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Aim of the talk

Evolution of the space-time is governed by Einstein equations

Rµν −
R

2
gµν = 0

These equations are very difficult to solve in general and it is
always useful to have new solution-generating techniques.

In this talk, our aim is to find new perturbative solutions to
Einstein equations.

We shall use the number of dimensions as a perturbation
parameter.
Hence the new solutions would be a series in 1

D .
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Our final result

We found a class of such perturbative solutions with the following
properties.

Solutions have a space-time singularity, but always behind a
dynamical event horizon.

Event horizon could be viewed as a fluctuating membrane
embedded in flat-space-time with a ‘velocity’ field on it.

Space-time would be regular everywhere outside the event
horizon only if
the dynamics of the membrane and the ‘velocity’ field satisfy
some particular set of equations.

In large dimensions effectively there is one-to-one map between the
dynamics of a membrane and solutions to Einstein equations.
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Plan of the talk

First we shall explain how large dimension simplifies the
solution.
To understand this point we shall study Schwarszchild Black
Hole at d →∞ limit.

Next we describe our set-up

Then we explain the algorithm we used to generate the
perturbative solutions

Finally we present our results.
The explicit form of the metric and the membrane-equations
at first non-trivial order

Ongoing works and Future direction
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Schwarszchild Black Hole as D →∞

The metric of the Schwarszchild BH:

ds2 = −dt2 + dr2 + r2dΩ2
D−2 +

( r0
r

)D−3
(dt + dr)2,

Naive large D limit:

at fixed r > r0, limD→∞
(

r0
r

)D−3
= 0

But suppose r = r0
(
1 + R

D

)
That is we tune r nearer to r0 as we take D →∞
Now at fixed R

lim
D→∞

( r0
r

)D−3
= lim

D→∞

(
1 +

R

D

)D−3

= e−R

⇒ ds2 = ds2
flat + e−R(dt + dr)2

Metric departs from flat space-time only within a thin region
of thickness

(
r0
D

)
around the horizon.
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QNM analysis around Schwarszchild BH as D →∞
At large D there are two sets of QNM at every angular momentum.
Emparan, Suzuki, Tanabe arXiv:1502.02820

1 An infinite tower of non-decoupled modes:

These modes have frequency of order O
(

D
r0

)
and behaves as

radiation at large r .

2 A few decoupled modes:

These modes have frequency of order O
(

1
r0

)
and fall off

exponentially at large r .

From this analysis we learned that

Decoupled modes are parametrically separated from the
others.

Therefore it is possible to complete their dynamics to full
non-linear level without exciting the non-decoupled ones

Our construction essentially captures the non-linear dynamics of
these decoupled modes in an expansion in 1

D
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When dimension could be used as perturbation parameter

As D →∞ both the number of equations and the functions
(to be solved) becomes infinite.

No perturbation would work if the number of functions to be
solved also changes with the perturbation parameter.

Therefore

We shall restrict ourselves to solutions with SO(d + 1)
isometry, such that

Total dimension = D = d+p+3 and as d →∞, p remains finite

.

Only a finite (p + 3) dimensional subspace of the full
space-time will be dynamical.
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The set-up

D = d + p + 3, ds2 = ds2
p+3 + e2φdΩ2

d

where dΩ2
d = Metric of a unit d dimensional sphere

ds2
p+3 = gµνdx

µdxν , {µ, ν} = {0, 1, 2, · · · , p + 2}

Here gµν(xα) is the (p + 3) dimensional metric (the
dynamical part).

In the remaining d dimensions, SO(d + 1) isometry fixes the
metric to (dΩ2

d ) upto an overall radius eφ(xµ).

From the point of view of (p + 3) dimensions, the basic
variables:

1 (p + 3) dimensional metric: gµν(x)
2 Scalar field: φ(x)
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Strategy

From the study of Schwarszchild BH we learned,

The decoupled modes are effectively confined within a thin
region of order O

(
1
d

)
around the horizon.

And therefore if we excite only the decoupled modes, the
space-time outside this region will remain flat.
(We shall call this region ‘membrane region’.)

Now our strategy:
1 Start with a global ansatz for gµν that has a nontrivial

‘membrane-region’.
2 Zoom into the membrane region by scaling the coordinates

and the distance appropriately.
3 Ensure that the ansatz solves the Einstein equations at leading

order in O
(

1
d

)
expansion inside this membrane region.

4 Correct the ansatz order by order so that it continues to solve
the equations.
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Step-1: Global ansatz

Start with a global ansatz

gµν = ηµν + ψ−(d+p)OµOν

Here
{µ, ν} = {0, 1, 2, · · · , p+2} ηµν = Diagonal(−1, 1, 1, · · · )
The ansatz is parametrized by a free function ψ and a
one-form Oµdx

µ (both functions of global coordinates)

Next we have to identify the membrane region for this ansatz
metric.
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Identifying the membrane region

Ansatz: gµν = ηµν + ψ−(d+p)OµOν

The metric has a singularity at ψ = 0 for every value of
(d + p)

As d →∞ the metric blows up for ψ << 1
and it approaches Minkowski metric ηµν for ψ >> 1

Only when |ψ − 1| ∼ O
(

1
d

)
, the deviation of the metric from

flat space-time is non-trivial yet finite.

ψ = 1 +
Φ

d
, Φ ∼ O(1), ⇒ lim

d→∞
ψ−d = e−Φ

Clearly this ansatz has a ‘membrane region’ of thickness
O
(

1
d

)
around ψ = 1
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Zooming into the membrane region

We want to blow up the membrane region
We shall do this in the following way.

1 Decompose the membrane into many small patches, each of
size ∼ O

(
1
d

)
2 In every patch, scale the coordinates by d
3 Then scale the distance by d2 and the one-form dφ by d so

that they remain finite as we take d →∞
We shall refer to these coordinates as ‘patch coordinates’, whereas the original xµ coordinates shall be

called ‘global coordinates’

In terms of equations:

xµ = xµ0 +
Xµ

d
, ds2 =

1

d2
ds2

patch, dφ =
χ

d

Here xµ0 is some arbitrary point on the membrane.

ds2
patch = GµνdX

µdX ν with Gµν being the finite metric inside
the membrane region.
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Equations in ‘patch coordinates’

Our strategy is as follows:

Solve Einstein equations in each patch as a series in
(

1
d

)
Join them smoothly to get the global solution.

The equations in ‘patch coordinates’ take following form:

1

2
∇µχµ =

(
d − 1

d

)
e−φ − χµχµ

4

Rµν =
1

2
(∇µχν +∇µχν) +

1

4d
χµχν

Rµν = Ricci tensor for scaled metric Gµν

Note that the equations have non-trivial d dependence.

We shall choose eφ itself as one coordinate: S = eφ

This choice completely fixes the functional form of χ

χ = d

(
dS

S

)
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Initial choice of membrane

We should emphasize that there is no ‘real’ membrane in the
space-time.

Therefore at this stage we can choose any surface in the
membrane region to be our ‘membrane’.
Two choices will differ only at order O

(
1
d

)
We shall choose the membrane to be at ψ = 1
This implies that the ‘patch coordinates’ are defined around
some arbitrary point xµ0 on ψ = 1 surface.

Now we shall describe the method we have used to solve these
equations in a series in

(
1
d

)
.
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Step-2: Expansion in patch coordinates

Expand the ansatz in Taylor series around an arbitrary point
{xµ0 } on the membrane

Scale the coordinate and the metric to zoom inside the
membrane region.

Expansion of ψ and Oµdx
µ in patch coordinates:

Patch coordinates are defined as xµ = x
µ
0 + Xµ

d

ψ = 1 +

(
Xµ

d

)
[∂µψ(xµ0 )] +O

(
1

d

)
, Oµ = Oµ(xµ0 ) +O

(
1

d

)
Ansatz at leading order:

⇒ ψ−(d+p) = e−Xµ[∂µψ(xµ
0 )] +O

(
1

d

)
⇒ Gµν = ηµν + e−Xµ[∂µψ(xµ

0 )] Oµ(xµ0 )Oν(xµ0 ) +O
(

1

d

)
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Step-3: Ansatz as a leading solution

Gµν = ηµν + e−Xµ[∂µψ(xµ
0 )] Oµ(xµ0 )Oν(xµ0 ) +O

(
1

d

)

The leading ansatz is parametrized by two constant one-forms.

Oµ(x0), dψ(x0)

It turns out that the leading ansatz will solve the equations
provided

O · O|xµ
0

= 0, O · [dψ − χ]|xµ
0

= 0

(dψ) · [dψ − χ]|xµ
0

= 0,

Here ‘·’ denotes contraction with respect to ηµν

Since xµ0 is any arbitrary point on the membrane, the above
three relations must be true everywhere on the ψ = 1 surface
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Parametrization of Oµ and ψ: The data at zeroth order

It is convenient to parametrize O and ψ in the following way

ψ = 1 +
(

dB·dS
SdB·dB

)
B where B = 0 is the membrane.

Oµ = eH
(
−uµ +

∂µψ√
dψ·dψ

)
, u ·u = −1, u ·dψ = 0, u ·χ = 0

Advantages of this parametrization:
1 O and ψ automatically satisfy the three constraints, mentioned

in the previous slide.
2 Since u · dψ = 0, we could identify uµ as a four-velocity field

defined along the surface of the membrane.
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Some gauge freedom:

Two ansatz that differ at order O
(

1
d

)
will be considered as

equivalent starting point.
Now to specify our ansatz at leading order, only data that are
required.

1 The equation of the membrane (equivalently the one form dψ
along the surface)

2 Null one-form Oµ defined only on the membrane.

This does not specify the function ψ or one-form Oµ
everywhere in the space-time.
Away from the surface we could extend them in many
different ways.

But two different extensions will change the ansatz only at
order O

(
1
d

)
and therefore will be equivalent starting point.

We fix this freedom by imposing that both Oµ and dψ do not
change as we move along the normal to the membrane.

∂µψ∂µOν = 0, ∂µψ∂µ∂νψ = 0
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Step-4: Next to leading order

Recall that for leading order we expanded ψ upto first order
and Oµ at zeroth order.

Therefore now we have to expand ψ upto 2nd order and Oµ
upto 1st order in patch coordinates.

We shall call the expansion coefficients ‘first order data’.

So the‘ first order data’ consists of 2nd derivatives of ψ and
1st derivatives of Oµ evaluated at xµ0 .

Recall that our ansatz has a SO(p) symmetry in the directions
perpendicular to dψ, dS and uµ.
For explicit computation we use this symmetry to classify the
first order data as scalar, vector or tensor according to their
transformation property

At this order all first order data will be treated as constants.
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Next to leading order

Now this expanded ansatz will not solve the equations at
order O

(
1
d

)
So we have to add corrections to the metric.

Gµν = G (ansatz)
µν

[
Expanded till order O

(
1

d

)]
+

hµν
d

Schematically at order O
(

1
d

)
, the equations (once evaluated

on the above metric) will take the following form

Differential Operator[hµν ] = Source

We have to solve these equations subject to the conditions

Regularity inside the membrane region.
Exponential fall off as (ψ − 1) >> 1

d
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Event horizon and regularity of the metric

We could argue that the event horizon of this space-time lies
within the membrane region.

The intuition is as follows.

We expect the dynamical space-time will eventually settle
down to some stationary solution of Einstein equations.
Then event horizon could be determined as the unique null
surface that at late time joins the event horizon of this final
stationary solution.
And we know at large d , the event horizons of these stationary
solutions are always within their respective membrane regions.
Since dynamics is also always confined within the membrane
region, it follows that event horizon will remain inside this
region for all time.
We could determine its position in a series in

(
1
d

)
We shall demand that metric is regular everywhere on and
outside the event horizon. This condition eventually gives the
equation for the membrane.
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Solving at next to leading order

Equations in schematic form: Differential Operator[hµν ] = Source

Naively these are complicated linear PDEs with source,
but we know that the leading ansatz varies only along one
direction, ∂µψ

Choose this direction to be one patch coordinate.
R = d × (ψ − 1)

With this choice,

Leading order ansatz ∼ a ‘black-brane’ with a translationally
invariant horizon at R = 0.

1
d expansion of the ansatz ∼derivative expansion along the

directions, tangent to the brane

Very similar to what we had in ‘Fluid-Gravity correspondence’.
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Next to leading order

Equations in schematic form: Differential Operator[hµν ] = Source

It turns out that in this R coordinate, the Source depends
only on R .

Therefore only R dependent hµν will be enough to cancel the
source.

This reduces the equations for hµν(R) from PDE to linear
coupled ODEs with source

Now we do a further coordinate redefinition

We choose 3 of the p + 3 dynamical coordinates in the three
special directions associated with the leading black-brane

1. dψ(x0), 2. O(x0) and 3. dψ(x0)− χ

Rest of the p coordinates are chosen in the directions
perpendicular to these three special directions.

It turns out that we could easily decouple the ODEs in these
coordinates and solve them explicitly.
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Next to leading order: Regularity

Generically the solution for hµν(R) has a logarithmic
singularity at the point where norm of dR vanishes.
This is the position of the event horizon at leading order

It turns out that we could construct a regular solution only if
the ‘first order data’ satisfy some equations

Recall that the first order data consists of the derivatives of
dψ and Oµ in the directions along the membrane.

These equations ( imposed by regularity) involve the extrinsic
curvature of the membrane and the velocity field hidden in Oµ.
These are the leading ‘equations of motion’ for the dynamic
membrane and the velocity field uµ
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The final step

We solve for hµν(R) after imposing the equations of motion
on the first order data.

We impose the boundary condition that the solution should
have exponential fall-off as R →∞
Finally we lift the solution to global form using

Inverse transformation from patch coordinate to the global
coordinates.
Replacing the special point (xµ0 ) by some arbitrary point xµ

(not restricted to the membrane).
The difference here will be exponentially suppressed outside the membrane region and inside the

membrane region it will be of higher order in
(

1
d

)
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Final Result: Equation of motion

The equation of motion takes the following form.

UµUν

(
S

ns

)
Kµν = n2

s − 1 Scalar equation

UµPνα
(
∂µuα −

S

ns
Kµα

)
= 0 Vector equation

S = Radius of the large d dimensional sphere

nµ =
∂µψ√
dψ · dψ

, ns = n · dS , Uµdx
µ =

ds

ns
− nµdx

µ − uµdx
µ

Pµν = Projector perpendicular to ds, n, u

Kµν = extrinsic curvature of the membrane

uµ = Velocity along the membrane

Note the vector eqn has p independent components.

So we have p + 1 eqns for total p + 1 variables, namely the
shape of the membrane and p components of the velocity.
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Final Result: Metric

ds2 =
(
ηµν + ψ−(d+p)OµOν

)
dxµdxν

+

(
ψ−d

d

)
(Oµdx

µ)

[
K1(x)Oν + 2K2(x)(∂νψ − χν) + 2Kα(x)Pαν

]
dxν

+O
(

1

d2

)

K1, K2 and Kα are simple quadratic polynomials in d(ψ − 1)

The coefficients in these polynomials are different linear
combination of the first order data
(i.e., The components of the extrinsic curvature and the derivatives of the velocity field)

K1 and K2 depend on the scalar piece of data whereas Kα
depends on the vector data.
(Scalar and Vector decomposition has been done with respect to the spatial SO(p) symmetry)
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Checks

Matching with known stationary solutions:

Schwarzschild solution and Kerr solution are known in arbitrary
dimension.
We could take large d limit on these solutions and read off ψ
and Oµdx

µ.
We have explicitly checked that they satisfy our equations of
motion at leading order.
We have also checked that Schwarzschild solution expanded
upto order O

(
1
d

)
match with our answer for the metric.

Spectrum:

We have linearized the equations of motion around ψsch and
Osch and computed the spectrum.
We have checked that the spectrum matches with the
spectrum of the decoupled modes, computed by Emparan,
Suzuki and Tanabe in arXiv:
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Ongoing work

This method could be generalized to Einstein-Maxwell system.

In this case, apart from ψ and Oµ we have one more scalar
function, parametrizing the charge.

Here also we get the equations of motion from the condition
of regularity.

We have some preliminary results about the equations of
motion in this case.

We found two scalar and one vector equations as expected.
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Future Direction

It would be nice to understand the equations of motion more
physically.
For example, it would be very interesting if we could find
some exact equivalence between these equations and the real
equations of moving membrane in terms of its extrinsic
curvature and surface velocity.

It would be very interesting to find out how this dynamical
horizon radiates gravitational waves, within our set-up of large
d expansion.

It would be interesting to see how horizon area increase
theorem leads to entropy production in this this set-up.

Finally it would be great if we could somehow connect and
use this formalism to real astrophysical phenomenon in four
dimension.
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Thank You
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