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Plan:
(i) Knot polynomials from Chern-Simons gauge theory
(ii) Our results on mutant knots
(iii) Homological invariants
(iv) Large N Chern-Simons & their closed topological string duals
(v) Conclusions & challenging problems .
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Knot polynomials from Chern-Simons theory

Torus Knot :Trefoil 31 Hyperbolic Knot: Figure-Eight knot 41

Chern-Simons theory provides a natural framework for the study of
knots



• Chern-Simons action on S3 based on gauge group G:

SCS[A] =
k

4π

∫
S3

Tr

(
A ∧ dA+

2

3
A3
)

k is the coupling constant, A’s are the gauge connections.
• Any knot K carrying representation R are described by expectation
value of Wilson loop operators WR(K) = Tr[Pexp

∮
A]:

V GR [K] = 〈WR(K)〉 =

∫
S3[DA] WR(K) exp(iSCS[A])

Z[S3]

where Z[S3] =
∫
S3

[DA] exp(iSCS[A]) (partition function)

V GR [K] are the knot invariants.



Knot invariant computations

•These knot invariants (V GR [K]) can be directly evaluated using two
inputs:(Kaul , Govindarajan,PR (1992))
1) Relation between Chern-Simons theory to Gk Wess-Zumino con-
formal field theory (Witten 1989).
2) Any knot can be obtained as a closure or platting of braid(Alexander,
Birman)
For example, the trefoil can be redrawn as



VR[31] = 〈ψ0|ψ3〉 = 〈ψ0|B3|ψ0〉
where B is the braiding operator.

To write the polynomial form of the knot invariant:
Expand the state |ψ0〉 in a suitable basis in which B is diagonal.



For the four-punctured S2 boundary, the conformal block bases are:

where t ∈ R1 ⊗R2 ∩ R̄3 ⊗ R̄4 and s ∈ R2 ⊗R3 ∩ R̄1 ⊗ R̄4.

ast

[
R1 R2

R3 R4

]
is the duality matrix (fusion matrix) relating these two bases

which is proportional to the quantum Wigner 6j symbols:

ats

[
R1 R2

R3 R4

]
∝

{
R1 R2 t

R3 R4 s

}



For knots, two of theRi’s will beR and the other two will be conjugate
R̄ depending on the orientation.
In the braid diagram for trefoil, middle two strands are parallely oriented
and they are braided.

|Ψ0〉 =
∑

s∈R⊗R
µs |Φ̂s(R̄, R,R, R̄)〉

where µs =
√
S0s/S00 ≡

√
dimqt (unknot normalisation)

VR[31] = 〈Ψ0|B3|Ψ0〉 =
∑
s
dimqs (λs(R,R))3

where braiding eigenvalue for parallelly oriented right-handed half-twists is

λ
(+)
t (R,R) = (−1)εtq2CR−Ct/2, q = e

2πi
k+Cv where εt = ±1



Antiparallel braiding eigenvalue will be λ(−)
s (R, R̄) = (−1)εsqCs/2. We

require them for figure-eight drawn as quasi-plat.

opposite oriented boundary
S2

VR[41] =
∑

t,s∈R⊗R̄

√
dimqt dimqs ats

[
R̄ R

R̄ R

]
(λ(−)
t )2(λ(−)

s )−2



•Knot invariants involves braiding eigenvalues & fusion matrices

•Fusion matrices proportional to quantum Wigner 6j
(completely known for SU(2) (Kirillov, Reshetikhin) but not for other groups)

• For few R’s, we determined using knot equivalence and properties
of Wigner 6j-Kaul, Govindarajan,PR (1992), Zodinmawia,PR(2012)

• Hence the knot invariants V GR [K] can be written in variables depen-
dent on k and rank of the group

Well-known knot polynomials match with knot invariants (normalized by
unknot) when R is fundamental representation



Gauge Group [n]-colored
SU(2) Jones’ J[K;q] Jn[K, q]
SU(N) HOMFLY P [K; a = qN , q] Pn[K; a, q]
SO(N) Kauffman F [K;λ = qN−1, q] Fn[K;λ, q]

Jones’ polynomial for trefoil:

J[T ; q] = V SU(2)[T ]/V SU(2)[U ] = q + q3 − q4 .

We can place any representation R (higher spins) of SU(2) on the
knot and obtain colored Jones’ polynomials Jn[K; q]
where subscript n means spin (n−1)/2 or Young diagram single row with
n− 1 boxes. The colored Jones for 31&41 are

Jn[31; q] =
n−1∑
k=0

(−1)kqk(k+3)/2+nk(q−n−1, q)k(q−n+1, q)k



where (z; q)k =
∏k−1
j=0(1− zqj) is called q-Pochhammer symbol.

Jn[41; q] =
n−1∑
k=0

(−1)kqnk(q−n−1, q−1)k(q−n+1, q)k

These two colored Jones polynomial is sufficient to determine Jn[Kp; q]
for twist knots Kp

p full twists

Figure 1

and with initial conditions

AK2(l, m) = −l2 + l3 + 2l2m2 + lm4 + 2l2m4 − lm6 − l2m8

+2lm10 + l2m10 + 2lm12 + m14 − lm14,

AK1(l, m) = l + m6,

AK0(l, m) = 1,

AK−1(l, m) = −l + lm2 + m4 + 2lm4 + l2m4 + lm6 − lm8.

Now, we give a proof of Theorem 2.2.

Proof of Theorem 2.2 From the first equation

f0(1, m
2, x, y) = x

(1 − 1
xm2 )

(1 − x
m2 )

= l,

we get

x =
lm2 + 1

m2 + l
.

Moreover, the second equation

f1(1, m
2, x, y) = −xm2 (1 − 1

xm2 )(1 − x
m2 )(1 − x)

(1 − xy)(1 − x
y
)

= 1

gives

(7) y2 + 1 =
y

m2
(m4 − xm4 + x2m2 + m2 + 1 − x).

It is clear that the claim for p = 0 holds. We consider the case p > 0. The third equation

f2(1, m
2, x, y) = −y2p+1

(1 − x
y
)

(1 − xy)
= 1

implies that

(8) y2p+1 + 1 − y2px − xy = 0,

which can be changed to

0 = (y + 1)(y2p − y2p−1 + y2p−2 − · · · + 1 − xy(y2p−2 − y2p−3 + · · · + 1))

= (y + 1){(y2 + 1 − (1 + x)y)(y2(p−1) + y2(p−2) + · · · + y2 + 1)

4

p −4 −3 −2 −1 0 1 2 3 4

knots 101 81 61 41 31 52 72 92



• [n]-colored HOMFLY Pn[Kp; a, q] (Nawata,Zodin, PR),2012 gave more
data leading to conjecture a closed form expression forUq(slN) quan-
tum Wigner 6j symbols for a class of Ri’s
(Nawata,Zodin,PR),2013
There are two types of Wigner 6j for SU(N):
Type I:  n3 n4

n2

k2 n3 − n2 + k2

n1 − n2 + k1k1n1


where n2 ≤ n1 ≤ n3, k1 ≤ n2 and k2 ≤ n1.



Type II 
n2

n3 n4 k2 n2 − n3 + k2

n1 + n2 − 2k1k1n1


where n1 ≤ n2, k2 ≤ min(n1, n3) and k1 ≤ min(n1, n3, n4). The
fusion rule requires n1 + n2 = n3 + n4.



{
λ1 λ2 λ12

λ3 λ4 λ23

}
= ∆(1,2,12)∆(3,4,12)∆(1,4,23)∆(2,3,23)[N − 1]!

∑
z≥0

(−)z

[z +N − 1]!Cz{[z − 1

2
〈λ1 + λ2 + λ12, α

∨
1 + α∨N−1〉]![

z − 1

2
〈λ3 + λ4 + λ12, α

∨
1 + α∨N−1〉

]
![

z − 1

2
〈λ1 + λ4 + λ23, α

∨
1 + α∨N−1〉

]
![

z − 1

2
〈λ2 + λ3 + λ23, α

∨
1 + α∨N−1〉

]
![

1

2
〈λ1 + λ2 + λ3 + λ4, α

∨
1 + α∨N−1〉 − z

]
![

1

2
〈λ1 + λ3 + λ12 + λ23, α

∨
1 + α∨N−1〉 − z

]
![

1

2
〈λ2 + λ4 + λ12 + λ23, α

∨
1 + α∨N−1〉 − z

]
!}−1,



where

∆(1,2,3) ≡∆(λ1, λ2, λ3) =
{

[
[
1

2
〈−λ1 + λ2 + λ3, α

∨
1 + α∨N−1〉

]
!

×
[
1

2
〈λ1 − λ2 + λ3, α

∨
1 + α∨N−1〉

]
!

×
[
1

2
〈λ1 + λ2 − λ3, α

∨
1 + α∨N−1〉

]
!
}1/2

×
{[

1

2
〈λ1 + λ2 + λ3, α

∨
1 + α∨N−1〉+N − 1

]
!
}−1/2

.



C
(I)
z =


δz,zmin+i

[
N − 2 + k2 − i

k2 − i

]−1

for k1 > k2 ,

δz,zmin+i

[
N − 2 + k1 − i

k1 − i

]−1

for k1 ≤ k2 ,

,

C
(II)
z =


δz,zmax−i

[
N − 2 + k2 − i

k2 − i

]−1

for k1 > k2 ,

δz,zmax−i

[
N − 2 + k1 − i

k1 − i

]−1

for k1 ≤ k2 ,



OBSERVATIONS
• [n]-colored HOMFLY for knots drawn as quasi-plat of 4-strand braids
can be obtained using this data.

• Our data is not sufficient to write the polynomial for knots obtained
from quasi-plat of braids with more than 4-strands.
(dual basis of 6-point or higher point conformal blocks requires Wigner
6-j beyond our conjectured class)



How do we obtain [n]-colored HOMFLY for 942 knot involving six
braids?

9_42 knot



Knots 1071,10152 can be drawn gluing 3-manifolds involving three
S2 boundaries each with four-punctures:

I

II

III

IV



Requires the following building blocks to compute knot polynomials

ur =
∑
t(dimqt)(1−r/2)|φ(1)

t 〉 . . . |φ
(r)
t 〉





• We have redrawn many knots using these building blocks enabling
evaluation of [n]-colored HOMFLY polynomials. These polynomials
do not distinguish mutants.



Kinoshita-Terasaka & Conway mutants



• Need to work out polynomials for mixed representations.

• The two types of Uq(slN) Wigner 6j has been recently determined
for [2,1] (Gu,Jockers),2014-first mixed representation

• Wanted to check the power [2,1] colored HOMFLY for the mutant
pair

• The two knots (mutant pairs) are indeed distinguished
(Nawata,Singh,PR,2015)

•Enumerated class of mutants which can be distinguished but some
pretzel mutants with antiparallel odd-braids cannot be distinguished
(Mironov, Morozov,Morozov, Singh, PR),2015



• Crucial input in the context of mixed representation: multiplicity

(21; 0)⊗ (21; 0) = (42; 0)0 ⊕ (23; 0)0 ⊕ (313; 0)0 ⊕ (321; 0)0

⊕(321; 0)1 ⊕ (412; 0)0 ⊕ (32; 0)0 ⊕ (2212; 0)0

We see appears twice. Multiplicity incorporated four-point
conformal blocks:

= |φ(1)
t,r3r4

(R1, . . . , R4)〉 , = |φ(2)
s,r1r2(R1, .., R4)〉



Table gives the three-manifolds obtained from surgery of framed knots

Frame link knot 3-Manifold

S2 X S1

S3

RP3

P

L(P,1)

L(5,3)

P3

a1=2

a2=3

a2 
a3

a1

1
p

q
=



Framed links related by Kirby moves gives the same three-manifold

Three-manifold invariant proportional to Chern-Simons partition func-
tion Z[M ] respecting Kirby moves is(Kaul,PR),2000

Z[M ] ∝
∑
R

dimqR V
SU(N)
R [K]



Questions
• large N expansion logZ[M ] ?
• For any knot, we observe Laurent series:

P [K; a, q] =
∑
i,j

ci,ja
iqj

where ci,j are integers. Topological meaning or reason?

Why integers?- two parallel developments

• From physics (topological strings,BPS states counting)
Ooguri,Vafa (1999)

•From mathematics(homological chain complex)
Khovanov(1999), Khovanov-Rosansky(2004)

ci,j =
∑
k

(−1)kdimHi,j,k



Homological Invariants
Introduce A and B slicing as shown in the diagram.
Define n(s) = nB, j(s) = nB + n+ − n−

�

��

�



Cnj is the vector space with basis as states with n(s) = n and j(s) = j.

J[K; q] =
∑
n,j

(−1)nqjdim(Cnj)

where the homology chain

∂ : Cn,j −→ Cn+1,j, ∂2 = 0



�

�

� �
�

�

� �

�

�
�� �

� ��
�

�

�
�



C∗j : C0j −→ C1j −→ C2j −→ . . .

The vector space

Hn(C∗j) =
ker(∂ : Cn,j −→ Cn+1, j)

Image(∂ : Cn−1,j −→ Cn,j)

Kh(K; q, t) =
∑
n,j

tnqjdim(Hnj).

Taking t = −1 gives the Jones polynomial J[K; q]



integer homology of bigraded 
vector space

colored Khovanov

colored Jonescolored HOMFLY

superpolynomial
colored

Khovanov-Rozansky  
colored

RefinementRefinement

 Khovanov

Jones
HOMFLY

superpolynomial

Khovanov-Rozansky  

Refinement Refinement

SU(2)SU(N) SU(2)SU(N)

Fundamnetal
Representation

Higher Rank
Representation



Large N Chern-Simons &topological strings

• Gopakumar-Vafa duality gives A-model closed topological string
on a resolved conifold from large N expansion of logZ[S3].

•Ooguri-Vafa conjecture a form for reformulated knot invariants fR(q, λ).

•We verified Ooguri-Vafa conjecture for non-torus knots
(Sarkar, PR 2000) and higher crossing knots(Nawata,Zodin,PR 2013)
using our [n]-colored HOMFLY polynomials.

• Making use of these two duality conjectures, we attempted the N
expansion of logZ[M] for some three-manifoldsM giving(P. Borhade,
T. Sarkar,PR(2003)



logZ0[M ] =
∞∑
n=1

∑
g

1

n

(
sinh

dgs

2

)2g−2
×

{
∑
Q

∑
{`α}

∑
{sα}

N̂(R`1,s1,...R`r,sr),g,Q
(−1)

∑
α sα

(−1)n
∑
α `αpαλ

1
2n
∑
α `αpα

(
λn{Q+

∑
α(−`α2 +sα)}

−λn{Q+1+
∑
α(−`α2 +sα)}

)
}

=
∑
g,n,m

1

n
(2 sinh

ngs

2
)2g−2ng,me

−dmt

Subtle Issues
In the large k limit

Z[M ] =
∑
c
Zc[M ]



t’ Hooft proposal requires

lnZc[M ] = Closed String expansion

whereas we find

ln

(∑
c
Zc[M ]

)
= Closed String partition function

Hence we cannot predict duality between Chern-Simons gauge the-
ory on M with the A-model string theory with the ng,m’s we have
determined



Generalisation of the duality to SO gauge groups

A-model closed strings on an orientifold of the resolved conifold is dual to
SO/Sp Chern-Simons theory (Sinha and Vafa)

lnZ
(SO)
(CS)[S3] =

1

2
Z(or) + Z(unor)

• Incorporating Wilson loop observables

ln〈Z({Uα}, {Vα})〉 = FG(V ) =
1

2
F(or)
R (V ) + F(unor)(V )

Not clear how to seperate, we showed LHS (Pravina Borhade and PR)

〈Z({Uα}, {Vα})〉 = exp

 ∞∑
n=1

∑
{Rα}

gR1,R2,...Rr(q
n, λn)

1

n

r∏
α=1

TrRαV
n
α





where gR1,...Rr(q, λ) =
∑
Q,s

1
(q1/2−q−1/2)

N(R1,R2...Rr),Q,s
qsλQ

N(R1,...Rr),Q,s are integers-how to find oriented contribution?

•Composite representation invariants to extract oriented contribution (Marino)

F(or)
R (V ) =

∑
R,S

〈W(R,S)[C]〉(TrRV )(TrSV ) =
∑
t

Rt[C]TrtV

=
∞∑
d=1

∑
R

hR(qd, λd)TrRV
d

where R and S are representation on the knot C in two Lagrangian sub-
manifolds Nε and N−ε related by orientifolding action. The composite rep-
resentation (R,S) has highest weight ΛR + ΛS̄.

• Obtained invariants of torus knots & links for some composite represen-
tations and verified the form of hR(q, λ)(2010, C. Paul, P. Borhade,PR)



• Using [r]-colored Kauffman polynomials for figure-eight knot from the
study of structural properties of colored Kauffman homologies of knots
(Nawata,Zodin,PR,2013) and Morton’s result for ( , ) composite in-
variant for figure-eight, we verified the integrality structure for h and
g .



Summary

• Elegant computation of [n]-colored HOMFLY for many knots from Chern-
Simons approach

• [2,1]-colored HOMFLY distinguishes many mutants including Kinoshita-
Terasaka & Conway mutant pair.

• These invariants are definitely useful to verify integrality structures pre-
dicted by U(N) and SO topological string duality conjectures



Challenging problems

(i) Obtaining closed form expression for SU(N)q fusion matrices for gen-
eral R’s which could be rectangular or mixed representation.

(ii) Can we get a better understanding of polynomial variable t in homolog-
ical invariants?

(iii) The results on refined CS for [2,2p + 1]-torus knots suggests that
there could be a combinatorial definition of colored Khovanov invariants for
non-torus knots. So far no success!



(iv) Any idea on getting # of solutions to elliptic Nahm equations account-
ing for integer coefficients in Khovanov invariant for trefoil? Gaitto,Witten
(2011)

(v) Appears Kevin Costello work may be applicable to the determine spec-
tral parameter dependent R-matrix for N -vertex models using 4-d twisted
supersymmetric field theory.

Due to time constraint, I have not discussed volume conjecture, A-polynomials
and their relations to (i) SL(2, C) 3-d gravity(Gukov,2003) and (ii) their ap-
pearance in mirror Calabi-Yau geometry (Aganagic,Vafa(2012)-interesting
developments.



Thank You


