich

which explore an apparently deep connection between (multi-loop)
scattering amplitudes in SYM theory and cluster algebras.



Cluster Algebras and Scattering Amplitudes

I What is a cluster algebra?

I In what way do amplitudes manifest “cluster structure”?

I To what extent might they be determined by this structure?

What, exactly, do I mean by “cluster structure”?

I’m not sure! I’ll show some examples of how it manifests itself,
but undoubtedly we are far from understanding the full story.
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The A2 Cluster Algebra

Suppose you have a 2-dimensional Poisson manifold and a pair of
log-canonical functions x1, x2 on that manifold, which we’ll call
“coordinates”

{log x1, log x2} = 1

You can generate other pairs of log-canonical coordinates by a
simple transformation

(xi , xi+1)→ (xi+1,
1 + xi+1

xi
)

Interestingly, this relation is periodic, with period 5:

x1, x2,
1 + x2
x1

,
1 + x1 + x2

x1x2
,

1 + x1
x2

, x1, . . .



The A2 Cluster Algebra

Suppose you have a 2-dimensional Poisson manifold and a pair of
log-canonical functions x1, x2 on that manifold, which we’ll call
“coordinates”

{log x1, log x2} = 1

You can generate other pairs of log-canonical coordinates by a
simple transformation

(xi , xi+1)→ (xi+1,
1 + xi+1

xi
)

Interestingly, this relation is periodic, with period 5:

x1, x2,
1 + x2
x1

,
1 + x1 + x2

x1x2
,

1 + x1
x2

, x1, . . .



The A2 Cluster Algebra

Suppose you have a 2-dimensional Poisson manifold and a pair of
log-canonical functions x1, x2 on that manifold, which we’ll call
“coordinates”

{log x1, log x2} = 1

You can generate other pairs of log-canonical coordinates by a
simple transformation

(xi , xi+1)→ (xi+1,
1 + xi+1

xi
)

Interestingly, this relation is periodic, with period 5:

x1, x2,
1 + x2
x1

,
1 + x1 + x2

x1x2
,

1 + x1
x2

, x1, . . .



The A2 Cluster Algebra

The five xi constitute the cluster coordinates of the A2 cluster
algebra, so named because the Poisson bracket may be represented
by the quiver:

x1 x2



Cluster Poisson Varieties [math/0311245: Fock, Goncharov]

More generally, a cluster on a cluster Poisson variety of dimension
d is a collection of d log-canonical cluster coordinates xi

{log xi , log xj} = Bij ∈ Z

(which can be represented by a quiver, with Bij arrows from node i
to node j),

and there is a simple operation called mutation on xj
which generates a new cluster according to

x ′i =

1/xj i = j

xi

(
1 + x

sgnBij

j

)Bij

i 6= j

The cluster algebra associated to this Poisson variety is generated
by the union of the cluster coordinates contained in all possible
clusters reachable by arbitrary sequences of mutations.
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The Kinematic Domain for N = 4 SYM

What is the “cluster Poisson variety” relevant to N = 4 SYM?

Nothing mysterious!

Let’s first review: what is an n-particle amplitude a function of?
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The Kinematic Domain for N = 4 SYM

A collection of n ordered null vectors in Minkowski space R1,3,
subject to overall momentum conservation, may be represented in
terms of n momentum twistors | | · · · |

Z1 Z2 · · · Zn

| | · · · |

 , Zi ∈ P3 [0905.1473: Hodges]

A very special property of SYM theory is dual conformal symmetry
[Drummond, Henn, Korchemsky, Sokatchev, 2007], which
corresponds to the left-action of SL(4).

Amplitudes in SYM theory are functions on the quotient space,

Gr(4, n)/(C∗)n−1 ' Confn(P3)

which is a cluster Poisson variety!
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Example: Six-Particle Scattering

For six particles, the space of kinematic configurations, modulo
dual conformal invariance, is 3-dimensional.

As coordinates on this space we may choose cross-ratios, e.g.

x1 =
〈1234〉〈3456〉
〈1346〉〈2345〉

, x2 =
〈1456〉〈2346〉
〈1246〉〈3456〉

, x3 =
〈1346〉〈1256〉
〈1236〉〈1456〉

,

(where 〈ijkl〉 = det(ZiZjZkZl) ) which have Poisson bracket

x1 x2 x3

and constitute a cluster of the A3 cluster algebra.
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Example: Six-Particle Scattering

Via mutations one can generate the 12 other cluster coordinates:

(1 + x1)x2
(1 + x2)(1 + x3 + x2x3 + x1x2x3)

x1x2

(1 + x2)x3
1 + x3 + x2x3 + x1x2x3

x1(1 + x3)

(1 + x2 + x1x2)x3
1 + x3 + x2x3 + x1x2x3

x2(1 + x1)

1 + x2
x1x2

1 + x3 + x2x3
x2

1 + x3
x2x3

1 + x3 + x2x3
x1x2x3

1 + x2 + x1x2
x1

(1 + x1)x2x3
1 + x3

[See https://en.wikipedia.org/wiki/Cluster algebra but beware; the

variables listed there are a different type, called cluster A-coordinates!]



Example: Six-Particle Scattering

or, if you prefer, the 15 cluster coordinates may be expressed as

〈1246〉〈1345〉
〈1234〉〈1456〉

,
〈1235〉〈2456〉
〈1256〉〈2345〉

,
〈1356〉〈2346〉
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,

〈1456〉〈2356〉
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,
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,
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,
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,
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〈1456〉〈2345〉

,

〈1246〉〈3456〉
〈1456〉〈2346〉

,
〈1235〉〈1456〉
〈1256〉〈1345〉

,
〈1256〉〈2346〉
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,
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〈1234〉〈1356〉

,
〈1234〉〈2456〉
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,
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.



Example: Six-Particle Scattering

Let’s look at some “experimental data” — the 2-loop six-particle
MHV amplitude, expressed in [1006.3703: AG, MS, CV, AV] as

R
(2)
6 =

∑
cyclic

Li4

(
−〈1234〉〈2356〉
〈1236〉〈2345〉

)
− 1

4
Li4

(
−〈1246〉〈1345〉
〈1234〉〈1456〉

)
+ products of Lik(−x) functions of lower weight

with the same set of arguments,

where

Lik(z) =

∫ z

0

dt

t
Lik−1(t), Li1(z) = − log(1− z)

is the polylogarithm function.

Observation: the argument of every polylog is a cluster coordinate,
never some random cross-ratio (or function of cross-ratios).



Example: Six-Particle Scattering

Let’s look at some “experimental data” — the 2-loop six-particle
MHV amplitude, expressed in [1006.3703: AG, MS, CV, AV] as

R
(2)
6 =

∑
cyclic

Li4

(
−〈1234〉〈2356〉
〈1236〉〈2345〉

)
− 1

4
Li4

(
−〈1246〉〈1345〉
〈1234〉〈1456〉

)
+ products of Lik(−x) functions of lower weight

with the same set of arguments,

where

Lik(z) =

∫ z

0

dt

t
Lik−1(t), Li1(z) = − log(1− z)

is the polylogarithm function.

Observation: the argument of every polylog is a cluster coordinate,
never some random cross-ratio (or function of cross-ratios).



Quiz

Which of these cross-ratios might you encounter in a two-loop
MHV amplitude?

R1 =
〈1237〉〈1258〉〈2456〉〈5678〉
〈1256〉〈2578〉〈78(123) ∩ (456)〉

R2 =
〈1235〉〈1278〉〈2456〉〈5678〉
〈1256〉〈2578〉〈78(123) ∩ (456)〉

R3 =
〈2(13)(56)(78)〉〈5(12)(46)(78)〉
〈1256〉〈2578〉〈78(123) ∩ (456)〉

Answer: only R1; the other two are not cluster coordinates; you’ll
never see them!
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Polylogarithm Functions

More sophisticated mathematical machinery is required to analyze
more general amplitudes.

A large class of amplitudes may be expressed in terms of a zoo of
generalized polylogarithm functions of “weight” 2L , at L loops.

An operational definition of a weight-k function is that it is one
whose total derivative takes the form

dfk =
∑
i

f
(i)
k−1 d logRi

where the Ri are rational functions.



The Symbol of Polylogarithm Functions

By iterating,

df
(i)
k−1 =

∑
j

f
(i ,j)
k−2 d logRj

we can break such a function up into a collection of rational
numbers and rational functions, which are assembled to form the
symbol

symbol(fk) =
∑

i1,i2,...,ik

f
(i1,i2,...,ik )
0 Ri1 ⊗ Ri2 ⊗ · · · ⊗ Rik .

The collection of Ri which appear in the symbol of a given
function is called its symbol alphabet.
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Cluster Structure Manifestation #1

The cluster coordinates on the Gr(4, n) cluster algebra provide
a basis for the symbol alphabet of all n-particle amplitudes (of
generalized polylogarithm type).

This hypothesis is supported by all “experimental” evidence
available to date, including heroic computations by

[1003.1702: Del Duca, Duhr, Smirnov]
[1105.5606: Caron-Huot]
[1111.1704: Dixon, Drummond, Henn]
[1112.1060: Caron-Huot, He]
[1308.2276: Dixon, Drummond, von Hippel, Pennington]
[1402.3300: Dixon, Drummond, Duhr, Pennington]
[1408.1505: Dixon, von Hippel]



A Curious (?) Observation

For n ≥ 8 the Gr(4, n) cluster algebra has infinitely many cluster
coordinates, but only finitely many of them are needed to write the
symbol of an amplitude at any finite loop order, if it is of
generalized polylog type.

However, for n ≥ 10 there are certain amplitudes (N3MHV or
higher) which cannot be expressed in terms of generalized
polylogarithms, but instead involve a kind of elliptic integrals, or
worse...

In the few instances (in scalar theory, not SYM) where such elliptic
integrals have been studied in detail, they can be written as infinite
sums of polylogs [Bloch, Vanhove; Adams, Bogner, Weinzierl].

So it is possible that the principle “symbol alphabet = cluster
coordinates” might extend to all amplitudes, once properly
interpreted for infinite algebras and infinitely long symbols.
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Cluster Structure Manifestation #2

A much stronger connection between amplitudes and cluster
algebras is known for the special case of 2-loop MHV amplitudes,
where we have a lot of data thanks to [1105.5605: Caron-Huot].

The cobracket of any 2-loop MHV amplitude has components
which can be written as linear combinations of

Li2(−xi ) ∧ Li2(−xj), Li3(−xk) ∧ log(xl)

for pairs of cluster coordinates always having Poisson bracket

{log xi , log xj} = 0, {log xk , log xl} = 1.

[1305.1617: JG, AG, MS, CV, AV], [1411.3289: JG, MS]

Sorry, no time to define the cobracket [Goncharov]!



The Cluster Bootstrap

We still have no idea “why” these properties hold, nor how,
precisely, the Poisson bracket is encoded in more general
amplitudes — this question must still be explored experimentally.

We can turn things around and ask: suppose we adopt, as a
working hypothesis, that amplitudes must have cluster structure.

Can we carry out new, previously impossible calculations by
building in the expected cluster structure from the outset?

(And subsequently check the consistency of results obtained in this
way, to provide evidence for or against the hypothesis...)
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Cluster Bootstrap Application #1

Suppose we knew nothing more about 2-loop MHV amplitudes
than that they must obey the following rather basic physical
properties:

I consistent collinear limits,

I only physical branch cuts,

I dihedral invariance in the particle labels,

I a certain condition on their differential, a consequence of
SUSY [1105.5606: Caron-Huot],

but somehow learn, from some as of yet unknown principle, that
they must be polylogarithm functions

I whose symbol alphabet consists of the cluster coordinates on
Gr(4, n),

I with the Poisson structure imprinted on the coproduct as
indicated above.
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Cluster Bootstrap Application #1

These properties completely determine all 2-loop MHV
amplitudes, modulo terms which are products of functions of
lower weight.

[1411.3289: JG, MS]

Note: for n = 6, 7 the proviso may be dropped; I believe this is
likely true for higher n but the function spaces become large very
quickly, making this a hard “experiment” to perform (that means,
a difficult calculation).
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Cluster Bootstrap Application #2

The symbol of the 3-loop seven-particle MHV amplitude is uniquely
determined by assuming it is a weight-6 polylogarithm function

I whose symbol alphabet is the set of cluster coordinates on the
Gr(4, 7) (also called E6) cluster algebra,

I with only physical branch cuts,

I which satisfies the SUSY condition,

I and is finite and well-defined in the collinear limit.

This is an example of a general phenomenon that there is a sense
in which the scattering amplitudes of N = 4 SYM theory “barely
exist”, given the tightly interlocking physical and mathematical
constraints they evidently satisfy.

(I would like to say “must satisfy”, but don’t know why!)
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The Cluster Bootstrap

The power of the “cluster bootstrap” comes from the apparent
fact that physical collinear limit constraints and mathematical
cluster constraints are “nearly orthogonal”.

Consider the set of hexagon functions (six-point cluster functions
with physical singularities, using the terminology of Dixon et. al.)

A generic function in this set is not the collinear limit of any
heptagon function...
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The Cluster Bootstrap

The power of the “cluster bootstrap” comes from the apparent
fact that physical collinear limit constraints and mathematical
cluster constraints are “nearly orthogonal”.

Consider the set of hexagon functions (six-point cluster functions
with physical singularities, using the terminology of Dixon et. al.)

An actual six-point amplitude must sit at the base of an infinite
tower of consistent nonagon functions, decagon functions, etc.



Conclusion

In my talk I have reviewed

I What is a cluster algebra?

I In what way do amplitudes manifest “cluster structure”?

I To what extent might they be determined by this structure?

In conclusion,

I Evidently, cluster algebras are (part of) the language in which
amplitudes should be written.

I Scattering amplitude functions “barely exist”: what is the
mathematical problem to which the scattering amplitudes of
SYM theory are the unique solution?

I Is there an alternative formulation of SYM theory in which
these physically mysterious cluster properties, in particular
their relation to the Poisson structure on the kinematic
domain, are manifest?
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