Knot polynomials, homological invariants \& topological strings

Ramadevi Pichai
Department of Physics, IIT Bombay

Talk at STRINGS 2015

Plan:

(i) Knot polynomials from Chern-Simons gauge theory
(ii) Our results on mutant knots
(iii) Homological invariants
(iv) Large N Chern-Simons \& their closed topological string duals
(v) Conclusions \& challenging problems .

Knot polynomials from Chern-Simons theory

Torus Knot :Trefoil 3_{1}

Hyperbolic Knot: Figure-Eight knot 4_{1}

Chern-Simons theory provides a natural framework for the study of knots

- Chern-Simons action on S^{3} based on gauge group G :

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{S^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A^{3}\right)
$$

k is the coupling constant, A 's are the gauge connections.

- Any knot K carrying representation R are described by expectation value of Wilson loop operators $W_{R}(K)=\operatorname{Tr}[\operatorname{Pexp} \oint A]$:

$$
\begin{gathered}
\quad V_{R}^{G}[K]=\left\langle W_{R}(K)\right\rangle=\frac{\int_{S^{3}}[\mathcal{D} A] W_{R}(K) \exp \left(i S_{C S}[A]\right)}{Z\left[S^{3}\right]} \\
\text { where } Z\left[S^{3}\right]=\int_{S^{3}}[\mathcal{D} A] \exp \left(i S_{C S}[A]\right) \quad \text { (partition function) }
\end{gathered}
$$

$V_{R}^{G}[K]$ are the knot invariants.

Knot invariant computations

-These knot invariants $\left(V_{R}^{G}[K]\right)$ can be directly evaluated using two inputs:(Kaul , Govindarajan,PR (1992))

1) Relation between Chern-Simons theory to G_{k} Wess-Zumino conformal field theory (Witten 1989).
2) Any knot can be obtained as a closure or platting of braid(Alexander, Birman)
For example, the trefoil can be redrawn as

where \mathcal{B} is the braiding operator.
To write the polynomial form of the knot invariant:
Expand the state $\left|\psi_{0}\right\rangle$ in a suitable basis in which \mathcal{B} is diagonal.

For the four-punctured S^{2} boundary, the conformal block bases are:

where $t \in R_{1} \otimes R_{2} \cap \bar{R}_{3} \otimes \bar{R}_{4}$ and $s \in R_{2} \otimes R_{3} \cap \bar{R}_{1} \otimes \bar{R}_{4}$. $a_{s t}\left[\begin{array}{ll}R_{1} & R_{2} \\ R_{3} & R_{4}\end{array}\right]$ is the duality matrix (fusion matrix) relating these two bases which is proportional to the quantum Wigner 6 j symbols:

$$
a_{t s}\left[\begin{array}{ll}
R_{1} & R_{2} \\
R_{3} & R_{4}
\end{array}\right] \propto\left\{\begin{array}{lll}
R_{1} & R_{2} & t \\
R_{3} & R_{4} & s
\end{array}\right\}
$$

For knots, two of the R_{i} 's will be R and the other two will be conjugate \bar{R} depending on the orientation.
In the braid diagram for trefoil, middle two strands are parallely oriented and they are braided.

$$
\left|\Psi_{0}\right\rangle=\sum_{s \in R \otimes R} \mu_{s}\left|\Phi_{s}(\bar{R}, R, R, \bar{R})\right\rangle
$$

where $\mu_{s}=\sqrt{S_{0 s} / S_{00}} \equiv \sqrt{\operatorname{dim}_{q} t}$ (unknot normalisation)

$$
V_{R}\left[3_{1}\right]=\left\langle\Psi_{0}\right| \mathcal{B}^{3}\left|\Psi_{0}\right\rangle=\sum_{s} \operatorname{dim}_{q} s\left(\lambda_{s}(R, R)\right)^{3}
$$

where braiding eigenvalue for parallelly oriented right-handed half-twists is

$$
\lambda_{t}^{(+)}(R, R)=(-1)^{\epsilon_{t}} q^{2 C_{R}-C_{t} / 2}, q=e^{\frac{2 \pi i}{k+C v}} \text { where } \epsilon_{t}= \pm 1
$$

Antiparallel braiding eigenvalue will be $\lambda_{s}^{(-)}(R, \bar{R})=(-1)^{\epsilon_{s}} q^{C_{s} / 2}$. We require them for figure-eight drawn as quasi-plat.

$$
V_{R}\left[4_{1}\right]=\sum_{t, s \in R \otimes \bar{R}} \sqrt{\operatorname{dim}_{q} t \operatorname{dim}_{q} s} a_{t s}\left[\begin{array}{ll}
\bar{R} & R \\
\bar{R} & R
\end{array}\right]\left(\lambda_{t}^{(-)}\right)^{2}\left(\lambda_{s}^{(-)}\right)^{-2}
$$

-Knot invariants involves braiding eigenvalues \& fusion matrices
-Fusion matrices proportional to quantum Wigner $6 \mathbf{j}$
(completely known for $S U(2)$ (Kirillov, Reshetikhin) but not for other groups)

- For few R's, we determined using knot equivalence and properties of Wigner 6j-Kaul, Govindarajan,PR (1992), Zodinmawia,PR(2012)
- Hence the knot invariants $V_{R}^{G}[K]$ can be written in variables dependent on k and rank of the group

Well-known knot polynomials match with knot invariants (normalized by unknot) when R is fundamental representation

Gauge Group	\square	$[\mathrm{n}]$-colored
$S U(2)$	$J_{n}[K, q]$	
$S U(N)$	HOMFL' $J[K ; q]$	$P\left[K ; a=q^{N}, q\right]$
$P_{n}[K ; a, q]$		
$S O(N)$	Kauffman $F\left[K ; \lambda=q^{N-1}, q\right]$	$F_{n}[K ; \lambda ; q]$

Jones' polynomial for trefoil:

$$
J[T ; q]=V_{\square}^{S U(2)}[T] / V_{\square}^{S U(2)}[U]=q+q^{3}-q^{4} .
$$

We can place any representation R (higher spins) of $S U(2)$ on the knot and obtain colored Jones' polynomials $J_{n}[K ; q]$
where subscript n means spin ($n-1$)/2 or Young diagram single row with $n-1$ boxes. The colored Jones for $3_{1} \& 4_{1}$ are

$$
J_{n}\left[3_{1} ; q\right]=\sum_{k=0}^{n-1}(-1)^{k} q^{k(k+3) / 2+n k}\left(q^{-n-1}, q\right)_{k}\left(q^{-n+1}, q\right)_{k}
$$

where $(z ; q)_{k}=\prod_{j=0}^{k-1}\left(1-z q^{j}\right)$ is called q-Pochhammer symbol.

$$
J_{n}\left[4_{1} ; q\right]=\sum_{k=0}^{n-1}(-1)^{k} q^{n k}\left(q^{-n-1}, q^{-1}\right)_{k}\left(q^{-n+1}, q\right)_{k}
$$

These two colored Jones polynomial is sufficient to determine $J_{n}\left[K_{p} ; q\right]$ for twist knots K_{p}

p	-4	-3	-2	-1	0	1	2	3	4
knots	$\mathbf{1 0}_{1}$	$\mathbf{8}_{\mathbf{1}}$	$\mathbf{6}_{\mathbf{1}}$	$\mathbf{4}_{\mathbf{1}}$		$\mathbf{3}_{\mathbf{1}}$	$\mathbf{5}_{\mathbf{2}}$	$\mathbf{7}_{\mathbf{2}}$	$\mathbf{9}_{\mathbf{2}}$

- $[n]$-colored HOMFLY $P_{n}\left[K_{p} ; a, q\right]$ (Nawata,Zodin, PR),2012 gave more data leading to conjecture a closed form expression for $U_{q}\left(s l_{N}\right)$ quantum Wigner $6 \mathbf{j}$ symbols for a class of R_{i} 's
(Nawata,Zodin,PR),2013
There are two types of Wigner 6j for $S U(N)$:
Type I:

where $n_{2} \leq n_{1} \leq n_{3}, k_{1} \leq n_{2}$ and $k_{2} \leq n_{1}$.

Type II

where $n_{1} \leq n_{2}, k_{2} \leq \min \left(n_{1}, n_{3}\right)$ and $k_{1} \leq \min \left(n_{1}, n_{3}, n_{4}\right)$. The fusion rule requires $n_{1}+n_{2}=n_{3}+n_{4}$.

$$
\begin{aligned}
\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{12} \\
\lambda_{3} & \lambda_{4} & \lambda_{23}
\end{array}\right\}= & \Delta_{(1,2,12)} \Delta_{(3,4,12)} \Delta_{(1,4,23)} \Delta_{(2,3,23)}[N-1]!\sum_{z \geq 0}(-)^{z} \\
& {[z+N-1]!C_{z}\left\{\left[z-\frac{1}{2}\left\langle\lambda_{1}+\lambda_{2}+\lambda_{12}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!!\right.} \\
& {\left[z-\frac{1}{2}\left\langle\lambda_{3}+\lambda_{4}+\lambda_{12}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!} \\
& {\left[z-\frac{1}{2}\left\langle\lambda_{1}+\lambda_{4}+\lambda_{23}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!} \\
& {\left[z-\frac{1}{2}\left\langle\lambda_{2}+\lambda_{3}+\lambda_{23}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!} \\
& {\left[\frac{1}{2}\left\langle\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle-z\right]!} \\
& {\left[\frac{1}{2}\left\langle\lambda_{1}+\lambda_{3}+\lambda_{12}+\lambda_{23}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle-z\right]!} \\
& {\left.\left[\frac{1}{2}\left\langle\lambda_{2}+\lambda_{4}+\lambda_{12}+\lambda_{23}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle-z\right]!\right\}^{-1} }
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{(1,2,3)} \equiv \Delta\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)= & \left\{\left[\left[\frac{1}{2}\left\langle-\lambda_{1}+\lambda_{2}+\lambda_{3}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!\right.\right. \\
& \times\left[\frac{1}{2}\left\langle\lambda_{1}-\lambda_{2}+\lambda_{3}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]! \\
& \left.\left.\times\left[\frac{1}{2}\left\langle\lambda_{1}+\lambda_{2}-\lambda_{3}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle\right]!\right\}\right\}^{1 / 2} \\
& \times\left\{\left[\frac{1}{2}\left\langle\lambda_{1}+\lambda_{2}+\lambda_{3}, \alpha_{1}^{\vee}+\alpha_{N-1}^{\vee}\right\rangle+N-1\right]!\right\}
\end{aligned}
$$

$$
\begin{aligned}
& C_{z}^{(I)}= \begin{cases}\delta_{z, z_{\min }+i}\left[\begin{array}{c}
N-2+k_{2}-i \\
k_{2}-i
\end{array}\right]^{-1} & \text { for } k_{1}>k_{2} \\
\delta_{z, z_{\min }+i}\left[\begin{array}{c}
N-2+k_{1}-i \\
k_{1}-i
\end{array}\right]^{-1} & \text { for } k_{1} \leq k_{2}\end{cases} \\
& C_{z}^{(I I)}= \begin{cases}\delta_{z, z_{\max }-i}\left[\begin{array}{c}
N-2+k_{2}-i \\
k_{2}-i
\end{array}\right]^{-1} & \text { for } k_{1}>k_{2} \\
\delta_{z, z_{\max }-i}\left[\begin{array}{c}
N-2+k_{1}-i \\
k_{1}-i
\end{array}\right]\end{cases} \\
& \text { for } k_{1} \leq k_{2}
\end{aligned},
$$

OBSERVATIONS

- [n]-colored HOMFLY for knots drawn as quasi-plat of 4-strand braids can be obtained using this data.
- Our data is not sufficient to write the polynomial for knots obtained from quasi-plat of braids with more than 4 -strands. (dual basis of 6-point or higher point conformal blocks requires Wigner 6-j beyond our conjectured class)

How do we obtain [n]-colored HOMFLY for 9_{42} knot involving six braids?

Knots $10_{71}, 10_{152}$ can be drawn gluing 3-manifolds involving three S^{2} boundaries each with four-punctures:

Requires the following building blocks to compute knot polynomials

$u_{r}=\sum_{t}\left(\operatorname{dim}_{q} t\right)^{(1-r / 2)}\left|\phi_{t}^{(1)}\right\rangle \ldots\left|\phi_{t}^{(r)}\right\rangle$

- We have redrawn many knots using these building blocks enabling evaluation of $[n]$-colored HOMFLY polynomials. These polynomials do not distinguish mutants.

Kinoshita-Terasaka \& Conway mutants

- Need to work out polynomials for mixed representations.
- The two types of $U_{q}\left(s l_{N}\right)$ Wigner $6 \mathbf{j}$ has been recently determined for [2, 1] (Gu,Jockers),2014-first mixed representation
- Wanted to check the power [2,1] colored HOMFLY for the mutant pair
- The two knots (mutant pairs) are indeed distinguished (Nawata,Singh,PR,2015)
-Enumerated class of mutants which can be distinguished but some pretzel mutants with antiparallel odd-braids cannot be distinguished (Mironov, Morozov,Morozov, Singh, PR),2015
- Crucial input in the context of mixed representation: multiplicity

$$
\begin{aligned}
(21 ; 0) \otimes(21 ; 0)= & (42 ; 0)_{0} \oplus\left(2^{3} ; 0\right)_{0} \oplus\left(31^{3} ; 0\right)_{0} \oplus(321 ; 0)_{0} \\
& \oplus(321 ; 0)_{1} \oplus\left(41^{2} ; 0\right)_{0} \oplus\left(3^{2} ; 0\right)_{0} \oplus\left(2^{2} 1^{2} ; 0\right)_{0}
\end{aligned}
$$

We see
 appears twice. Multiplicity incorporated four-point conformal blocks:

Table gives the three-manifolds obtained from surgery of framed knots

Frame link knot	3-Manifold
\bigcirc (O)	$S^{2} \times S^{1}$
$0 \text { 0nolo }$	S^{3}
\bigcirc	$R P^{3}$
$\begin{gathered} 0_{j} \\ z_{j} \\ g^{\prime} p \end{gathered}$	L(P,1)
SOO,	L(5,3)
	P^{3}

Framed links related by Kirby moves gives the same three-manifold

Three-manifold invariant proportional to Chern-Simons partition function $Z[M]$ respecting Kirby moves is(Kaul,PR),2000

$$
Z[M] \propto \sum_{R} \operatorname{dim}_{q} R V_{R}^{S U(N)}[K]
$$

Questions

- large N expansion $\log Z[M]$?
- For any knot, we observe Laurent series:

$$
P[K ; a, q]=\sum_{i, j} c_{i, j} a^{i} q^{j}
$$

where $c_{i, j}$ are integers. Topological meaning or reason?

Why integers?- two parallel developments

- From physics (topological strings,BPS states counting)

Ooguri,Vafa (1999)
-From mathematics(homological chain complex)
Khovanov(1999), Khovanov-Rosansky(2004)

$$
c_{i, j}=\sum_{k}(-1)^{k} \operatorname{dim} H_{i, j, k}
$$

Homological Invariants

Introduce A and B slicing as shown in the diagram.
Define $n(s)=n_{B}, j(s)=n_{B}+n_{+}-n_{-}$

$C_{n j}$ is the vector space with basis as states with $n(s)=n$ and $j(s)=j$.

$$
J[K ; q]=\sum_{n, j}(-1)^{n} q^{j} \operatorname{dim}\left(C_{n j}\right)
$$

where the homology chain

$$
\partial: C_{n, j} \longrightarrow C_{n+1, j}, \quad \partial^{2}=0
$$

$$
C_{* j}: C_{0 j} \longrightarrow C_{1 j} \longrightarrow C_{2 j} \longrightarrow \ldots
$$

The vector space

$$
\begin{gathered}
H_{n}\left(C_{* j}\right)=\frac{\operatorname{ker}\left(\partial: C_{n, j} \longrightarrow C_{n+1}, j\right)}{\operatorname{Image}\left(\partial: C_{n-1, j} \longrightarrow C_{n, j}\right)} \\
K h(K ; q, t)=\sum_{n, j} t^{n} q^{j} \operatorname{dim}\left(H_{n j}\right)
\end{gathered}
$$

Taking $t=-1$ gives the Jones polynomial $J[K ; q]$

$$
P_{n}(a, q)=\sum_{i, j}{\underset{c}{\text { integer }}}_{c_{i, j} q^{i} a^{j}}^{\text {inter }}
$$

$$
\mathcal{P}_{n}(K ; a, q, t)=\sum_{i, j, k} t^{k} q^{j} a^{i} \operatorname{dim} \mathcal{H}_{i, j, k}
$$

Higher Rank Representation

$K h(K ; q, t)=\sum_{\substack{i, j \\ \text { homology of bigraded }}} t^{i} q^{j} \underset{\sim}{\operatorname{dim}} \mathcal{H}_{i, j}$ vector space

Large N Chern-Simons \&topological strings

- Gopakumar-Vafa duality gives A-model closed topological string on a resolved conifold from large N expansion of $\log Z\left[S^{3}\right]$.
- Ooguri-Vafa conjecture a form for reformulated knot invariants $f_{R}(q, \lambda)$.
- We verified Ooguri-Vafa conjecture for non-torus knots
(Sarkar, PR 2000) and higher crossing knots(Nawata,Zodin,PR 2013) using our [n]-colored HOMFLY polynomials.
- Making use of these two duality conjectures, we attempted the N expansion of $\log Z[M]$ for some three-manifolds M giving(P. Borhade, T. Sarkar,PR(2003)

$$
\begin{aligned}
\log Z_{0}[M]= & \sum_{n=1}^{\infty} \sum_{g} \frac{1}{n}\left(\sinh \frac{d g_{s}}{2}\right)^{2 g-2} \times \\
& \left\{\sum_{Q} \sum_{\left\{\ell_{\alpha}\right\}} \sum_{\left\{s_{\alpha}\right\}} \hat{N}_{\left(R_{\ell_{1}, s_{1}} \ldots R_{\ell r, s r}\right), g, Q}(-1)^{\sum_{\alpha} s_{\alpha}}\right. \\
& (-1)^{n \sum_{\alpha} \ell_{\alpha} p_{\alpha} \lambda^{\frac{1}{2} n} \sum_{\alpha} \ell_{\alpha} p_{\alpha}}\left(\lambda^{n\left\{Q+\sum_{\alpha}\left(\frac{-\ell_{\alpha}}{2}+s_{\alpha}\right)\right\}}\right. \\
& \left.\left.-\lambda^{n\left\{Q+1+\sum_{\alpha}\left(\frac{-\ell_{\alpha}}{2}+s_{\alpha}\right)\right\}}\right)\right\} \\
= & \sum_{g, n, m} \frac{1}{n}\left(2 \sinh \frac{n g_{s}}{2}\right)^{2 g-2} n_{g, m} e^{-d m t}
\end{aligned}
$$

Subtle Issues

In the large k limit

$$
Z[M]=\sum_{c} Z_{c}[M]
$$

t' Hooft proposal requires

$$
\ln Z_{c}[M]=\text { Closed String expansion }
$$

whereas we find

$$
\ln \left(\sum_{c} Z_{c}[M]\right)=\text { Closed String partition function }
$$

Hence we cannot predict duality between Chern-Simons gauge theory on M with the A-model string theory with the $n_{g, m}$'s we have determined

Generalisation of the duality to $S O$ gauge groups

A-model closed strings on an orientifold of the resolved conifold is dual to $S O / S p$ Chern-Simons theory (Sinha and Vafa)

$$
\ln Z_{(C S)}^{(S O)}\left[S^{3}\right]=\frac{1}{2} \mathcal{Z}^{(o r)}+\mathcal{Z}^{(\text {unor })}
$$

- Incorporating Wilson loop observables

$$
\ln \left\langle Z\left(\left\{U_{\alpha}\right\},\left\{V_{\alpha}\right\}\right)\right\rangle=\mathcal{F}_{\mathcal{G}}(V)=\frac{1}{2} \mathcal{F}_{\mathcal{R}}^{(o r)}(V)+\mathcal{F}^{(\text {unor })}(V)
$$

Not clear how to seperate, we showed LHS (Pravina Borhade and PR)

$$
\left\langle Z\left(\left\{U_{\alpha}\right\},\left\{V_{\alpha}\right\}\right)\right\rangle=\exp \left[\sum_{n=1}^{\infty} \sum_{\left\{R_{\alpha}\right\}} g_{R_{1}, R_{2}, \ldots R_{r}}\left(q^{n}, \lambda^{n}\right) \frac{1}{n} \prod_{\alpha=1}^{r} \operatorname{Tr}_{R_{\alpha}} V_{\alpha}^{n}\right]
$$

where $g_{R_{1}, \ldots R_{r}}(q, \lambda)=\sum_{Q, s} \frac{1}{\left(q^{1 / 2}-q^{-1 / 2}\right)} N_{\left(R_{1}, R_{2} \ldots R_{r}\right), Q, s} q^{s} \lambda^{Q}$
$N_{\left(R_{1}, \ldots R_{r}\right), Q, s}$ are integers-how to find oriented contribution?
-Composite representation invariants to extract oriented contribution (Marino)

$$
\begin{aligned}
\mathcal{F}_{\mathcal{R}}^{(o r)}(V) & =\sum_{R, S}\left\langle W_{(R, S)}[C]\right\rangle\left(\operatorname{Tr}_{R} V\right)\left(T r_{S} V\right)=\sum_{t} \mathcal{R}_{t}[C] T r_{t} V \\
& =\sum_{d=1}^{\infty} \sum_{R} h_{R}\left(q^{d}, \lambda^{d}\right) T r_{R} V^{d}
\end{aligned}
$$

where R and S are representation on the knot C in two Lagrangian submanifolds \mathcal{N}_{ϵ} and $\mathcal{N}_{-\epsilon}$ related by orientifolding action. The composite representation (R, S) has highest weight $\wedge_{R}+\wedge_{\bar{S}}$.

- Obtained invariants of torus knots \& links for some composite representations and verified the form of $h_{R}(q, \lambda)(2010$, C. Paul, P. Borhade,PR)
- Using [r]-colored Kauffman polynomials for figure-eight knot from the study of structural properties of colored Kauffman homologies of knots (Nawata,Zodin,PR,2013) and Morton's result for (,$- \square$) composite invariant for figure-eight, we verified the integrality structure for $h \square$ and $q \square$.

Summary

- Elegant computation of [n]-colored HOMFLY for many knots from ChernSimons approach
- [2,1]-colored HOMFLY distinguishes many mutants including KinoshitaTerasaka \& Conway mutant pair.
- These invariants are definitely useful to verify integrality structures predicted by $U(N)$ and $S O$ topological string duality conjectures

Challenging problems

(i) Obtaining closed form expression for $S U(N)_{q}$ fusion matrices for general R 's which could be rectangular or mixed representation.
(ii) Can we get a better understanding of polynomial variable t in homological invariants?
(iii) The results on refined CS for [2, $2 p+1$]-torus knots suggests that there could be a combinatorial definition of colored Khovanov invariants for non-torus knots. So far no success!
(iv) Any idea on getting \# of solutions to elliptic Nahm equations accounting for integer coefficients in Khovanov invariant for trefoil? Gaitto,Witten (2011)
(v) Appears Kevin Costello work may be applicable to the determine spectral parameter dependent R-matrix for N-vertex models using 4-d twisted supersymmetric field theory.

Due to time constraint, I have not discussed volume conjecture, A-polynomials and their relations to (i) $S L(2, C)$ 3-d gravity (Gukov,2003) and (ii) their appearance in mirror Calabi-Yau geometry (Aganagic,Vafa(2012)-interesting developments.

Thank You

