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In 1+1 D CFT there is a central charge appearing in different places

• The symmetry algebra [Lm, Ln] = (m− n)Lm+n + m(m2−1)
12 c δm+n,0.

• Two point function of energy momentum tensor 〈T (x)T (y)〉 = c/2
|x−y|4.

• The Weyl anomaly 〈Tµµ 〉 = − c
12R.

• Casimir energy of a cylinder E = − π
12 c.

• Entropy: putting the theory on a circle with radius β = T−1 the entropy is

S =
π2

3
cT

.

• Entanglement entropy SE = c
3 log `/ε.

Zamolodchikov’s c-theorem =⇒ cuv ≥ cir
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In d+ 1 dimensional CFT

• The symmetry group is S(2, d+ 1) and has no central charge.

• Two point function of energy momentum tensor

〈Tab(x)Tcd(y)〉 =
CT

|x− y|2(d+1)
Gabcd(x, y).

• Weyl anomaly for even dimensions (odd d)

〈Tµµ 〉 = a Ed+1 +
∑
i

ciIi +∇ · J

• Entropy at finite temperature Sth = S0T
d

• Entanglement entropy

SE =

[d2]−1∑
i=0

A2i

d− 2i− 1

1

εd−2i+1
+ δ

2[d2]+1,d
A

2[d2]
log

H

ε
+ finite terms.

Which one may have a “c”-Theorom?
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a-theorem

In four dimensional space time (d = 3) the coefficient that multiplies the
Euler density, a, always decreases along RG flow ( Card 1988, Komargodski,
Schwimmer 2011)

In any higher (even) dimensions, the coefficient of Ed+1 in the anomaly may
be considered as generalization of a-theorem: It is has natural monotonic
flow.

If one considers the entanglement entropy for a sphere in even dimensions

A
2[d2]

= a

In odd dimensions there is no anomaly, though one could still define A
2[d2]

as the universal term in the entanglement entropy of a sphere. Of course
there is no log term.

The universal term in the entanglement entropy for a sphere could provide
a monotonic function. (Myers, Sinha 2010 )
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Natural Questions

• Is there any other universal term in the expressions of entanglement en-

tropy?

• Is there any other relations between these parameters? Specially in odd

dimensions where anomaly is zero?

• If other surfaces can be also useful ?
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Based on early works

Drukker, Gross, Ooguri 1999 – Hirata, Takayanagi 2006 – Myers, Singh

2012

Recently new observation was made in

Bueno, Myers 2015 – Bueno, Myers, Witczak-Krempa 2015

To proceed let me just briefly review this observation.
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Consider a vacuum state of a three dimensional CFT whose gravity dual is

provided by an AdS4 geometry. And an entangling region with cusp.

In general one finds

SE =
Area

ε
+ a(Ω) log

H

ε
+A0

where H is a length scale, ε a uv cut off.
8



SE =
Area

ε
+ a(Ω) log

H

ε
+A0

• When the entangling region is a smooth sphere, a(Ω) = 0 and A0 is just
the one could provide a monotonic function (central charge).

•When there is a cusp, one has a universal term. Of course there are certain
constraints on a(Ω).

One has

A0 =
κ

Ω
+ · · · , at Ω→ 0,

A0 = σ

(
π

2
−Ω

)2
+ · · · , at Ω→

π

2
.

More importantly

σ

CT
=
π2

24

seems universal for 3D CFT. (Bueno, Myers 2015 – Bueno, Myers, Witczak-
Krempa 2015)
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Let us ask the following questions

What about higher dimensions? Does this work for non conformal cases?

Could this define a new charge?

We would like to partially address these questions with in a specific model

Theories with hyperscaling violation

Charmousis, Gouteraux, Kim, Kiritsis, Meyer 2010 – Gouteraux, Kiritsis

2011 – Huijse, Sachdev, Swingle 2011 – Dong, Harrison, Kachru, Torroba,

Wang 2012 – .....
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General solution with hyperscaling factor

S = −
1

16πGN

∫
dd+2x

√
−g

R− 1

2
(∂φ)2 + V0e

γφ −
1

4

Ng∑
i=1

eλiφF (i)2
 ,

One of the gauge field is required to produce an anisotropy while the above

particular form of the potential is needed to get hyperscaling violating factor.

The other gauge fields make the background charged. Let’s consider Ng = 2.

11



It has exact charged black hole solutions as follows

ds2 =
L2

r2
(
r

rF
)2θd

(
−

f(r)

r2(z−1)
dt2 +

dr2

f(r)
+ d~x2

)
, φ = β ln r,

A
(1)
t =

√
2(z − 1)

d− θ + z
r−d+θ−z, A

(2)
t =

√
2(d− θ)

d− θ + z − 2
Qrd−θ+z−2,

with β =
√

2(d− θ)(z − 1− θ/d) and

f(r) = 1−mrd−θ+z +Q2r2(d−θ+z−1).

where z is the dynamical exponent and θ is the hyperscaling violation

exponent.

M. A, O Colgain, Yavartanoo 2012 – Bueno, Chemissany, Meessen, Ortin,

Shahba 2012.

12



For Q = 0 this geometry is a black brane background whose Hawking tem-

perature is

T =
dθ + z

4π rzH
,

where rH is the radius of horizon.

Sth =

(
4π

dθ + z

)dθ
z LdVd

4G r
d−dθ
F

T
dθ
z . ≡ S0T

dθ
z

where dθ = d− θ.
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We shall study holographic entanglement entropy on a singular region con-

taining an n dimensional cone cn. It is convenient to use the following

parametrization for the metric

ds2 =
L2

r
2θd
F

−r2(1−z)dt2 + dr2 + dρ2 + ρ2(dϕ2 + sin2ϕ dΩ2
n) + d~x2

d−n−2

r2(1−θd)
.

The entangling region which, in general, have the form of cn ×Rd−n−2 may

be given by

t = fixed ϕ = Ω

When n = 0 the entangling region will be given by −Ω ≤ ϕ ≤ Ω.

Using holographic entanglement entropy prescription one can compute the

corresponding entanglement entropy (Ryu, Takayanagi 2006)
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Given the symmetry of both the background metric and of the shape of the

entangling region, the corresponding co-dimension two hypersurface may be

described by the function r = r(ρ, ϕ), and therefore the induced metric on

the hypersurface is

ds2
ind =

L2

r
2θd
F

(1 + r′2)dρ2 + (ρ2 + ṙ2)dϕ2 + 2r′ṙdρdϕ+ ρ2 sin2ϕ dΩ2
n + d~x2

d−n−2

r2(1−θd)
.

where r′ = ∂ρr and ṙ = ∂ϕr. Form this induced metric the area functional

whose minimum gives the holographic entanglement entropy reads

A = εn
ΩnVd−2−nL

d

rθF

∫
dρ dϕ

ρn sinnϕ

rd−θ

√
ρ2(1 + r′2) + ṙ2,

where Vd−n−2 is the regularized volume of Rd−n−2 space and Ωn is the volume

of Sn sphere. Here εn = 1 + δn0 to make sure that for n = 0 there is a factor

of 2 as the interval of integration is from 0 to Ω.
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The divergent terms of the holographic entanglement entropy for dθ−n 6= 2

are given by

S=εn
ΩnVd−n−2L

d

4GrθF

[
dθ
2 ]−1 ′∑
i=0

a2i

(n− 2i+ 1)(dθ − 2i− 1)

Hn−2i+1

εdθ−2i−1
−
h2i−n−1

0

εdθ−n−2


+
δ2[n2]+1,na2[n2]+2

(dθ − 2[n2]− 3)

log Hh0
ε

εdθ−2[n2]−3
+

A0

dθ − n− 2

h
dθ−n−2
0

εdθ−n−2

−
a

2[
dθ
2 ]
δ

2[
dθ
2 ]+1,dθ

dθ − n− 2

 log
(
H
ε

)
Hdθ−n−2

−
1− (dθ − n− 2) logh0

(dθ − n− 2)(ε/h0)dθ−n−2

+finite terms.

where the prime in the summation indicates that when n is an odd number

as one computes the summation, i = [n2] + 1 should be excluded from the

summation.

From this general expression one observes that the holographic entanglement

entropy for a singular surface in the shape of cn × Rd−n−2 contains various

divergent terms including a log term which results to a universal term when

dθ is an odd number.
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On the other hand when dθ = n + 2 the holographic entanglement entropy
gets new logarithmic divergences

S=εn
ΩnVd−n−2L

d

4GrθF

[
dθ
2 ]−1 ′∑
i=0

a2i

(n− 2i+ 1)(dθ − 2i− 1)

Hn−2i+1

εdθ−2i−1
−
h2i−n−1

0

εdθ−n−2


+
δ2[n2]+1,na2[n2]+2

(dθ − 2[n2]− 3)

log Hh0
ε

εdθ−2[n2]−3
+A0 log

Hh0

ε
+
a

2[
dθ
2 ]

2
δ

2[
dθ
2 ]+1,dθ

log2
(
H

ε

)
+finite terms.

A0 =

[
dθ
2 ]−1∑
i=0

−a2i

(dθ − 2i− 1)h
dθ−2i−1
0

+ a
2[
dθ
2 ]
δ

2[
dθ
2 ]+1,dθ

logh0 +
∫ h0

0
dh Areg

Areg =
sinnϕ

hdθ

√
1 + (1 + h2)ϕ′2 −


[
dθ
2 ]−1∑
i=0

a2i

hdθ−2i
+
a

2[
dθ
2 ]

h
δ

2[
dθ
2 ]+1,dθ

 .
17



The coefficients a2i appearing in the equations are

a0 = sinnΩ, a2 = ϕ2(2ϕ2 + n cot Ω) sinnΩ

a4 =
1

2
[n
(
2ϕ3

2 + ϕ4

)
sin 2Ω− ϕ2 sin2 Ω

(
ϕ2

(
4ϕ2

2 + n− 4
)
− 16ϕ4

)
+ ϕ2

2(n− 1)n cos2 Ω] sinn−2Ω.

Here

ϕ2 = −
n cot Ω

2(dθ − 1)
,

ϕ4 = −
n cot Ω[(−2n+ (dθ − 1)2)n cot2 Ω + (dθ − 1)2(6− 2dθ + n)]

8(dθ − 3)(dθ − 1)3
,

nh

(
ϕ′2 +

1

1 + h2

)
cotϕ+ϕ′

[ ((
h2 + 1

)
dθ − h2

)
ϕ′2 + dθ −

2h2

(h2 + 1)

]
−hϕ′′=0,
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Therefore we get certain universal terms

For dθ 6= n+ 2 the the universal term are

Suniv = δ
2[
dθ
2 ]+1,dθ

εn

ΩnVd−n−2a2[
dθ
2 ]
LdHn+2−dθ

4(dθ − n− 2) rθF G
log

(
H

ε

)
.

For dθ = n+ 2 he universal terms are

Suniv = εn
ΩnVd−n−2L

d

4G rθF

A0 log
Hh0

ε
+
a

2[
dθ
2 ]

2
δ

2[
dθ
2 ]+1,dθ

log2
(
H

ε

) .
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Using these results (normalizing to the volume) one may define new central

charge as follows

CEE
singular = εn

3Ld

4(dθ − n− 2)Gr
d−dθ
F

a
2[
dθ
2 ]
, for dθ odd, and dθ 6= n+ 2,

CEE
singular = εn

3Ld

4Grd−n−2
F

a
2[
dθ
2 ]

2
, for dθ odd, and dθ = n+ 2,

CEE
singular = εn

3Ld

4Grd−n−2
F

A0, for dθ even, and dθ = n+ 2,

It is illustrative to present explicit results
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dθ = 2

For dθ = 2 being an even number, the holographic entanglement entropy

has universal log term only for n = 0 in which one has

CEE
singular =

3Ld

2G rd−2
F

A0,

A0 ∼
κ

Ω
, at Ω→ 0,

A0 ∼
1

4π

(
π

2
−Ω

)2
, at Ω→

π

2
.

Bueno, Myers 2015 – Bueno, Myers, Witczak-Krempa 2015

21



dθ = 3

In this case when n 6= 1 the holographic entanglement entropy has a log

term whose coefficient may be treated as a universal factor given by

CEE
singular = −

3n2Ld

32G rd−3
F

cos2 Ω

(1− n) sin2−nΩ
.

On the other hand for n = 1 the universal term should be read from log2

term with the coefficient

CEE
singular = −

3Ld

32G rd−3
F

cos2 Ω

2 sin Ω
.

CEE
singular ∼

κ

Ω2−n, at Ω→ 0,

CEE
singular ∼ σ

(
π

2
−Ω

)2
, at Ω→

π

2
.
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dθ = 4

In this case in general there is no universal term except for the case where

n = 2

CEE
singular =

3Ld

4G rd−4
F

A0,

Using the explicit form of A0 one can find it numerically
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A0 ∼
e−2

Ω
, at Ω→ 0,

A0 ∼
1.82

4π

(
π

2
−Ω

)2
, at Ω→

π

2
.
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dθ = 5

For this case and when n 6= 3 the universal term must be read from log term

CEE
singular =

n2L5

16384(3− n)Grd−5
F

[(
7n2 − 64

)
cos(2Ω) + n(7n− 32) + 64

] cos2Ω

sin4−nΩ

while for n = 3 it comes from log2 term

CEE
singular =

L5

4Grd−5
F

9(31− cos 2Ω)

4096

cos2 Ω

sin Ω
,

CEE
singular ∼

κ

Ω4−n, at Ω→ 0,

CEE
singular ∼ σ

(
π

2
−Ω

)2
, at Ω→

π

2
.
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The listen we learn

In arbitrary dimensions for a singularity of the form cn ×Rd−n−2 one gets

CEE
singular ∼

κ

Ωdθ−1−n, at Ω→ 0,

CEE
singular ∼ Cd

(
π

2
−Ω

)2
, at Ω→

π

2
.

Cd may be though of a new central charge of the model
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Other charges

We have already computed thermal entropy

Sth =

(
4π

dθ + z

)dθ
z LdVd

4G r
d−dθ
F

T
dθ
z . ≡ S0T

dθ
z

There is another one appearing in the two point function of energy momen-

tum ternsor

〈Tab(x)Tcd(y)〉 =
CT

|x− y|2(d+1)
Gabcd(x, y).

For θ = 0 one has (for example see Liu, Tseytlin 1998)

CT =
Ld

8πG

d+ 2

d

Γ(d+ 2)

π
d+1

2 Γ
(

1+d
2

).
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For θ 6= 0 one should go through holographic renormalization to find CT .

Essentially one has to evaluate the quadratic part of action for small per-

turbations

Stotal = S −
1

8πG

∫
dd+1x

√
γK

−
1

8πG

∫
dd+1x

√
γ

(
rF
r

)θ
d
(
dθ
L
−
√

2(z − 1)(dθ + z)e
λ
2φ
√
|AµAµ|

)
,

We note, however, that in general the linearized equations of motion cannot

be solved analytically. Moreover since we do not have a good control on

the asymptotic behavior of the metric (in the sense of Fefferman-Graham

coordinates), in general it is hard to employ the holographic renormalization

procedure, either.
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Nevertheless setting z = 1 where we recover Lorentz invariance, the above

equation can be solve exactly and moreover one could still use the standard

procedure of holographic renormalization to compute two point function of

the energy momentum tensor.

CT =
Ld

8πGr
d−dθ
F

d+ 2

d

Γ(dθ + 2)

π
d+1

2 Γ
(

1+2dθ−d
2

).

Note, however, that since z = 1 from null energy condition we have

θ(d− θ) ≤ 0

Which has no interesting overlap with parameters on the range of interest.
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For z 6= 1 although the general procedure of holographic renormalization

for hyperscaling violating geometry has not fully understood, one still has a

chance to get an expression for equal-time two point function.

Actually such a quantity is more appropriate to be compared with entangle-

ment entropy where we work on a constant time slice.

Following rom the results of the scalar field computations (Dong, Harrison,

Kachru, Torroba, Wang, 2012), one gets the following expression for CT

CT ∼
Ld

8πGr
d−dθ
F

Γ(dθ + z + 1)

π
d+1

2 Γ
(

2z−1+2dθ−d
2

).
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One observes that there are several charges all of them are proportional to

3Ld

2G r
d−dθ
F

.

Of course in this level of computations one cannot conclude whether such

a relation in universal. One way to probe it, is to consider higher derivative

terms to the action. Doing so (for particular second order action) one finds

CT = ηd,θCd

The others do not have such a simple universal relation.
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Conclusions

• Entanglement entropy for surfaces with cusp might provide a good central

charge to count the number of degrees of freedom.

• There is a general behavior for the universal terms (for dθ ≥ 2)

Cd = lim
Ω→π

2

CEE
singular

(π2 −Ω)2

Indeed from the exact results and the best fit of our numerical solution for

dθ = n+ 2, one gets

CEE
singular ∼

Ld

G r
d−dθ
F

cos2 Ω

sin Ω

• Among all “charges” in the model it seems that the one appearing in the

two point function of energy momentum tensor is related to Cd
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