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Plan of the talk:

1.  Higher curvature Corrections to GR. 

2. Black hole entropy beyond GR. Wald’s formula. 

3. Lineaized second law for generic curvature square gravity. 

4. Holographic entanglement entropy and second law. 

5. Open issues. 
              



General Relativity:

The action is,

Non-renormalizable, may make sense as an effective theory working 
perturbatively in the powers of a dimensionless small parameter G 
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String theory : Cancellation of Weyl anomaly in one loop requires the  
                       background to obey Einstein’s equation.  Higher loops  
                       introduce higher curvature terms.
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Black hole mechanics with higher curvature terms:



Black hole:  Compliment of the past of future null infinity. 
Event Horizon: Boundary of the black hole region.
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IN and OUT regions are causally 
disconnected.
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Event horizon is a global notion. 

Event horizon is also a null hypersurface generated by 
null geodesics which is future complete.  
Penrose 
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 Laws of black hole mechanics:



First Law: (Equilibrium State Version)

Wald, Wald and Iyer.

For any diff. invariant Lagrangian, it is possible to show that a stationary 
black hole obeys.
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In general, entropy is no longer proportional to area beyond GR.
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The Wald entropy

In GR:
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Which implies, for every slice prior to future,

Final stationary state

In falling matter

Perturbed Horizon

Unperturbed Horizon
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Linearized second Law in GR:



Extension of second law beyond GR:

1. The derivation of Wald entropy requires stationary Killing Horizon 
    with regular bifurcation surface.  

2. Wald entropy expression have several ambiguities which are important 
    when we consider a dynamical black hole. 

3. Any proof of second law for generic gravity theories needs the resolution   
    of these ambiguities. 

These ambiguities can be expressed in the form:

S = SW + a θ(k )θ(l ) + b σ (k )
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Find the constant coefficients such that the second 
law holds. 



Prove that, the entropy always increases for small perturbations 
as long as NEC holds.  

Entropy candidate:

Theory:

Consider the most general quadratic curvature theory:
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Second law has been proven for f(R) types of theories with Wald entropy: 
Kang, Jacobson, Myers 
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For Lovelock class of gravity: ( )1 ;
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The correct expression of entropy which obeys a local increase law is:

SJM = 1
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SW − SJM ∼θ(k )θ(l ) +σ (k )σ (l )

Both Wald and JM entropy obey the first law, but only JM entropy obeys 
a local increase theorem (at least for linearised perturbation to a Killing 
horizon) 
SS, Wall
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A similar proof can be obtained for f(lovelock) gravity:



13

Holographic entanglement entropy conjecture: 
Ryu-Takayanagi

Minimal Surface

Boundary

SCFT =
A

4Gd+2

When the bulk is the solution of higher curvature gravity: 
There are several generalizations of this results…. 

Fursaev, Patrushev and Solodukhin, Camps,A. Bhattacharyya, A. Kaviraj and A. Sinha, Hung,  
Myers, Dong,….

This formula now can be proven using the replica trick: 
Lewkowycz and Maldacena 

Note: Except an apparent similarity with Bekenstein entropy, this formula 
has a priory nothing to do with black holes!



14

If there is a stationary black hole in the bulk, then the holographic entropy is related 
to the black hole entropy. 

For time dependent case, additional assumptions are necessary. 
Hubeny, Rangamani, Takayanagi, Wall,

In case of a quadratic curvature theory, we obtain:  
(Dong)
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ρHEE = ρW +α  θ(k )θ(l ) ρW = −2α  Rabk
alb

Q. Which one obeys the second law?

Note that all these expressions coincide in the stationary limit.

L = 1
16π

R +αR2 + βRabR
ab + γ RabcdR

abcd( )
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But all these happening at the boundary:

One could translate the same formula for black hole event horizon.
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For stationary black hole: θk = 0

ρ = ρW



Change in entropy:

Define: Note: 0fΘ =

ΔS = 1
4

θk + ρ  θk +
dρ
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Θ = θk + ρ  θk +
dρ
dt

      1. The perturbation is small. So all changes are of first order 
      in some small parameter.  

  2. The final state is stationary, so all Lie derivatives of 
       the dynamical fields vanish in the future. 

To calculate the evolution of this generalized expansion 
make the following assumptions:

We intent to prove an equation like:

dΘ
dt

= −8π  Tabk
akb +Ο ε 2( )
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The evolution of the generalised expansion is given by:

Θ = θk + ρ  θk +
dρ
dt

dΘ
dt

= −8π  Tabk
akb + Eabk

akb +O ε 2( )

Eabk
akb = ∇k∇kρ − ρRkk +α  Hkk

For the correct choice of the entropy expression, all linear order 
parts of this extra terms should cancel out each other.



We use a dynamical black hole solution. 

Assume that the theory has a Vaidya-like solution of the form:

ds2 = − f (r,v)dv2 + 2dv dr + r(v)2dΩ2

This is a non stationary black hole solution and the location of the event 
horizon is determined by the equation:

dr(v)
dv

= f (r,v)
2

The null generators of the horizon are:

ka = 2,  f (r,v),  0,  0,...{ }
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Case I: Use Wald Entropy ρ = ρW

Ekk =
2α  (D − 2)2

r2
∂2 f (r,v)

∂v2 +O ε 2( )

ρHEE = ρW +α  θ(k )θ(l )Coase II: Use HEE

θk =
(D − 2) f (r,v)

r(v)
θl = − (D − 2)

2r(v)

Ekk =O ε 2( )

For this Vaidya-like solution:
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And we obtain:

dΘHEE

dt
= −8π  Tabk

akb +Ο ε 2( )

ΘHEE = θk + ρHEE  θk +
dρHEE

dt

Assuming that the final state is again stationary, this gives (with NEC):

ΘHEE > 0

HEE obeys a linearized (classical) second law:

HEE obeys a linearized (semi classical) second law: 
Bhattacharjee, SS, Wall



Next Q:  Is it possible that HEE for this theory obeys  
                an increase theorem even beyond small perturbation 
                assumption?

( )2a b
ab

d T k k
d

ε
λ

Θ
= − +Ο

It depends on the signs of the higher order terms. 

We need to calculate higher order terms:  
(SS, in progress)
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 GR result:
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Conclusions:

1. The naive application of Wald formula does not give 
    correct expression of entropy beyond GR. Except for simple  
    f(R) gravity, validity of second law requires corrections to the  
    Wald's expression in the dynamical regime. 

2. For a general quadratic curvature theory, these corrections matches    
    exactly with HEE ! 

Somehow the holographic principle already contains the validity of the  
basic laws of black hole thermodynamics. 

How? 

As of now, I leave this to the competent guys (string theorists) to  
answer……….. 



Thanks


