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@ Conformal symmetry powerful tool: strongly constrains dynamics even in d > 2.
@ Completely non-perturbative tool to study field theories
> Does not require SUSY, large N, or weak coupling.
@ In D = 2 conformal symmetry enhanced to Virasoro symmetry
> Allows us to completely solve some CFTs (¢ < 1).
© Long term hope: generalize this to d > 2?

SUSY: “Bootstrapping” the Bootstrap

» SUSY provides additional non-perturbative constraints.

» Correlators of protected operators have a lot of structure but also depend on
unprotected spectrum.

Results
» Universtal bounds on unprotected operators in 4-supercharge theories in2 < d < 4.
> Several “kinks/features” corresponding to one known and two unidentified theories.

> “Precision spectrometry” of 3d (N = 2) analog of “Ising model”.
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1
> Associativity of OPE leads to crossing symmetry: (010,0:04)
=
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So how do we check crossing symmetry in practice?

Correlator of four identical scalars: (Pp(x1)d(x2) P (x3)Pp(x4)) dim(¢) = Ay

Check crossing symmetry assuming some set of possible operators S = {(Ax, )}

Sum with non-negative coefficients (C§)¢)2 >0:

12;34 14;23
Z (C1;¢) (GAk () = G (u v)) =0 (1)
OresS
FAkv’k (u,v)
Consider space, M = R, of diff operators: a@ = Zm o Qi amar
> S defines a convex subspace, M s via constraints:
a (Fag,(u,v)) >0 V(AL k) €S

> If M non-empty then S is not a valid CFT spectrum.
= eqn. (1) cannot be satisfied because (Cy)? > 0.
> M depends only on operator (A, £) not OPE.

» Efficient (deterministic) numerical techniques exist to find such convex subspaces.



The “Landscape” of CFTs

Constraints from Crossing Symmetry

Constraining the spectrum

Figure : S: a putative spectrum in D = 3 > Unitarity implies:

A>3 (=o),

A>1+d—2 (1>0)

/4 > “Carve” landscape of CFTs
e by imposing gap in scalar
/ sector.
i - > Fix lightest scalar: o.
-

L =" Unitarity Bound > Vary next scalar: e.

€ —1— B ; > Spectrum otherwise
s Gap unconstrained: allow any

O ———4 other operators.
0 ‘ ‘ ‘ L
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Is crossing symmetry consistent with a gap?
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Constraining Spectrum using Crossing Symmetry

Is crossing symmetry consistent with a gap?

1 . .
Is (01020304) consistent with (0 xo~1+e+ ... J 2?
-

Crossing symmetric values of o-¢

» Certain values of o, € inconsistent with
crossing symmetry.

» Solutions to crossing:

@ white region = 0 solutions.
© blue region = oo solutions.
@ boundary = 1 solution (unique)!

» Can read off unique solution at
boundary.

> Ising model special in two ways:

1'(950 055 060 065 070 075 0.80 Ar @ On boundary of allowed region.
Blue = solution may exists. © Atkink in boundary curve.
White = No solution exists.
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Consider “minimal” A/ = 1 SUSY in d = 4 and its dim reduction.

> Gives N = (2,2)ind =20or N =2ind = 3.

> Relation via dim reduction means many shared features and universal treatment.
Defining SUSY in “fractional” d:

@ We will only consider scalar quantities (correlators, conf blocks).

@ Formally define super-conformal algebra in any d < 4:

Pi7 Kiy D7 M’:/v Qi Si MM

a/ar Pa/ar

with a/& = 1,2,i=1,...,d, and “transverse” i=d+1,...,4
@ Imposing super-Jacobi identities at the level of traces fixed algebra.
© Important to keep M,-Mj to satisfy super-Jacobis.

@ Using associated superconformal Casimir can determine superconformal blocks for
continuous 2 < d < 4 (in terms of conformal blocks).

@ Caveat: fractional dimensional theories have issues with unitarity but this is usually
for high dim ops and does not seem to effect us.
[Hogervorst, Rychkov, van Rees].



Theories with Four Supercharges

Bootstrapping Theories with Four Supercharges

Some nice properties:

@ SUSY algebra contains U(1) R-charge and this gives stronger unitarity bound. E.g.

for scalars:
A= <%) R, A> (%) IR| +d—2



Theories with Four Supercharges

Bootstrapping Theories with Four Supercharges

Some nice properties:

@ SUSY algebra contains U(1) R-charge and this gives stronger unitarity bound. E.g.
for scalars:
-1 -1
A= <dT> R, A> (%) R +d—2

@ Chiral operator is annihilated by half supercharges and saturates unitarity bound.



Theories with Four Supercharges

Bootstrapping Theories with Four Supercharges

Some nice properties:

@ SUSY algebra contains U(1) R-charge and this gives stronger unitarity bound. E.g.
for scalars:
-1
A= <dT> R, A> ("2 ) R +d—2

@ Chiral operator is annihilated by half supercharges and saturates unitarity bound.

@ Superpotential has R = 2 so in simple cases (only one chiral field) can fix A:
W=a

implies superfield ® has R = 2/3 and A = (‘1—)

3



Theories with Four Supercharges

Bootstrapping Theories with Four Supercharges

Some nice properties:

@ SUSY algebra contains U(1) R-charge and this gives stronger unitarity bound. E.g.
for scalars:
-1 -1
A= <dT> R, A> (%) R +d—2

@ Chiral operator is annihilated by half supercharges and saturates unitarity bound.

@ Superpotential has R = 2 so in simple cases (only one chiral field) can fix A:
W=a
implies superfield ® has R = 2/3 and A = (%)

@ If more than one field (e.g. X¥?) can use a- or F-maximization to compute
R-charge.



Theories with Four Supercharges

Bootstrapping Theories with Four Supercharges

Some nice properties:

@ SUSY algebra contains U(1) R-charge and this gives stronger unitarity bound. E.g.
for scalars:
-1 -1
A= <dT> R, A> (%) R +d—2

@ Chiral operator is annihilated by half supercharges and saturates unitarity bound.

@ Superpotential has R = 2 so in simple cases (only one chiral field) can fix A:
W=a

implies superfield ® has R = 2/3 and A = (%)

@ If more than one field (e.g. X¥?) can use a- or F-maximization to compute
R-charge.

@ Possibly experimentally realizable in various condensed matter systems:
= surfaces of topological insulators. [Ponte-Lee, Grover et al]
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» This is SUSY version of ¢* theory!



Results/Checks

Bootstrapping Theories with Four Supercharges

SUSY also imposes interesting dynamical constraints on theory

» WZ model: chiral superfield X = ® 4- ... with cubic superpotential:

R-charged scalar spectrum (left) and OPE (right)
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SUSY also imposes interesting dynamical constraints on theory

» WZ model: chiral superfield X = ® 4- ... with cubic superpotential:

» SUSY eqns %—‘;’ = 0 implies ®> should decouple in theory.

R-charged scalar spectrum (left) and OPE (right)
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Bootstrapping Theories with Four Supercharges

SUSY also imposes interesting dynamical constraints on theory

» WZ model: chiral superfield X = ® 4- ... with cubic superpotential:

» SUSY eqns g—‘;’ = 0 implies ®> should decouple in theory.

R-charged scalar spectrum (left) and OPE (right)
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Cr exactly computable (in d = 3) via localization of squashed-sphere partition function:

Cr/CE ~ 0.7268 (localization)
Cr/Ci™ ~ 0.72652(33) (numerics)
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Figure : Substrate over topological insulator (left), Josephson junction on topological
insulator (right). [Ponte, Lee]
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Figure : Substrate over topological insulator (left), Josephson junction on topological
insulator (right). [Ponte, Lee]

This theory is conjectured to describe a superconducting quantum critical point on
2 + 1d surface of 3d topological insulator [Ponte, Lee].

» Topological insulator gapped in 3d bulk but has massless 2 + 1d fermionic edge
modes.

> Boson emerges via Hubbard-Stratonovich mechanism (for 4* interaction) and has
dynamically generated kinetic terms.

> Boson/fermion mass can be tuned (e.g. d above) experimentally to give SUSY.
» SUSY + Lorentz emerge in IR.

Even a Science paper on this [Grover, Sheng, Vishwanath].
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Third Kink
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Other Kinks

New Theories?

In addition to kink at Ag = % there seem to be ~ 2 more kinks.
Second Kink
@ Second kink appears at Ag = % for3 <d <4.
@ This point kinematically special because two protected ops in coincide:
DXP~D+ QT ...
at Agp = % get Ago = Ay and Ay = "%2 so U free!
@ Not clear if 2nd kink physical or kinematical artefact.

3.0
2.5

4 2.0
15

1.0
Third Kink s oi,s 017 0.8 019
@ Seemstoexistforall2 <d < 4.
@ First observed in 4d by [Poland, Simmons-Duffin, Vichi].
@ Anom dimensions always large (so no e-expansion).
@ Also exhibits ®* = 0.




Some detatls. ..

(time allowing)
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Superconformal Blocks

Bootstrapping Theories with Four Supercharges

How can we include (4 supercharge) SUSY constraints in bootstrap?

@ Superconformal Casimir acting on correlator (with at least two external primaries)
can be used to generate diff. equ. for superconformal block.

@ This yields superconformal blocks for whole SUSY multiplet:
Ga=Gag+ c1Gati+1 + 2Gati,—1 + c3Gatay

with c1, ¢z, c3 fixed by SUSY.
@ Dimension d appears as tunable (continuous) parameter in conf blocks Ga ;(u, v).
@ Susy coefficients ¢; known in d = 2, 4 (with equal external dim) but we find more

general and universal form ford = 2 — 4.

[Poland-Simmons-Duffin, Fitzpatrick et al]
(NOTE: Naive interpolation does not work!!)

@ We can analyse crossing symmetry bounds in fractional dimension

= useful to study how structures depend on d and e.g. compare with e-expansion.

Can now try to bootstrap (®®®®) and check allowed gap in OPE:

OXx D~ 1+ [®D] +...
~—~—

like old €
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SUSY Bootstrap Details

Bootstrapping Theories with Four Supercharges

Let @ be complex chiral scalar field so A = (%) R and consider
(@(x1)P(x2) @ (x3) @ (x4))

» & carries R-charge so can decompose OPE in reps of R-charge:

(12,34), (14,23) channels: DX P~ (Opmo+...)+ > (Ormo+...),
even £ odd ¢

(13,24) channel: XD~ Y Opma
even £

> In (13,24) channel contracting identical operators so only even spin (and R = 2).
> (12,34) & (14,23) channels differ only in sign of odd spin blocks.
> ’...7in (12,34),(14,23) channel mean SUSY descendents

= Will give SUSY blocks Ga ; when expanding 4-pt function in these chanenls.
» Only one component of a multiplet appears in (13,24) channel

= only ordinary Ga; in 4-pt function.
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SUSY Bootstrap Details

Bootstrapping Theories with Four Supercharges

Can repackage 3 channels into vector equation:

Fau Fay 0
2 = 2 = 2
E Cozo | Fau |+ E Cozo | —Fas |+ E Coao Fay =0
R=0,] even Ha, R=0, 0dd —Hay R=2 —Hnay
with
> Basic “crossing equation” encoded in Fa; = (v2*Ga(u,v) — u®* Ga(v,u))

(and H ~ v G + u G a symmetric variant).
» F,H supersymmetrised version of F, H (with G — G).
> F,H have (—1)" in SUSY descendents.
Spectrum:
> In R = 0 we allow all operators above unitarity: A > Auniarity -

» In R = 2 channel SUSY (+R-charge) fixes dims of some terms in & x & OPE:

BDXP~ 14+ Uyong o+ +...

> °...7 operators satisfy A > |2Ag — (d — 1)| + 1+ (d — 1) so gap for small Ag.
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Conclusion

Comments, Experimental realization, etc. . .

» Four supercharge bootstrap should allow us to “solve” critical WZ-model.
» This theory is conjectured to describe a superconducting quantum critical
point on 2 + 1d surface of 3d topological insulator.
[Ponte-Lee, Grover-Sheng-Vishwanath]
» We also found two additional features for 2 < d < 4 which may
correspond to physically interesting theories.
» “Third kink™ already observed in d = 4 by [Poland, Simmons-Duffin,
Vichi] but seems to persistin d < 4.
> New strongly coupled fixed point?
> Non-Lagrangian?
» Methods used here should generalize to 8 supercharge theories in
2 <d < 6 (“in progress”).
» Clearly lots left to explore in d = 2, 3, 4!



Thanks



SUSY Bootstrap Details

Bootstrapping Theories with Four Supercharges

Operators we allow in & x & OPE
(dashed line only in scalar channel)

D i i
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Origin of Kinks?

What is special about Ising model in d = 27
» In d = 2 Virasoro strongly constrains spectrum.

» Minimal models (¢ < 1) have few (Virasoro) primaries in short
representations of Virasoro.

» Ising model has only two Virasoro primaries: |o) and |€).
» Virasoro decendant
T = (La+nL2))le)
is a spin 2 SL(2, C) primary for certain values of .
» Correct value of 1 depends on c.
» Norm of 7’ fixed by Virasoro.

> T’ becomes null at ¢ = 1 (or Ay = 3)

(7'|1') = 0

» Note for 2d Ising: A, = é and A, = 1 so Ay = 3.



Null States?

Origin of Kinks?

What is special about Ising model in d = 27

>

>

In d = 2 Virasoro strongly constrains spectrum.

Minimal models (¢ < 1) have few (Virasoro) primaries in short
representations of Virasoro.

Ising model has only two Virasoro primaries: |o) and |e).

» Virasoro decendant

T' =Ly +1L2))le)
is a spin 2 SL(2, C) primary for certain values of .

Correct value of 1 depends on c.

» Norm of 7’ fixed by Virasoro.

T’ becomes null at ¢ = § (or A, = §)

(7'|1') = 0

Note for 2d Ising: A, = é and A, = 1 so Ay = 3.

» Does SL(2, C) bootstrap “know” about null states??
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To study this lets return to non-SUSY bootstrap.
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Spin 2 spectrum ind = 2, 3.

Origin of Kinks?
To study this lets return to non-SUSY bootstrap.

Recall can extract spectrum (as a function of A,) for all points on the boundary.

2d spectrum (spin 2) 3d spectrum (spin 2)
12 d=2, |=2 spectrum @ min C; (153 comp.) 1 1=2 spectrum @ min C;. (105 comp.)
7 T T T 1; T o T
i;— _ 1 L 5 J\--w—...,...HM
[ : - 1 13f \
of ] i |
sl ] 11k Al
N _10f \
< 7 U < 9f 3 L
6 8 /\
L 7
j 6 2
r 5
sl 4 1 \\WN...
2 0.1‘200 0.1‘400 0.1%00 0.1‘800 0.2000 0.5160 0.5‘170 0.5‘180 0.5‘190 0.5200
A(o) A(o)

» Sudden “disappareance” of A =2 3 spin-2 op due to Virasoro null state.
» Spin 2 spectrum in 3d has very similar structure!

[Is d=3 kink also related to a null state decoupling? J
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Bootstrapping Theories with Four Supercharges

In non-SUSY 3d Ising found interesting (surprising) kinematical structure.
What about SUSY case?

Bounds on Spin 1*
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In non-SUSY 3d Ising found interesting (surprising) kinematical structure.
What about SUSY case?

Bounds on Spin 1*
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(*Because of susy T, and T

%

are actually SUSY descendents in spin 1 multiplet.)

SUSY analog of 3d null states!!



solving cfts on the boundary via crossing

extremal functional method

v

study crossing symmetry of (cooo) correlator.
» impose gap in scalar spectrum (no other assumptions).

v

find that ising model corresponds to maximal allowed gap

(—> unique solution to crossing! ]

» extract spectrum & ope coefficients of ising model.

v

note: this can be used with any cft on boundary.

1
(%‘.50 055 060 065 070 075 O.SOA‘T



OPE Bounds & central charge minimization

What else can we bound?

Bootstrap allows us to:

» Consider arbitrary CFT data S = {(A;, 4;), Cijx }-

» Check if this S is consistent with crossing sym of (cooo).
We can additionally impose:

» Global symmetries e.g. O(N), ...

» SUSY when form of superconformal blocks constrained.

Kinds of bounds we can place on S:

oxo~1+C ()+ - +ChTuw+...

Can bound dimension of first scalar on A, (or any /).



OPE Bounds & central charge minimization

What else can we bound?

Bootstrap allows us to:

» Consider arbitrary CFT data S = {(A;, 4;), Cijx }-

» Check if this S is consistent with crossing sym of (cooo).
We can additionally impose:

» Global symmetries e.g. O(N), ...

» SUSY when form of superconformal blocks constrained.

Kinds of bounds we can place on S:

0><0~1+C§_U€—|—--~—I—TW—I—...

Can bound (maximize) OPE coefficient of any operator.



OPE Bounds & central charge minimization

What else can we bound?

Bootstrap allows us to:

» Consider arbitrary CFT data S = {(A;, 4;), Cyix }-

» Check if this S is consistent with crossing sym of (cooo).
We can additionally impose:

» Global symmetries e.g. O(N), ...

» SUSY when form of superconformal blocks constrained.

Kinds of bounds we can place on S:

A,
J><0~1+Cf,06+---+<> T, +...

NG

If operator e.g. T, get lower bound on c.



OPE Bounds & central charge minimization

What else can we bound?

Bootstrap allows us to:

» Consider arbitrary CFT data S = {(A;, 4;), Cyix }-

» Check if this S is consistent with crossing sym of (cooo).
We can additionally impose:

» Global symmetries e.g. O(N), ...

» SUSY when form of superconformal blocks constrained.

Kinds of bounds we can place on S:

A,
UXUN1+C206+"'+<> T, +...

NG

If operator e.g. T, get lower bound on c.

(Any time a bound is saturated can compute full OPE. J
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