Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter

Sachin Jain, Cornell University

June 25, 2015

Unitarity, Crossing Symmetry and Duality of the S-matrix in large

Talk based on work

- ArXiv: 1404.6373 (JHEP04(2015)129) with Mangesh Mandlik (TIFR), Tomohisa Takimi, Shuichi Yokoyma, Spenta Wadia (ICTS TIFR), Shiraz Minwalla (TIFR).
- Karthik Inbasekhar, Subhajit Majumdar, Shiraz Minawalla, Umesh Vijayshankar, Shuichi Yokoyma, ArXiv:1505.06571

伺い イラト イラト

- There have recently been several studies of U(N) Chern-Simons theories at level k coupled with fundamental matter in the limit N, $k \to \infty$ with $\lambda = \frac{N}{k}$ kept fixed.
- Initial motivation : duality with Vasiliev theory.
- Moreover was soon realized that these theories are exactly solvable at large *N*.
- Explicit results of partition function, three point function of current etc. motivated the following conjecture:
- Under k → -k and N → |k| N, Chern-Simons theory coupled to boson in fundamental rep. is dual to Chern-Simons theory coupled fermion in fundamental rep.

- More recent checks include four point function of current.
- This duality was generalised for 3d Chern-Simons theory coupled with fermion and bosons with most general renormalizable interactions. In this case theory is self dual.
- Taking coupling constants to particular values recover Super-Symmetric theory and hence they are also selfdual.

- In this talk we'll focus on 2 \rightarrow 2 scattering at large N exact in $\lambda.$
- Results are consistent with duality, however we encountered few surprises.
- We found unitarity is in conflict with naive crossing symmetry.
- We proposed new (modified) crossing relations consistent with unitarity and duality.
- This modification seems to be universal for all fundamental matter coupled to Chern-Simons theory at large *N*. It applies equally to bosonic, fermionic or Super-Symmetric matter theory.

く 戸 と く ヨ と く ヨ と …

- We'll refer quanta transforming under
 - a. Fundamental representation \rightarrow Particles (P).
 - b. Anti-fundamental \rightarrow Anti-particles (A).
- \bullet There are three distinct $2 \rightarrow 2$ scattering processes

$$\begin{split} P_i + P_j &\to P_m + P_n \quad \text{(Sym and Asym channel)} \\ P_i + A^j &\to P_m + A^n \quad \text{(Adj and Singlet(S) channel)} \quad (1) \\ A^i + A^j &\to A^m + A^n \quad \text{(CPT conjugate of case 1).} \end{split}$$

伺下 イヨト イヨト ニヨ

Color Kinemetics

• The U(N) invariance implies that

$$<\phi_i\phi_j\bar{\phi}^m\bar{\phi}^n>=a\delta^m_i\delta^n_j+b\delta^n_i\delta^m_j \tag{2}$$

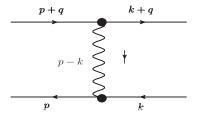
• For particle-particle scattering it is convenient to work in the following basis

$$<\phi_i\phi_j\bar{\phi}^m\bar{\phi}^n>=T_{\rm sym}\left(\delta_i^m\delta_j^n+\delta_i^n\delta_j^m\right)+T_{\rm as}\left(\delta_i^m\delta_j^n-\delta_i^n\delta_j^m\right).$$
(3)

 For particle-antiparticle scattering, S-matrix can be decomposed into adjoint and singlet scattering matrices.

$$<\phi_i\phi_j\bar{\phi}^m\bar{\phi}^n>=\left(\delta_i^m\delta_n^j-\frac{\delta_i^j\delta_n^m}{N}\right)T_{\rm Adj}+\frac{\delta_i^j\delta_n^m}{N}T_S\qquad(4)$$

Diagrammatic Illustration of various channels



Consider the process

$$P_i(p_1) + A^j(p_2) \to P_m(p_3) + A^n(p_4).$$
 (5)

• Adjoint channel:

$$p_1 = p + q, \ p_2 = -(k + q), \ p_3 = -p, \ p_4 = k.$$
 (6)

• Singlet channel:

$$p_1 = p + q, \ p_2 = -p, \ p_3 = -(k + q), \ p_4 = k$$
C.M. momentum : q_{μ}

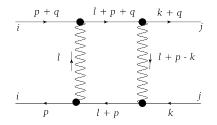
$$(7)$$

$$(7)$$

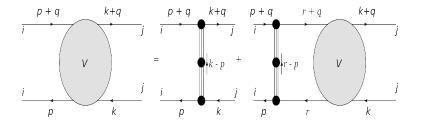
Unitarity, Crossing Symmetry and Duality of the S-matrix in larg

Unitarity

- We pause for a moment to illustrate some basic facts about unitarity in our theory.
- Consider



- Adjoint channel unitarity cut is zero as gauge field has no propagating d.o.f.
- Singlet channel unitarity is nontrivial as matter filed has propagating d.o.f.
- We'll have similar conclusion for all loop result.



- We want to solve this Schwinger-Dyson equation to compute four point function V to all orders in coupling λ in the large N, k limit.
- Then putting external legs on-shell we want to compute exact Scattering matrix.

- We have computed exact V at external momenta $q_{\pm}=0$ (where $q_{\pm}=q_0\pm q_1$) for Chern-Simons theory coupled with
 - a. Bosonic theory
 - b. Fermionic theory

c. $\mathcal{N} = 1, 2$ Super-Symmetric theory.

- For Adjoint (T_{Adj}) , Symmetric (T_{Sym}) and Antisymmetric T_{Asym} , choice of $q_{\pm} = 0$ is just choice of Lorentz frame.
- So, by covariantizing we can recover the full answer.

What we have achieved: Singlet channel

- For Singlet channel q is C.M. momentum.
- Setting $q_{\pm} = 0$ implies C.M. momentum becoming space like and hence we can not put external legs on-shell.
- So directly we can not compute Singlet channel S-matrix.
- However, we can use crossing symmetry to obtain the Singlet channel answer once we know for example Adjoint channel answer.
- We call thus obtained answer T^{naive}_{Singlet}. Soon usage of nomenclature will be clear.

Checks that we have done

- Duality: Under duality transformation, bosonic theory S matrix maps to fermionic theory S-matrix. For Super-Symmetric case as well, duality works.
- It is easy to show that

$$\mathcal{T}_{Adj}, \, \mathcal{T}_{sym}, \, \mathcal{T}_{Asym} \sim \mathcal{O}(rac{1}{N})$$

where as

$$T_{Singlet} \sim \mathcal{O}(1).$$

- Unitarity: Only for Singlet channel, unitarity equation is non-trivial. For other channels, it is trivial (We saw similar happening in one loop).
- *T*^{naive}_{Singlet} does not satisfy unitarity equation for all the theories we considered.

伺 と く ヨ と く ヨ と … ヨ

Scattering in the non-relativistic Limit

- Before presenting our answer for the Singlet channel S-matrix, it is useful review known results in the non-relativistic limit.
- In the non-relativistic limit this was solved (Bak, Jackiw, Pie) and we review the results below.
- Consider scattering of two particles in representation R_1 and R_2 in the exchange channel R.
- The S-matrix in this case is same as the scattering of a U(1) particle (Aharonov-Bohm S-matrix) of unit charge with point like flux tube of magnetic field strength

$$\nu = \frac{C_2(R_1) + C_2(R_2) - C_2(R)}{k},$$
(8)

where $C_2(A)$ is quadratic casimir in representation A.

伺 と く ヨ と く ヨ と

Non-relativistic Limit

• The result is given by

$$T_{NR} = -8\pi i \sqrt{s} \left(\cos(\pi\nu) - 1 \right) \delta(\theta) + 4\sqrt{s} |\sin(\pi\nu)| + 4 i \sqrt{s} \sin(\pi\nu) Pv \left(\cot(\frac{\theta}{2}) \right)$$
(9)

where θ is the scattering angle.

• It is easy to check that

$$\nu_{\rm Adj} \sim \nu_{\rm sym} \sim \nu_{\rm as} \sim \frac{1}{N}$$
(10)

where as

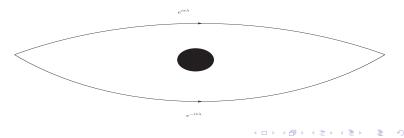
$$\nu_{S} = \lambda. \tag{11}$$

Unitarity, Crossing Symmetry and Duality of the S-matrix in large

- ₹ 🖬 🕨

Non-relativistic Limit

- Note that, above S-matrix has a very unusual piece, $\delta(\theta)$.
- For T_{Adj} , T_{sym} , T_{as} delta function coefficient is of the order of $\mathcal{O}(\frac{1}{N^2})$.
- For T_S coefficient of $\delta(\theta)$ is $\mathcal{O}(1)$ and is proportional to $(\cos(\pi\lambda) 1)$.
- Existence of $\delta(\theta)$ can be interpreted in very general grounds and makes no reference to non-relativistic limit. So we expect this term to be present in the relativistic case as well.



Unitarity, Crossing Symmetry and Duality of the S-matrix in large

Unitarity check for non-relativistic case: Importance of delta function

• For computational convenience, it is useful to introduce following notations for *S*-channel *S*-matrix.

$$T_{\mathcal{S}}(\sqrt{s},\theta) = H(\sqrt{s})T(\theta) + W_1(\sqrt{s}) - iW_2(\sqrt{s})\delta(\theta), \quad (12)$$

where

$$T(heta) = i \cot\left(rac{ heta}{2}
ight),$$

and

$$H(\sqrt{s}) = -4\sqrt{s}\sin(\pi\lambda),$$

$$W_1(\sqrt{s}) = -4\sqrt{s}\sin(\pi\lambda)\operatorname{sgn}(\lambda),$$
 (13)

$$W_2(\sqrt{s}) = 8\pi\sqrt{s}\left(\cos(\pi\lambda) - 1\right).$$

• This is same as Aharonov-Bohm answer with flux $\nu = \lambda$.

Unitarity condition

• Using
$$T - T^{\dagger} = iTT^{\dagger}$$
 we obtain

$$H - H^{*} = \frac{1}{8\pi\sqrt{s}} (W_{2}H^{*} - HW_{2}^{*}),$$

$$W_{2} + W_{2}^{*} = -\frac{1}{8\pi\sqrt{s}} (W_{2}W_{2}^{*} + 4\pi^{2}HH^{*}),$$

$$W_{1} - W_{1}^{*} = \frac{1}{8\pi\sqrt{s}} (W_{2}W_{1}^{*} - W_{2}^{*}W_{1}) - \frac{i}{4\sqrt{s}} (HH^{*} - W_{1}W_{1}^{*}).$$
(14)

- The first equation and third equations are obeyed because W₁, W₂ and H are all real with |H|² = |W₁|².
- The second equation reduces to the true trigonometric identity

$$2(1-\cos(\pi\lambda)) = (1-\cos(\pi\lambda))^2 + \sin^2(\pi\lambda).$$

• So, we require delta function to make unitarity work.

Our proposal for unitary S-matrix in Singlet-channel

• For Chern-Simons theory coupled to any matter theory, we propose that correct S-channel S-matrix in the large N is given by

$$T_{S} = \frac{\sin(\pi\lambda)}{\pi\lambda} T_{S}^{\text{Naive}} - 8\pi i \sqrt{s} \left(\cos(\pi\lambda) - 1\right) \delta(\theta).$$
(15)

- This relation we call modified (new) crossing symmetry relation.
- We need to have a unusual delta function piece. An intuitive origin of this is already explained.
- Factor $\frac{\sin(\pi\lambda)}{\pi\lambda}$ seems to be universal.

伺 と く ヨ と く ヨ と

- Duality.
- Unitarity.
- Correct non-relativistic limit.

We Can two approaches.

- Perturbative.
- Note, $\frac{\sin(\pi\lambda)}{\pi\lambda}$ factor is independent of what matter we couple to Chern-Simons theory with. This suggests that origin of this factor should be explainable from pure Chern-Simons theory.

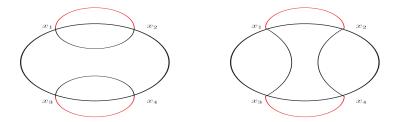
Lets consider for simplicity, Bosonic case.

- Delta function first appears at one loop where as modified sin(πλ) factor starts at two loop level. Two loop answer purely comes from off-shell form of delta function piece at one loop.
- Computation at one loop can be done with out setting $q_{\pm}=0.$
- Using the off-shell form of one loop answer, we can get the two loop answer.
- Careful analysis of one loop seems to give the delta function however going to two loop seems very hard (Work in progress by M.Mandlik, Y.Dhandekar).

・同・ ・ヨ・ ・ヨ・ ・ヨ

Possible explanation of $sin(\pi\lambda)$ factor from pure Chern-Simons theory?

We present a argument which needs to be made precise. We have considered scattering of colored objects. In order to make it gauge invariant we need to appropriately contract it with wilson lines.



• Figure shows two possible way of having wilson line, one of which which corresponds to S-channel. Ratio of these two wilson lines is the required factor that we want.

- We will discuss in detail how to compute V and on-shell S-matrix.
- Another aim would be to show how unitarity works with our modified S-channel answer.
- As will be seen, working of unitarity is quite non-trivial.

伺 ト く ヨ ト く ヨ ト

Lagrangian- Bosonic theory

• Now we discuss the relativistic theory of our interest.

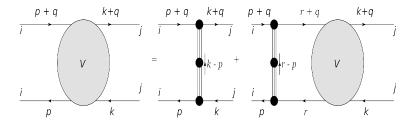
$$S = \int d^{3}x i \epsilon^{\mu\nu\rho} \frac{k}{4\pi} \operatorname{Tr}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2\mathrm{i}}{3}A_{\mu}A_{\nu}A_{\rho}) + D_{\mu}\bar{\phi}D^{\mu}\phi + b_{4}(\bar{\phi}\phi)^{2} + m_{B}^{2}(\bar{\phi}\phi)$$
(16)

Exact propagator is given by

$$\langle \phi_j(p) \overline{\phi}^i(-q) \rangle = rac{(2\pi)^3 \delta_j^i \delta^3(-p+q)}{p^2 + c_B^2}$$
 (17)

• One can easiy compute the renormalized mass $c_B = \frac{\lambda_B^2}{4}c_B^2 - \frac{b_4}{4\pi}c_B + m_B^2.$ • Critical limit: $b_4 \to \infty$, $m_B \to \infty$ such that $\frac{m_B^2}{b_4}$ kept fixed.

Schwinger-Dyson equation for four point function

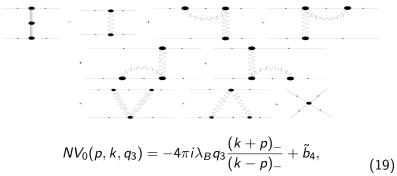


$$V(p, k, q) = V_0(p, k, q) - i \int \frac{d^3r}{(2\pi)^3} V_0(p, r, q_3) \frac{NV(r, k, q_3)}{(r^2 + c_B^2 - i\epsilon) ((r+q)^2 + c_B^2 - i\epsilon)}$$
(18)

where c_B is exact pole mass.

This equation can be solved exactly (in λ) in at $q_{\pm} = 0$. (Usefulness of this was pointed out by Aharony etal)

Unit diagram for boson



$$\tilde{b}_4 = 2\pi\lambda_B^2 c_B + b_4.$$

Unitarity, Crossing Symmetry and Duality of the S-matrix in large

explicit results in various channels

- $T_{\rm Adj}$, $T_{\rm sym}$, $T_{\rm as}$ channel answers are consistent with crossing symmetry.
- So we present here only the answer for $T_{\rm Adj}$.

$$T_{\rm Adj} = -\frac{4i\pi}{k_B} \sqrt{\frac{u\ t}{s}} -\frac{4\ i\pi}{k_B} \sqrt{-t} \quad \frac{(\tilde{b}_4 - 4\pi i\lambda\sqrt{-t}) + (\tilde{b}_4 + 4\pi i\lambda\sqrt{-t})e^{-2i\lambda_B\tan^{-1}(\frac{\sqrt{-t}}{2|c_B|})}}{-(\tilde{b}_4 - 4\pi i\lambda\sqrt{-t}) + (\tilde{b}_4 + 4\pi i\lambda\sqrt{-t})e^{-2i\lambda_B\tan^{-1}(\frac{\sqrt{-t}}{2|c_B|})}}$$
(20)

In the $b_4 \to \infty$, we get

$$T_{\rm Adj} = -\frac{4i\pi}{k_B} \sqrt{\frac{u\ t}{s}} - \frac{4\ i\pi}{k_B} \sqrt{-t} \quad \frac{1 + e^{-2i\lambda_B \tan^{-1}(\frac{\sqrt{-t}}{2|c_B|})}}{1 - e^{-2i\lambda_B \tan^{-1}(\frac{\sqrt{-t}}{2|c_B|})}} \quad .$$
(21)

• Again, unitarity for all the above is trivial.

Naive result in S-channel by using crossing symmetry

• The crossing symmetry predicts that other channel answer are just appropriate analytic continuation of the Adjoint channel answer. For Singlet channel this gives

$$T_{S}^{Naive} = 4i\pi\lambda E(p_{1}, p_{2}, p_{3})\sqrt{\frac{st}{u}} + 4\pi\lambda\sqrt{s}\frac{1 + e^{-2\lambda\tanh^{-1}\frac{\sqrt{s}}{2|c_{B}|}}}{1 - e^{-2\lambda\tanh^{-1}\frac{\sqrt{s}}{2|c_{B}|}}}$$
(22)

 Note that, this does not contain the δ function piece as appeared in non-relativistic case and it does not satisfy unitarity.

Proposal for singlet channel answer : Bosonic Case

• The crossing symmetry in the large N limit is modified to be

$$T_{S} = \frac{\sin(\pi\lambda)}{\pi\lambda} T_{S}^{\text{Naive}} - 8\pi i \sqrt{s} \left(\cos(\pi\lambda) - 1\right) \delta(\theta).$$
(23)

where T_{S}^{Naive} as discussed above.

• Our proposal for the S-matrix can be written as

$$T_{\mathcal{S}}(\sqrt{s},\theta) = H(\sqrt{s})T(\theta) + W_1(\sqrt{s}) - iW_2(\sqrt{s})\delta(\theta), \quad (24)$$

where

$$T(\theta) = i \cot\left(\frac{\theta}{2}\right), \quad H(\sqrt{s}) = 4\sqrt{s}\sin(\pi\lambda),$$

$$W_1(\sqrt{s}) = 4\sqrt{s}\sin(\pi\lambda)\operatorname{sgn}(\lambda)\frac{1 + e^{-2\lambda\tanh^{-1}\frac{\sqrt{s}}{2|c_B|}}}{1 - e^{-2\lambda\tanh^{-1}\frac{\sqrt{s}}{2|c_B|}}}, \quad (25)$$

$$W_2(\sqrt{s}) = 8\pi\sqrt{s}\left(\cos(\pi\lambda) - 1\right).$$

Unitarity, Crossing Symmetry and Duality of the S-matrix in large

Unitarity condition

- In the unitarity equation, $2 \rightarrow N$ processes does not contribute.
- Using $T T^{\dagger} = iTT^{\dagger}$ we obtain as before

$$H - H^* = \frac{1}{8\pi\sqrt{s}} \left(W_2 H^* - H W_2^* \right),$$

$$W_2 + W_2^* = -\frac{1}{8\pi\sqrt{s}} \left(W_2 W_2^* + 4\pi^2 H H^* \right),$$

$$W_1 - W_1^* = \frac{1}{8\pi\sqrt{s}} \left(W_2 W_1^* - W_2^* W_1 \right) - \frac{i}{4\sqrt{s}} \left(H H^* - W_1 W_1^* \right).$$

(26)

 Note that, unitarity equations are non linear and quite complicated. Its non-trivial check that the our proposed answer satisfies this equations.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Checks of proposed results

- Bosonic and fermionic results are consistent with duality.
- In the non-relativistic limit $\sqrt{s} \rightarrow 2m$ this reproduces the nonrelativistic result that we discussed earlier.
- Aharov-Bohm results were later on generalized by Bak-Camilio to account for possible contact term interaction. Our results in non-relativistic limit can account for this fact (see work done by Shiraz Minwalla, Yogesh Dhandekar, Mangesh Mandlik, JHEP04(2015)102. This results are obtained by taking non-relativistic limit keeping certain ratio of ϕ^4 coupling and momentum fixed).

伺 とくき とくき とうき

Duality check: fermionic computation

• Let us consider *SU*(*N*) Chern-Simons gauge field coupled with the regular fermionic theory

$$S = \int d^{3}x i \epsilon^{\mu\nu\rho} \frac{k}{4\pi} \operatorname{trace}(A_{\mu}\partial_{\nu}A_{\rho} - \frac{2\mathrm{i}}{3}A_{\mu}A_{\nu}A_{\rho}) + \bar{\psi}\gamma^{\mu}D_{\mu}\psi + m_{F}^{\mathsf{reg}}\bar{\psi}\psi$$
(27)

- Consider $N \to \infty$ and $k \to \infty$ keeping $\lambda = \frac{N}{k}$ fixed.
- Renormalized mass $c_f = rac{m_F^{reg}}{1-\lambda}$

Schwinger dyson equation for fermion

• Fermionic 4- point greens function (much more difficult and clumsy than boson).

$$V_{\alpha\beta\gamma\delta}(p,k,q) = -\frac{1}{2}\gamma^{\mu}_{\alpha\beta}G_{\nu\mu}(p-k)\gamma^{\nu}_{\gamma\delta}$$

$$-\frac{1}{2}\int \frac{d^{3}q^{'}}{(2\pi^{3})}[\gamma^{\mu}G(q^{'}-P)]_{\alpha\sigma}V_{\sigma\beta\gamma\tau}(p_{1},p_{2},q^{'})[G(q^{'})\gamma^{\nu}]_{\tau\delta}G_{\nu\mu}(q^{'}-q)$$
(28)

• We have solved this equations explicitly all orders in λ in $q_{\pm} = 0$.

伺 ト く ヨ ト く ヨ ト

Explicit results: t-channel for fermion

- In order to evaluate the onshell S-matrix, we need to contact the above four point function by wave functions *u* and *v* and put the external momenta onshell.
- In the Adjoint channel (T-channel) the result is

$$T_{T}^{t}(k_{F},\lambda_{F},c_{F}) = \frac{4i\pi}{k_{F}}E(p_{1},p_{2},p_{3})\sqrt{\frac{u\ t}{s}} + \frac{4\ i\pi}{k_{F}}\sqrt{-t} \quad \frac{1+e^{-2i(\lambda_{F}-sgn(m_{F}))\ \tan^{-1}(\frac{\sqrt{-t}}{2|c_{F}|})}}{1-e^{-2i(\lambda_{F}-sgn(m_{F}))\ \tan^{-1}(\frac{\sqrt{-t}}{2|c_{F}|})}}$$
(29)

• Other channel answer are consistent with crossing symmetry.

- So we observe that adjoint channel answer is consistent with duality. $T_T^{B\infty}(-k_F, \lambda_F sgn(\lambda_F), c_F) = T_T^F(k_F, \lambda_F, c_F).$
- On physical ground we expect that, $T_{\text{sym}}^B = T_{\text{asym}}^F$, $T_{\text{sym}}^F = T_{\text{asym}}^B$.
- This is because, exchange of two identical fermion, which accompanies a sign is seen from bosonic side by antisymmetric color structure.
- We indeed see that, this is the case.
- The modified S-channel answer satisfied duality as well as unitarity.

(同) (日) (日) 日

Supersymmetric Chern-Simons matter theories

 General renormalizable N = 1 theory coupled to single fundamental matter multiplet Φ

$$\begin{split} S_{N=1} &= -\int d^3 x d^2 \theta \bigg[\frac{\kappa}{2\pi} \operatorname{Tr} \bigg(-\frac{1}{4} D_\alpha \Gamma^\beta D_\beta \Gamma^\alpha - \frac{1}{6} D^\alpha \Gamma^\beta \{ \Gamma_\alpha, \Gamma_\beta \} \\ &- \frac{1}{24} \{ \Gamma^\alpha, \Gamma^\beta \} \{ \Gamma_\alpha, \Gamma_\beta \} \bigg) \\ &- \frac{1}{2} (D^\alpha \bar{\Phi} + i \bar{\Phi} \Gamma^\alpha) (D_\alpha \Phi - i \Gamma_\alpha \Phi) \\ &+ m_0 \bar{\Phi} \Phi + \frac{\pi w}{\kappa} (\bar{\Phi} \Phi)^2 \bigg] \end{split}$$

• Φ : complex superfield, Γ_{α} : real superfield

$$\begin{split} \Phi &= \phi + \theta \psi - \theta^2 F \ , \bar{\Phi} &= \bar{\phi} + \theta \bar{\psi} - \theta^2 \bar{F} \ , \\ \Gamma^{\alpha} &= \chi^{\alpha} - \theta^{\alpha} B + i \theta^{\beta} A^{\alpha}_{\beta} - \theta^2 (2 \lambda^{\alpha} - i \partial^{\alpha \beta} \chi_{\beta}) \ . \end{split}$$

• Supersymmetric generalization of light cone gauge.

$$\Gamma_-=0 \ \rightarrow \ A_-=A_1+iA_2=0$$

• Gauge self interactions vanish.

$$S = -\int d^{3}x d^{2}\theta \left[-\frac{\kappa}{8\pi} Tr(\Gamma^{-}i\partial_{--}\Gamma^{-}) - \frac{1}{2}D^{\alpha}\bar{\Phi}D_{\alpha}\Phi - \frac{i}{2}\Gamma^{-}(\bar{\Phi}D_{-}\Phi - D_{-}\bar{\Phi}\Phi) + m_{0}\bar{\Phi}\Phi + \frac{\pi w}{\kappa}(\bar{\Phi}\Phi)^{2} \right]$$

- Susy light cone gauge maintains manifest supersymmetry.
- w = 1 is the $\mathcal{N} = 2$ supersymmetric point.

Supersymmetric case: N = 1

Supersymmetric results can be summarized as follows. Note that Susy dictates, out of eight processes, only two of them are independent. In summary

$$S(p_{1}, \theta_{1}, p_{2}, \theta_{2}, p_{3}, \theta_{3}, p_{4}, \theta_{4}) = S_{B} + S_{F} \theta_{1}\theta_{2}\theta_{3}\theta_{4}$$

$$+ \left(\frac{1}{2}C_{12}S_{B} - \frac{1}{2}C_{34}^{*}S_{F}\right) \theta_{1}\theta_{2}$$

$$+ \left(\frac{1}{2}C_{13}S_{B} - \frac{1}{2}C_{24}^{*}S_{F}\right) \theta_{1}\theta_{3} + \left(\frac{1}{2}C_{14}S_{B} + \frac{1}{2}C_{23}^{*}S_{F}\right) \theta_{1}\theta_{4}$$

$$+ \left(\frac{1}{2}C_{23}S_{B} + \frac{1}{2}C_{14}^{*}S_{F}\right) \theta_{2}\theta_{3} + \left(\frac{1}{2}C_{24}S_{B} - \frac{1}{2}C_{13}^{*}S_{F}\right) \theta_{2}\theta_{4}$$

$$+ \left(\frac{1}{2}C_{34}S_{B} - \frac{1}{2}C_{12}^{*}S_{F}\right) \theta_{3}\theta_{4}$$
(30)

$\mathcal{N}=2$ is obtained by setting w=1. At this point only one of the scattering amplitude is independent.

(4月) (日) (日) 日

Susy explicit results for naive S-channel: $\mathcal{N} = 1$

- The adjoint and other channel answer are again consistent with duality and unitarity for them is trivial as in previous cases.
- ullet The naive S-channel answer for $\mathcal{N}=1$ answer is given by

$$T_B^{S;\text{naive}} = 4\pi i\lambda \sqrt{\frac{su}{t}} + J_B(\sqrt{s},\lambda)$$

$$T_F^{S;\text{naive}} = 4\pi i\lambda \sqrt{\frac{su}{t}} + J_F(\sqrt{s},\lambda)$$

$$J_B = -4\pi i\lambda \sqrt{s} \frac{N_1 N_2 + M_1}{D_1 D_2}$$

$$J_F = -4\pi i\lambda \sqrt{s} \frac{N_1 N_2 + M_2}{D_1 D_2}$$
(31)

Conjectured *S* matrix in S channel $\mathcal{N} = 1$ theory

$$\begin{split} N_{1} &= \left((w-1)(2m+\sqrt{s}) + (w-1)(2m-\sqrt{s})e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} \right) ,\\ N_{2} &= \left((-i\sqrt{s}(w+3)+2im(w-1)) + (-i\sqrt{s}(w+3)-2im(w-1))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} \right) \\ M_{1} &= 8mi\sqrt{s}((w+3)(w-1)-4w)e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} ,\\ M_{2} &= 8mi\sqrt{s}(1+w)^{2}e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} ,\\ D_{1} &= \left(i(w-1)(2m+\sqrt{s}) - (2im(w-1)+i\sqrt{s}(w+3))e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} \right) ,\\ D_{2} &= \left((\sqrt{s}(w+3)-2im(w-1)) + (w-1)(-i\sqrt{s}+2im)e^{i\pi\lambda} \left(\frac{\sqrt{s}+2|m|}{\sqrt{s}-2|m|}\right)^{\lambda} \right) \\ (32) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- *N* = 2 result can be obtained from *N* = 1 just by putting *w* = 1.
- In this case results simplify drastically and reduces to just tree level answer.

$$T_{B}^{S;\text{naive}} = 4\pi i\lambda \sqrt{\frac{su}{t}} - 8\pi m\lambda$$

$$T_{F}^{S;\text{naive}} = 4\pi i\lambda \sqrt{\frac{su}{t}} + 8\pi m\lambda$$
(33)

く 同 と く ヨ と く ヨ と …

Unitarity for S-channel answer

۵

- Supersymmetry implies that, rather than eight such equations, we just have two or one depending on N = 1 or N = 2 susy.
- Unitairy equations are quite complicated and gets additional contribution from intermediate processes. For example, $\phi \bar{\phi} \rightarrow \phi \bar{\phi}$ will get contribution due to $\phi \bar{\phi} \rightarrow \psi \bar{\psi}$.
- The unitarity equations are given by

$$\begin{aligned} \frac{1}{8\pi\sqrt{s}} \int d\theta \bigg(-Y(s)(T_B^S(s,\theta) - T_F^S(s,\theta))(T_B^{S*}(s, -(\alpha - \theta)) - T_F^{S*}(s, -(\alpha - \theta))) \\ +T_B^S(s,\theta)T_B^{S*}(s, -(\alpha - \theta))\bigg) &= i(T_B^{S*}(s, -\alpha) - T_B^S(s, \alpha)) \end{aligned}$$

$$\frac{1}{8\pi\sqrt{s}}\int d\theta \left(Y(s)(T_B^S(s,\theta)-T_F^S(s,\theta))(T_B^{S*}(s,-(\alpha-\theta))-T_F^{S*}(s,-(\alpha-\theta)))\right)$$
$$-T_F^S(s,\theta)T_F^{S*}(s,-(\alpha-\theta))\right) = i(T_F^S(s,\alpha)-T_F^{S*}(s,-\alpha))$$

where
$$Y = \frac{-s+4m^2}{16m^2}$$
.

Unitarity, Crossing Symmetry and Duality of the S-matrix in large

Unitarity equations in the S channel

• Consider the general structure $(T(\theta) = i \cot(\frac{\theta}{2}))$.

$$T_B^S = H_B T(\theta) + W_B - i W_2 \delta(\theta) , \ T_F^S = H_F T(\theta) + W_F - i W_2 \delta(\theta) ,$$

• first unitarity equation

$$\begin{split} H_B - H_B^* &= \frac{1}{8\pi\sqrt{s}} (W_2 H_B^* - H_B W_2^*) \ , \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}} (W_2 W_2^* + 4\pi^2 H_B H_B^*) \ , \\ W_B - W_B^* &= \frac{1}{8\pi\sqrt{s}} (W_2 W_B^* - W_2^* W_B) - \frac{i}{4\sqrt{s}} (H_B H_B^* - W_B W_B^*) \\ &- \frac{iY}{4\sqrt{s}} (W_B - W_F) (W_B^* - W_F^*) \end{split}$$

Unitarity equations in the S channel

• Second unitarity equation

$$\begin{split} H_F - H_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 H_F^* - H_F W_2^*) , \\ W_2 + W_2^* &= -\frac{1}{8\pi\sqrt{s}} (W_2 W_2^* + 4\pi^2 H_F H_F^*) , \\ W_F - W_F^* &= \frac{1}{8\pi\sqrt{s}} (W_2 W_F^* - W_2^* W_F) - \frac{i}{4\sqrt{s}} (H_F H_F^* - W_F W_F^*) \\ &- \frac{iY}{4\sqrt{s}} (W_B - W_F) (W_B^* - W_F^*) \end{split}$$

• It is quite non-trivial that this unitarity equation works with our proposal.

Summary

- We discussed how our results are consistent with duality.
- We discussed how crossing symmetry is in conflict with unitarity.
- Resolution of the puzzle with unitarity has two aspects
 a. We need to add a δ(θ) piece to the S-channel S-matrix. b.
 We need to modify the crossing symmetry relation.
- We propose a new crossing symmetry equation.
- $\frac{\sin(\pi\lambda)}{\pi\lambda}$ factor that appears in modified crossing relation seems to be universal, in the sense that this is independent of the theory we discussed above.
- Proposed results are consistent with duality.

伺 と く ヨ と く ヨ と … ヨ

Thank you very much for your kind attention. I would also like to thank my collaborators: M. Mandlik, S. Majumdar, U.Vijayshankar...Students K.Inbasekhar, T.Takimi , S. Yokoyma...Post-Docs S.Minwalla, S.Wadia....Prof. as you all know.