Functional determinants, Index theorems, and

Exact quantum black hole entropy

Sameer Murthy
King's College London

Strings 2015
Bengaluru, June 25, 2015

BPS black hole entropy is a detailed probe of aspects of quantum gravity

Black hole entropy

underlying ensemble of microscopic states

BPS black hole entropy is a detailed probe of aspects of quantum gravity

Black hole entropy

Macroscopic

underlying ensemble of microscopic states

Microscopic

BPS black hole entropy is a detailed probe of aspects of quantum gravity

Black hole entropy

Macroscopic

underlying ensemble of microscopic states

Microscopic

Q: How many microstates are associated to a BH?

Aim of talk

In a theory of
-4d N=2 supergravity,

- coupled to vector multiplets and hyper multiplets,
- with generic higher derivative couplings, compute the perturbatively exact formula for the quantum gravitational entropy of a $1 / 2 \mathrm{BPS}$ black hole.

Aim of talk

In a theory of
-4d N=2 supergravity,

- coupled to vector multiplets and hyper multiplets,
- with generic higher derivative couplings,
compute the perturbatively exact formula for the quantum gravitational entropy of a $1 / 2 \mathrm{BPS}$ black hole.

Based on:

S.M., V. Reys, arXiv:1504.01400, B. de Wit, S.M., V. Reys, in progress.
and on the work of:
Sen (Quantum entropy function program), Ooguri,Strominger,Vafa (OSV),
Cardoso, de Wit, Mohaupt;
Banerjee, Dabholkar, David, Denef, Gaiotto, Gomes, Gupta, Hama, Hosomichi, Jatkar, Lal, Mahapatra, Mandal, Moore, Pestun, Pioline, Shih, Yin, ...

Near-horizon region is an independent quantum system, fixed by charges

4 d BPS black hole with charges $\left(q_{I}, p^{I}\right)$

$$
\begin{aligned}
& d s^{2}=v\left(\left(r^{2}-1\right) d \theta^{2}+\frac{d r^{2}}{r^{2}-1}\right)+v\left(d \psi^{2}+\sin ^{2} \psi d \phi^{2}\right) \\
& F_{r t}^{I}=e_{*}^{I}, \quad F_{\psi \phi}^{I}=p^{I} \sin \psi
\end{aligned}
$$

$$
X^{I}=X_{*}^{I}
$$

Attractor geometry: (Ferrara, Kallosh, Strominger '95)

Euclidean $\mathbf{A d S}_{\mathbf{2}} \times \mathbf{S}^{\mathbf{2}}$

Quantum BPS black hole entropy is an AdS_{2} functional integral

$$
\exp \left(S_{B H}^{\mathrm{qu}}\left(q_{I}\right)\right) \equiv Z_{A d S_{2}}\left(q_{I}\right)=\left\langle\exp \left[-i q_{I} \oint A^{I}\right]\right\rangle_{\mathrm{AdS}_{2}}^{\mathrm{reg}}
$$

- Saddle point evaluation $\Rightarrow S_{\mathrm{BH}}^{\mathrm{qu}}=S_{\mathrm{BH}}^{\text {class }}+\cdots$

Attractor entropy including local higher-derivative corrections.
(Cardoso, de Wit, Mohaupt, '98, ...)

- Leading logarithmic one-loop corrections systematized. (Sen + Banerjee ${ }^{2}$, Gupta, Mandal, '10-'14, Larsen, Keeler, Lisbão '14, '15).

The functional integral localizes onto the solutions of the off-shell BPS equations

Duistermaat-Heckmann, Atiyah-Singer-Bott, Berligne-Vergne, Witten (1980s), Pestun '07

$$
Z_{\mathrm{AdS}_{2}}\left(q_{I}\right) \equiv \int_{\mathcal{M}} d \mu \mathcal{O} e^{-\mathcal{S}}
$$

Superalgebra $Q^{2}=L_{0}-J_{0} \equiv H$

Euclidean $\mathrm{AdS}_{2} \times \mathbf{S}^{\mathbf{2}}$

$$
I:=\int_{\mathcal{M}} d \mu \mathcal{O} e^{-\mathcal{S}}
$$

The functional integral localizes onto the solutions of the off-shell BPS equations

Duistermaat-Heckmann, Atiyah-Singer-Bott, Berligne-Vergne, Witten (1980s), Pestun '07

$$
Z_{\mathrm{AdS}_{2}}\left(q_{I}\right) \equiv \int_{\mathcal{M}} d \mu \mathcal{O} e^{-\mathcal{S}}
$$

Superalgebra $Q^{2}=L_{0}-J_{0} \equiv H$

$$
\begin{gathered}
I(\lambda)=\int_{\mathcal{M}} d \mu \mathcal{O} e^{-\mathcal{S}+\lambda Q \mathcal{V}}, \quad \mathcal{V}=\sum_{\psi} \int d^{4} x \bar{\psi} Q \psi \\
I(0)=I(\infty)=\int_{\mathcal{M}_{Q}} d \mu_{Q} \mathcal{O} e^{-\mathcal{S}} Z_{1 \text {-loop }}(Q \mathcal{V}) \\
=\{Q \Psi=0\}
\end{gathered}
$$

Localization in supergravity

(A.Dabholkar, J.Gomes, S.M. '10, '11, '14)

1. Describe the supergravity theory in a formalism which admits off-shell supersymmetry transformations.
2. Find all solutions of localization equations $Q \Psi=0$, subject to $A d S_{2} \times S^{2}$ boundary conditions.
3. Evaluate full supergravity action on these solutions (including all higher derivative terms).
4. Compute quantum measure on the solution space.

The fields of $\mathbf{N}=\mathbf{2}$ conformal supergravity

- Weyl multiplet coupled to $n_{\mathrm{v}}+1 \mathrm{U}(1)$ vector multiplets

$$
X^{I} \rightarrow \lambda(x) X^{I},\left(I=0, \cdots, n_{\mathrm{v}}\right), \quad g_{\mu \nu} \rightarrow \lambda(x)^{-2} g_{\mu \nu}
$$

- $e^{-\mathcal{K}} \equiv-i\left(X^{I} \bar{F}_{I}-\bar{X}^{I} F_{I}\right)$ appears in the action as

$$
\sqrt{-g} e^{-\mathcal{K}} R+\cdots \quad \text { (conformal compensator) }
$$

- Can choose gauge $e^{-\mathcal{K}}=1$ or $\sqrt{g}=1$

The fields of $\mathbf{N}=\mathbf{2}$ conformal supergravity

- Weyl multiplet coupled to $n_{\mathrm{v}}+1 \mathrm{U}(1)$ vector multiplets

$$
X^{I} \rightarrow \lambda(x) X^{I},\left(I=0, \cdots, n_{\mathrm{v}}\right), \quad g_{\mu \nu} \rightarrow \lambda(x)^{-2} g_{\mu \nu}
$$

- $e^{-\mathcal{K}} \equiv-i\left(X^{I} \bar{F}_{I}-\bar{X}^{I} F_{I}\right)$ appears in the action as

$$
\sqrt{-g} e^{-\mathcal{K}} R+\cdots \quad \text { (conformal compensator) }
$$

- Can choose gauge $e^{-\mathcal{K}}=1$ or $\sqrt{g}=1$ In this gauge, $e^{-\mathcal{K}\left(X^{I}\right)}$ measures the size of $A d S_{2}$

The space of off-shell BPS solutions

- In vector multiplet sector, scalar fields go off-shell:

(A.Dabholkar, J.Gomes, S.M. '10)
- In the gravity multiplet sector, only solution is $A d S_{2} \times S^{2}$. (R.Gupta, S.M. '12)

The space of off-shell BPS solutions

- In vector multiplet sector, scalar fields go off-shell:

(A.Dabholkar,
J.Gomes, S.M. '10)
- In the gravity multiplet sector, only solution is $A d S_{2} \times S^{2}$. (R.Gupta, S.M. '12)

Localization manifold labelled by one parameter $\phi^{I} \equiv X^{I}(r=1)$ for each vector multiplet X^{I}.

The space of off-shell BPS solutions

- In vector multiplet sector, scalar fields go off-shell:

(A.Dabholkar,
J.Gomes, S.M. '10)
- In the gravity multiplet sector, only solution is $A d S_{2} \times S^{2}$. (R.Gupta, S.M. '12)

Localization manifold labelled by one parameter $\phi^{I} \equiv X^{I}(r=1)$ for each vector multiplet X^{I}.

- Classical measure for scalar manifold $\prod d X^{I} M\left(X^{I}\right)$ has been computed. Does not scale with charges.
(Cardoso, de Wit, Mahapatra '12)

Action of supergravity theory

Chiral superspace action is governed by holomorphic prepotential $F\left(X^{I}\right)$, computable in string theory. Takes a simple form on localization manifold.

Action of supergravity theory

Chiral superspace action is governed by holomorphic prepotential $F\left(X^{I}\right)$, computable in string theory. Takes a simple form on localization manifold.

Only holomorphic chiral-superspace integrals in the action contribute (Non-renormalization).

Action of supergravity theory

Chiral superspace action is governed by holomorphic prepotential $F\left(X^{I}\right)$, computable in string theory. Takes a simple form on localization manifold.

Only holomorphic chiral-superspace integrals in the action contribute (Non-renormalization).
(S.M., V.Reys, '13)

$$
\begin{aligned}
& Z_{A d S_{2}}^{\text {pert }}(q, p)=\int \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} M\left(\phi^{I}\right) \times \\
& \quad \times \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{ImF}\left(\phi^{I}+i p^{I}\right)\right) Z_{1-\operatorname{loop}}^{Q \mathcal{V}}\left(\phi^{I}\right)
\end{aligned}
$$

Action of supergravity theory

Chiral superspace action is governed by holomorphic prepotential $F\left(X^{I}\right)$, computable in string theory. Takes a simple form on localization manifold.

Only holomorphic chiral-superspace integrals in the action contribute (Non-renormalization).
(S.M., V.Reys, '13)

$$
\begin{aligned}
& Z_{A d S_{2}}^{\mathrm{pert}}(q, p)=\int \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} M\left(\phi^{I}\right) \times \\
& \left.\quad \times \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{Im} \mathrm{~F}\left(\phi^{I}+i p^{I}\right)\right) Z_{1-\operatorname{loop}\left(\phi^{I}\right)}^{Q \mathcal{V}}\right)
\end{aligned}
$$

1-loop determinant is a function of dynamical scale of quantum supergravity

The length scale at the center of $A d S_{2} \quad \ell_{\text {AdS }}^{2}=e^{-\mathcal{K}\left(\phi^{I}\right)}$ depends on the position in the localization manifold.

1-loop determinant is a function of dynamical scale of quantum supergravity

The length scale at the center of $A d S_{2} \quad \ell_{\text {AdS }}^{2}=e^{-\mathcal{K}\left(\phi^{I}\right)}$ depends on the position in the localization manifold.

Result (S.M., V. Reys, arXiv:1504.01400)

$$
Z_{1-l o o p}^{Q \mathcal{V}}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathbb{K}\left(\phi^{I}\right)\right), \quad a_{0}=\sum_{\text {multiplets }} a_{0}^{\text {multiplet }}
$$

1-loop determinant is a function of dynamical scale of quantum supergravity

The length scale at the center of $A d S_{2} \quad \ell_{\text {AdS }}^{2}=e^{-\mathcal{K}\left(\phi^{I}\right)}$ depends on the position in the localization manifold.

Result (S.M., V. Reys, arXiv:1504.01400)

$$
Z_{1-\text {-loop }}^{Q \mathcal{V}}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}\right)\right), \quad a_{0}=\sum_{\text {multiplets }} a_{0}^{\text {multiplet }}
$$

(Result for vector multiplets also in Ito, Gupta, Jeon 1504.01700)
(Graviton multiplet in progress with B. de Wit, V. Reys)

Sketch of computation

$$
X \xrightarrow{Q} Q X
$$

-Separate fields into doublets of Q

$$
\Psi \xrightarrow{Q} Q \Psi
$$

Sketch of computation

- Separate fields into doublets of Q

$$
\begin{aligned}
& X \\
& D_{10} \downarrow \\
& \Psi \xrightarrow{Q} Q X \\
& \Psi{ }^{Q} D_{01} \\
& Q \Psi
\end{aligned}
$$

Sketch of computation

- Separate fields into doublets of Q

$$
\begin{array}{rr}
X \\
D_{10} \downarrow \\
\Psi & \xrightarrow{Q} Q X \\
\Psi{ }^{Q} D_{01} \\
Q \Psi
\end{array}
$$

- Determinant of $Q \mathcal{V}=\left(X, K_{b} X\right)+\left(\Psi, K_{f} \Psi\right)$ related by linear algebra to determinant of $Q^{2}=H$

Sketch of computation

- Separate fields into doublets of Q

$$
\begin{aligned}
& X \xrightarrow{Q} Q X \\
& D_{10} \downarrow \\
& \Psi \xrightarrow{Q}{ }^{D_{01}} \\
& Q \Psi
\end{aligned}
$$

- Determinant of $Q \mathcal{V}=\left(X, K_{b} X\right)+\left(\Psi, K_{f} \Psi\right)$ related by linear algebra to determinant of $Q^{2}=H$

Eigenvalues of H encoded in index

$$
\begin{aligned}
\operatorname{ind}\left(D_{10}\right)(t) & =\operatorname{Tr}_{X} e^{-i H t}-\operatorname{Tr}_{\Psi} e^{-i H t} \\
& =\sum_{n} a(n) e^{-i t \lambda_{n}}
\end{aligned}
$$

The index is captured by fixed points of H

Atiyah-Bott index theorem

$$
\operatorname{ind}\left(D_{10}\right)(t)=\sum_{\mathrm{x}=\text { fixed pts of } H} \frac{\operatorname{Tr}_{X, \Psi}(-1)^{F} e^{-i H t}}{\operatorname{det}(1-\partial \widetilde{x} / \partial x)}
$$

$$
(\widetilde{x}=H x)
$$

Fixed points of
$H=L_{0}-J_{0}$

Euclidean $\mathrm{AdS}_{2} \times \mathbf{S}^{\mathbf{2}}$

The index is captured by fixed points of H

Atiyah-Bott index theorem

$$
\operatorname{ind}\left(D_{10}\right)(t)=\sum_{\mathrm{x}=\text { fixed pts of } H} \frac{\operatorname{Tr}_{X, \Psi}(-1)^{F} e^{-i H t}}{\operatorname{det}(1-\partial \widetilde{x} / \partial x)}
$$

$$
(\widetilde{x}=H x)
$$

Fixed points of

$$
H=\dot{L}_{0}-J_{0}
$$

$$
\operatorname{ind}_{\mathrm{vec}}\left(D_{10}\right)=\sum_{n \geq 1} 4 n e^{-i t n / \ell_{\mathrm{AdS}}}
$$

Euclidean AdS $_{2} \times \mathbf{S}^{\mathbf{2}}$

The index is captured by fixed points of H

Atiyah-Bott index theorem

$$
\operatorname{ind}\left(D_{10}\right)(t)=\sum_{\mathrm{x}=\mathrm{fixed} \text { pts of } H} \frac{\operatorname{Tr}_{X, \Psi}(-1)^{F} e^{-i H t}}{\operatorname{det}(1-\partial \widetilde{x} / \partial x)} .
$$

$$
(\widetilde{x}=H x)
$$

Fixed points of $H=L_{0}-J_{0}$

$$
\operatorname{ind}_{\mathrm{vec}}\left(D_{10}\right)=\sum_{n \geq 1} \overbrace{\text { Degeneracies }} e^{-i+\ell^{2} / \ell_{\text {Ads }}}
$$

Regularize determinant using zeta functions.

Technical comments

- In supergravity, $Q^{2}=L_{0}-J_{0}+\delta_{\text {gauge }}$

Introduce (b,c) ghost system and BRST operator Q_{B}
Introduce $\widehat{Q}=Q+Q_{B}$ with $\widehat{Q}^{2}=H=L_{0}-J_{0}$

- Boundary modes ("pure" gauge modes that do not vanish at the boundary) need to be treated separately.
(See e.g. Banerjee, Gupta, Sen '10; Sen '11)

Checks

$$
Z_{1-10 o p}^{Q \mathcal{V}}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}\right)\right), \quad a_{0}=\sum_{\text {multiplets }} a_{0}^{\text {multiplet }}
$$

Checks

$$
Z_{1-\text { loop }}^{Q \mathcal{V}}\left(\phi^{I}\right)=\exp \left(-a_{0} \mathcal{K}\left(\phi^{I}\right)\right), \quad a_{0}=\sum_{\text {multiplets }} a_{0}^{\text {multiplet }}
$$

- Large charge limit: $\quad S_{\mathrm{BH}}=\frac{A_{\mathrm{H}}}{4}+a_{0} \log A_{\mathrm{H}}$

Agrees with the on-shell results. (Sen et al)

Checks

$$
\overbrace{1-\operatorname{lo口p}}^{Q 2}\left(\phi^{2}\right)=\exp \left(-a_{0} / a_{0}=\sum_{\text {multiplets }} a_{0}\right. \text { multiplet }
$$

- Large charge limit: $S_{\mathrm{BH}}=\frac{A_{\mathrm{H}}}{4}+a_{0} \log A_{\mathrm{H}}$

Agrees with the on-shell results. (Sen et al)

- Microscopics of $\mathrm{N}=8$ string theory:

Truncation of $\mathrm{N}=8$ to $\mathrm{N}=2$ theory. Quantum BH entropy agrees with microscopic integer degeneracies exactly!
(A. Dabholkar, J. Gomes, S.M., '11 '14)

Can check that the 1-loop contributions of fields that are thrown away add up to zero.

$\frac{1}{2}$-BPS N=2 BH entropy: where do we stand?

$$
\begin{aligned}
Z_{\mathrm{AdS}_{2}}^{\mathrm{pert}}(q, p)=\int & \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I}\left(\phi^{0}\right)^{2-\frac{\chi}{12}} e^{-\mathcal{K}(\phi)} \times \\
& \times \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{Im} F\left(\phi^{I}+i p^{I}\right)\right) \\
\chi=2\left(n_{\mathrm{v}}+1\right. & \left.-n_{\mathrm{h}}\right)
\end{aligned}
$$

(cf. Ooguri-Strominger-Vafa '04, Denef-Moore '07, Sen, 1108.3842)

- Note: Still need to complete graviton calculation.
- This assumes a classical measure that has been derived for two-derivative theories.
(Cardoso, de Wit, Mahapatra '12)
- This formula implies a surprising cancellation of states in $\mathrm{N}=2$ string theory.

Resolution of topological string puzzle

Consider type II string theory on a CY3. The (perturbative) topological string partition function at strong topological string coupling $\lambda \rightarrow \infty$ is:

$$
F_{\mathrm{top}}=-i \frac{(2 \pi)^{3}}{6 \lambda^{2}} C_{A B C} t^{A} t^{B} t^{C}-\frac{i \pi}{12} c_{2 A} t^{A}+F_{G W}\left(\lambda, t^{A}\right)
$$

Resolution of topological string puzzle

Consider type II string theory on a CY3. The (perturbative) topological string partition function at strong topological string coupling $\lambda \rightarrow \infty$ is:

$$
F_{\text {top }}=-i \frac{(2 \pi)^{3}}{6 \lambda^{2}} C_{A B C} t^{A} t^{B} t^{C}-\frac{i \pi}{12} c_{2 A} t^{A}+F_{G W}\left(\lambda, t^{A}\right)
$$

Upon analytic continuation to weak coupling (supergravity regime), the correct expression is: (Pioline '06, Denef-Moore '07)

$$
\widetilde{F}_{\text {top }}=-i \frac{(2 \pi)^{3}}{6 \lambda^{2}} C_{A B C} t^{A} t^{B} t^{C}-\frac{\chi}{24} \log \lambda-\frac{i \pi}{12} c_{2 A} t^{A}+F_{G W}\left(\lambda, t^{A}\right)
$$

The puzzle is to interpret the log term (not associated to any order in perturbation theory).

Resolution of topological string puzzle

Consider type II string theory on a CY3. The (perturbative) topological string partition function at strong topological string coupling $\lambda \rightarrow \infty$ is:

$$
F_{\text {top }}=-i \frac{(2 \pi)^{3}}{6 \lambda^{2}} C_{A B C} t^{A} t^{B} t^{C}-\frac{i \pi}{12} c_{2 A} t^{A}+F_{G W}\left(\lambda, t^{A}\right)
$$

Upon analytic continuation to weak coupling (supergravity regime), the correct expression is: (Pioline '06, Denef-Moore '07)

$$
\widetilde{F}_{\text {top }}=-i \frac{(2 \pi)^{3}}{6 \lambda^{2}} C_{A B C} t^{A} t^{B} t^{C}-\frac{\chi}{24} \log \lambda-\frac{i \pi}{12} c_{2 A} t^{A}+F_{G W}\left(\lambda, t^{A}\right)
$$

The puzzle is to interpret the log term (not associated to any order in perturbation theory).
Resolution: arises in 1PI effective action of supergravity.
(See Dedushenko,Witten '14)

The exact N=2 BH entropy formula

$$
\begin{aligned}
& Z_{\mathrm{AdS}_{2}}^{\text {pert }}(q, p)=\int_{\mathcal{M}_{Q}} \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} M_{\text {class }}\left(\phi^{I}\right) \times \\
& \quad \times \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{ImF}\left(\phi^{I}+i p^{I}\right)\right) Z_{1 \text {-loop }}\left(\phi^{I}\right) \\
& Z_{1 \text {-loop }}=\exp \left(-\mathcal{K}\left(\phi^{I}\right)\left(2-\frac{\chi}{24}\right)\right), \quad \chi=2\left(n_{\mathrm{v}}+1-n_{\mathrm{h}}\right) .
\end{aligned}
$$

The exact N=2 BH entropy formula

$$
\begin{aligned}
& Z_{\mathrm{AdS}_{2}}^{\text {pert }}(q, p)=\int_{\mathcal{M}_{Q}} \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} M_{\text {class }}\left(\phi^{I}\right) \times \\
& \quad \times \exp \left(-\pi q_{I} \phi^{I}+4 \pi \operatorname{ImF}\left(\phi^{I}+i p^{I}\right)\right) Z_{1-\mathrm{loop}}\left(\phi^{I}\right) \\
& Z_{1 \text {-loop }}=\exp \left(-\mathcal{K}\left(\phi^{I}\right)\left(2-\frac{\chi}{24}\right)\right), \quad \chi=2\left(n_{\mathrm{v}}+1-n_{\mathrm{h}}\right) .
\end{aligned}
$$

$$
M_{\text {class }}=\left(\phi_{0}^{-2} \exp \left(-\mathcal{K}^{0}\left(\phi^{I}\right)\right)\right)^{\frac{\chi}{24}-1}
$$

The exact $\mathrm{N}=2 \mathrm{BH}$ entropy formula

$$
e^{S^{\mathrm{qu}}(q, p)}=\int_{\mathcal{M}_{Q}} \prod_{I=0}^{n_{\mathrm{v}}} d \phi^{I} e^{-\pi q_{I} \phi^{I}}\left|\lambda_{\mathrm{top}}\right|^{-2} e^{-\mathcal{K}^{0}}\left|Z_{\mathrm{top}}\right|^{2}
$$

$$
e^{-\mathcal{K}^{0}}=-i\left(X^{I} \bar{F}_{I}^{0}-\bar{X}^{I} F_{I}^{0}\right), \quad X^{I}=\phi^{I}+i p^{I}
$$

$$
Z_{\mathrm{top}}=\left(\frac{\lambda_{\mathrm{top}}}{2 \pi}\right)^{\chi / 24} e^{-2 \pi i F\left(X^{I}\right)}, \quad \lambda_{\mathrm{top}}=4 \pi / X^{0}
$$

$$
\chi=2\left(n_{\mathrm{v}}+1-n_{\mathrm{h}}\right)
$$

Why does the truncation work?

$\begin{array}{ll}\text { We kept: } \begin{array}{l}\text { zero modes of } 8 \\ \text { vector multiplets }\end{array} & -\frac{1}{2} \times 8\end{array}$
We threw away:

- Non-zero modes of 8 vector multiplets
- (15-8) vector multiplets
- 10 hyper multiplets
- 6 gravitini multiplets

$$
\begin{array}{cc}
+\frac{5}{12} \times 8 & \\
-\frac{1}{12} \times(15-8) & \text { Total } \\
+\frac{1}{12} \times 10 & 0 \\
-\frac{11}{12} \times 6 &
\end{array}
$$

- 1 gravity multiplet

