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Q: How many microstates are associated to a BH? 
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S.M., V. Reys, arXiv:1504.01400, B. de Wit, S.M., V. Reys, in progress.
Based on:

and on the work of:

Banerjee, Dabholkar, David, Denef, Gaiotto, Gomes,Gupta, Hama, Hosomichi, 
Jatkar, Lal, Mahapatra, Mandal, Moore, Pestun, Pioline, Shih, Yin, …

Sen (Quantum entropy function program), Ooguri,Strominger,Vafa (OSV), 
Cardoso, de Wit, Mohaupt;



Near-horizon region is an independent 
quantum system, fixed by charges

4d BPS black hole with charges (qI , p
I)
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Attractor geometry:
(Ferrara, Kallosh,  
  Strominger ’95)



exp(Squ
BH(qI)) ⇥ ZAdS2(qI) =

⇤
exp

�
� i qI

⇧
AI

⇥⌅reg

AdS2

• Saddle point evaluation        Squ
BH = Sclass

BH + · · ·

• Leading logarithmic one-loop corrections systematized.  
2(Sen + Banerjee , Gupta, Mandal, ’10-’14, Larsen, Keeler, Lisbão ’14, ’15).

Quantum BPS black hole entropy is an  
          functional integralAdS2 (Sen ’08)

Attractor entropy including local higher-derivative 
corrections. (Cardoso, de Wit, Mohaupt, ’98, … )



The functional integral localizes onto the  
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I(�) =
Z

M
dµO e�S+�QV

Duistermaat-Heckmann, Atiyah-Singer-Bott,  Berligne-Vergne, Witten (1980s), Pestun ’07

I(0) = I(1) =
Z

MQ

dµQO e�S Z
1-loop

(QV)

= {Q = 0}

Superalgebra   Q2 = L0 � J0 ⌘ H



Localization in supergravity
(A.Dabholkar, J.Gomes, S.M. ’10, ’11, ’14)

1. Describe the supergravity theory in a formalism which 
admits off-shell supersymmetry transformations.

2. Find all solutions of localization equations               ,  
    subject to                  boundary conditions.AdS2 � S2

Q = 0

3. Evaluate full supergravity action on these solutions    
    (including all higher derivative terms). 

4. Compute quantum measure on the solution space.



The fields of N=2 conformal supergravity

• appears in the action as

(conformal compensator)

e�K ⌘ �i(XI F̄I � X̄IFI)
p
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I
, (I = 0, · · · , nv) gµ⌫ ! �(x)�2

gµ⌫,
• nv + 1

(de Wit, van Holten, Van Proeyen ’80)

Can choose gauge
p

g = 1ore�K = 1• 

In this gauge, measures the size of e�K(XI) AdS2



The space of off-shell BPS solutions

•In vector multiplet sector, scalar fields go off-shell:
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The space of off-shell BPS solutions

•In vector multiplet sector, scalar fields go off-shell:

(A.Dabholkar,  
   J.Gomes, S.M. ’10)

 (R.Gupta, S.M. ’12)
•In the gravity multiplet sector, only solution is AdS2 � S2 .

Y

I

dXI M(XI)•Classical measure for scalar manifold

(Cardoso, de Wit, Mahapatra ’12)
has been computed. Does not scale with charges.

Localization manifold labelled by one parameter                         
                         for each vector multiplet     .XI�I ⌘ XI(r = 1)
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1-loop determinant is a function of 
dynamical scale of quantum supergravity

`2AdS = e�K(�I)The length scale at the center of AdS2

depends on the position in the localization manifold.

(Result for vector multiplets also in Ito, Gupta, Jeon 1504.01700)

Index theorem avector

0

= �ahyper

0

= � 1
12

 (Graviton multiplet in progress with B. de Wit, V. Reys)
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•Determinant of bQbV = (X, Kb X) + ( , Kf  )
related by linear algebra to determinant of Q2 = H

Q
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Sketch of computation

Eigenvalues of H encoded in index

=
X

n

a(n) e�it�n

ind(D10)(t) = TrX e�iHt � Tr e�iHt

•Separate fields into doublets of Q

X

 

D10 D01

QX

Q 

•Determinant of bQbV = (X, Kb X) + ( , Kf  )
related by linear algebra to determinant of Q2 = H

Q

Q



The index is captured by fixed points of H

ind(D
10

)(t) =
X

x=fixed pts of H

TrX, (�1)F
e

�iHt

det(1� @ex/@x)
.

Atiyah-Bott index theorem
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Euclidean AdS2 � S2

J0

Fixed points of 
H = L0 � J0

(ex = Hx)
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The index is captured by fixed points of H

ind(D
10

)(t) =
X

x=fixed pts of H

TrX, (�1)F
e

�iHt

det(1� @ex/@x)
.

Atiyah-Bott index theorem

L0

Euclidean AdS2 � S2

J0

Fixed points of 
H = L0 � J0

(ex = Hx)

indvec(D10) =
X

n�1

4n e�i tn/`AdS

Regularize determinant  
using zeta functions.

Degeneracies
Eigenvalues



Technical comments

QB Introduce (b,c) ghost system and BRST operator

Introduce                      with bQ = Q + QB
bQ2 = H = L0 � J0

• In supergravity, Q2 = L0 � J0 + �gauge

• Boundary modes (“pure” gauge modes that do not 
  vanish at the boundary) need to be treated separately.

(See e.g. Banerjee, Gupta, Sen ’10; Sen ’11)
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Checks

SBH =
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+ a0 log AH• Large charge limit:

Agrees with the on-shell results. (Sen  et al)

Z
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(�I
) = exp

�
�a

0

K(�I
)

�
a0 =

X

multiplets

amultiplet
0,

Can check that the 1-loop contributions of fields that are  
thrown away add up to zero. 

• Microscopics of N=8 string theory: 

Truncation of N=8 to N=2 theory. Quantum BH entropy 
agrees with microscopic integer degeneracies exactly!

(A. Dabholkar, J. Gomes, S.M., ’11  ’14)

QV



  -BPS N=2 BH entropy: where do we stand?

⇥ exp

⇣
� ⇡ qI �I

+ 4⇡ ImF (�I
+ ipI

)

⌘

� = 2(nv + 1� nh)

Zpert
AdS2

(q, p) =
Z nvY

I=0

d�I (�0)2�
�
12 e�K(�)⇥

(cf. Ooguri-Strominger-Vafa ’04, Denef-Moore ’07, Sen, 1108.3842 )

• This formula implies a surprising cancellation of 
states in N=2 string theory.

• This assumes a classical measure that has been  
derived for two-derivative theories. 

(Cardoso, de Wit, Mahapatra ’12)

• Note: Still need to complete graviton calculation.

1
2



Resolution of topological string puzzle
Consider type II string theory on a CY3. The (perturbative) 
topological string partition function at strong topological  
string coupling              is:
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Upon analytic continuation to weak coupling (supergravity 
regime), the correct expression is: 

eF
top
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(2⇡)

3

6�2

CABC tA tB tC � �

24

log �� i⇡

12

c
2A tA + FGW (�, tA)

The puzzle is to interpret the log term (not associated to 
any order in perturbation theory).

(Pioline ’06, Denef-Moore ’07)

Resolution: arises in 1PI effective action of supergravity.
(See Dedushenko,Witten ’14)



The exact N=2 BH entropy formula

⇥ exp

⇣
� ⇡ qI �I

+ 4⇡ Im F

�
�I

+ ipI
�⌘

Z
1-loop

(�I
)

Z
1-loop

= exp

⇣
�K(�I

)

�
2� �

24

�⌘
, � = 2(n

v

+ 1� n
h

) .

Zpert
AdS2

(q, p) =
Z

MQ

nvY

I=0

d�I Mclass(�I)⇥



The exact N=2 BH entropy formula

Mclass =

�
��2

0 exp(�K0
(�I

))

� �
24�1

(Cardoso, de Wit, Mahapatra ’12)at first order in large charges.
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The exact N=2 BH entropy formula

eSqu
(q,p) =

Z

MQ

nvY

I=0

d�I e�⇡ qI �I

|�
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|�2 e�K
0

|Z
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|2

.
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Z
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⌘�/24

e�2⇡iF (XI
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�
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I � X̄IF 0
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Why does the truncation work?

�1
2
⇥ 8We kept: zero modes of 8   

vector multiplets

• (15-8) vector multiplets 

• 10 hyper multiplets 

• 6 gravitini multiplets 

• Non-zero modes of 8   
 vector multiplets

We threw away:

• 1 gravity multiplet

� 1
12
⇥ (15� 8)

+
1
12
⇥ 10

�11
12
⇥ 6

+2

+
5
12
⇥ 8

Total  
   0


