A State-Dependent Construction of the Black Hole Interior

Suvrat Raju

International Centre for Theoretical Sciences

Strings 2015

References

Based on work with Kyriakos Papadodimas (CERN \& Groningen)
(1) "Comments on the Necessity and Implications of State-Dependence in the Black Hole Interior", arXiv: 1503.08825.
(2) "Local Operators in the Eternal Black Hole", arXiv:1502.06692.
(3) "State-Dependent Bulk-Boundary Maps and Black Hole Complementarity", arXiv: 1310.6335.
(4) "The Black Hole Interior in AdS/CFT and the Information Paradox", arXiv:1310.6335.
(5) "The unreasonable effectiveness of exponentially suppressed corrections in preserving information"
(6) "An Infalling Observer in AdS/CFT", arXiv:1211.6767.
and work in progress with Souvik Banerjee (Groningen), Prashant Samantray (IIT-Indore), Sudip Ghosh (ICTS-TIFR).

Context

- The context for this talk is the Information Paradox. In its modern avatar, this turns into the question:

"Can AdS/CFT describe the BH Interior?"

[Mathur, Almheiri, Marolf, Polchinski, Sully, Stanford, 2009-2015]

- This version is not restricted to evaporating BHs.
- Paradox extends to the Eternal Black Hole.
[Kyriakos Papadodimas, S.R., 2015]

Overview

- Resolution: Paradox can be complete resolved using a state-dependent map between interior bulk observables and boundary observables.
[K.P., S.R, 2013-15]
- New Consequences: This construction of the interior leads to a precise version of $E R=E P R$ conjecture of Maldacena and Susskind.

Outline

(1) The Old Information Paradox
(2) The Modern Information Paradox for the Eternal BH
(3) State-Dependent Resolution of the Modern Information Paradox
(4) $E R=E P R$
(5) Significance of State-Dependence

Outline

(1) The Old Information Paradox

(2) The Modern Information Paradox for the Eternal BH
(3) State-Dependent Resolution of the Modern Information Paradox
(4) $E R=E P R$
(5) Significance of State-Dependence

The Old Information Paradox

- In the shaded patch, physics is independent of details of collapse.

$$
\left\langle a_{\omega}^{\dagger} a_{\omega^{\prime}}\right\rangle=\frac{e^{-\beta \omega}}{1-e^{-\beta \omega}} \delta\left(\omega-\omega^{\prime}\right)
$$

- Suggests that for different inputs, we get the same output.

Resolution to the Old Information Paradox

- Very small corrections of the order of e^{-S} can restore unitarity. [Maldacena, 2001]
- Pure density matrix in a very large system can mimic a thermal density matrix to extreme accuracy

$$
\operatorname{Tr}\left(\rho_{\text {pure }} A_{\alpha}\right)=\frac{1}{\mathcal{Z}} \operatorname{Tr}\left(e^{-\beta H} A_{\alpha}\right)+\mathrm{O}\left(e^{-\frac{S}{2}}\right)
$$

for a large class of observables A_{α}.

- Another way to state this is

$$
\rho_{\text {pure }}=\frac{1}{\mathcal{Z}} e^{-\beta H}+e^{-S} \rho_{\text {corr } ;} \quad \rho_{\text {pure }}^{2}=\rho_{\text {pure }}
$$

Information can be encoded in tiny correlations between the Hawking quanta.

Path Integral Perspective

- Effective field theory insufficient to control such corrections.
- A semi-classical spacetime is a saddle point of the QG path-integral.

$$
\mathcal{Z}=\int e^{-S} \mathcal{D} g_{\mu \nu}
$$

- Perturbative effective field theory (used to derive the Hawking answer) is an asymptotic series expansion of this path-integral.
- Non-perturbatively, the notion of local spacetime breaks down.

Outline

(1) The Old Information Paradox

(2) The Modern Information Paradox for the Eternal BH

(3) State-Dependent Resolution of the Modern Information Paradox

(4) $E R=E P R$
(5) Significance of State-Dependence

Revisiting the Information Paradox

- Recent developments have challenged the notion that small corrections can resolve the information paradox.
[Mathur, Almheiri, Marolf, Polchinski, Sully, Stanford, 2009-13]
- We will review an extension of these arguments to the eternal black hole.
- Resolution of the paradox in the eternal black hole provides strong evidence that a similar resolution applies to the single-sided case.

Thermofield Doubled State

- Eternal black hole is dual to an entangled state of two CFTs

$$
\left|\Psi_{\mathrm{tfd}}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{E} e^{-\frac{\beta E}{2}}|E, E\rangle
$$

[Maldacena, 2001]

- On the left boundary, we identify

$$
t_{\mathrm{sch}}=-t_{C F T, L}
$$

Time Shifted States

- We now consider time-shifted states

$$
\left|\Psi_{T}\right\rangle=e^{i H_{L} T}\left|\Psi_{\mathrm{tfd}}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum e^{i \phi_{E}-\frac{\beta E}{2}}|E, E\rangle
$$

- Geometrically, this corresponds to a large diffeomorphism that dies off at the right-boundary but not left-boundary.

For example

$$
\begin{aligned}
& U \rightarrow U[\gamma \hat{\theta}(-X)+\hat{\theta}(X)] ; \quad X=V-U \\
& V \rightarrow \frac{V}{\gamma}[\hat{\theta}(-X)+\gamma \hat{\theta}(X)] ; \quad \gamma=e^{\frac{2 \pi T}{\beta}} .
\end{aligned}
$$

with $\hat{\theta}$ a smooth version of the theta function.

Smoothness of Time Shifted States

- Large diffs that differ by trivial diffs are equivalent. Use this to undo the diff everywhere, except infinitesimally close to the boundary.

- Makes it clear that the large diffs leaves intrinsic properties of the geometry invariant, but just slides the boundary.

Therefore, the states $\left|\Psi_{\mathrm{T}}\right\rangle=e^{i H_{L} T}\left|\Psi_{\mathrm{tfd}}\right\rangle$ are also smooth but glued differently to the boundary

$$
t_{\mathrm{sch}}=-t_{C F T, L}+T
$$

Long Time Shifts

The states $\left|\Psi_{T}\right\rangle=e^{i H_{L} T}\left|\Psi_{\mathrm{tfd}}\right\rangle$ are smooth, even for $T \sim e^{N^{2}}$

- Strong conclusion relies only on equivalence of Hamiltonian evolution and diffeomorphisms; not on eom.
- Equivalent to statement that an infalling observer from the right observes the same geometry at arbitrarily late time.
- Equivalent to statement that there is no natural common origin of time on the two sides.

Relational Observables

- AdS boundary allows us to define quasi-local diffeomorphism invariant observables.
- Consider the following process: jump from the boundary, wait for a certain proper time, measure the field.

- Behind the horizon, we write

$$
\phi(t, \Omega, \lambda)=\sum_{\omega, m} \mathcal{O}_{\omega, m} e^{-i \omega t} g_{\omega, m}^{(1)}(\Omega, \lambda)+\widetilde{\mathcal{O}}_{\omega, m} e^{i \omega t} g_{\omega, m}^{(2)}(\Omega, \lambda)+\text { h.c }
$$

Central Question

- Can we find a CFT operator $\phi(x)$, so that for generic T

$$
\left\langle\Psi_{\mathrm{T}}\right| \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\left|\Psi_{\mathrm{T}}\right\rangle=G\left(x_{1} \ldots x_{n}\right)
$$

with $\left|\Psi_{T}\right\rangle=e^{i H_{L} T}\left|\Psi_{\mathrm{tfd}}\right\rangle$.

- On the RHS, G is the Green function as computed by semi-classical effective field theory in the eternal black hole background.
- Well-posed question about existence of operators in the CFT.

Modern Information Paradox

- By extending work of AMPSS, can show that $\nexists \phi(x)$ s.t. $\forall T$

$$
\left\langle\Psi_{\mathrm{T}}\right| \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\left|\Psi_{\mathrm{T}}\right\rangle=G\left(x_{1} \ldots x_{n}\right)
$$

[K.P,S.R., 2015]

- Reason is, roughly, that states $\left|\Psi_{T}\right\rangle$ are overcomplete.
- Seems different from the information paradox, but principal paradox is still

Unitarity vs Effective Field Theory

Some Possibilities

- AdS \neq CFT (a.k.a. superselection sectors)?
[Marolf, Wall, 2012]
- Eternal Black Hole also has firewalls?

But both possibilities above contradict explicit computations that look inside the horizon of the eternal BH.
[Hartman, Maldacena, Kraus, Ooguri, Shenker]

Proposed Resolution: State Dependence

- No need to use the "same operator" for all T : state-dependence.
- We use one operator $\phi^{\{0\}}$ in a range of states about $T=0$.
- After exponentially long T, we switch to another operator $\phi^{\{T\}}$

Outline

(1) The Old Information Paradox

(2) The Modern Information Paradox for the Eternal BH
(3) State-Dependent Resolution of the Modern Information Paradox
(4) $E R=E P R$
(5) Significance of State-Dependence

The Little Hilbert Space

- $\left|\Psi_{\mathrm{T}}\right\rangle \equiv$ Black Hole Microstate
- Little Hilbert Space: all possible effective field theory excitations of $\left|\Psi_{\mathrm{T}}\right\rangle$

$$
\begin{gathered}
\mathcal{H} \Psi_{T}=\mathcal{A}\left|\Psi_{T}\right\rangle \\
\mathcal{A}=\operatorname{span}\left\{\mathcal{O}_{\omega_{1}}, \mathcal{O}_{\omega_{1}} \mathcal{O}_{\omega_{2}}, \ldots, \mathcal{O}_{\omega_{1}} \mathcal{O}_{\omega_{2}} \ldots \mathcal{O}_{\omega_{K}}\right\}
\end{gathered}
$$

with

$$
\omega_{m} \ll \mathcal{N}, \quad K \ll \mathcal{N}
$$

Definition of $\widetilde{\mathcal{O}}_{\omega}$

- Define $\widetilde{\mathcal{O}}_{\omega}$ precisely within H_{Ψ}

$$
S A_{\alpha}|\Psi\rangle=A_{\alpha}^{\dagger}|\Psi\rangle
$$

and

$$
\widetilde{\mathcal{O}}_{\omega}=S \Delta^{\frac{-1}{2}} \mathcal{O}_{\omega} \Delta^{\frac{1}{2}} S
$$

[KP, SR, 2013]

- This is closely related to the isomorphism used in Tomita-Takesaki theory.
- $\phi(t, \Omega, \lambda)$ constructed using this $\widetilde{\mathcal{O}}_{\omega}$ is a linear operator on H_{ψ} and has the correct effective field theory correlators

Obtaining a Smooth Horizon

- In eternal BH, can carry out this program explicitly

$$
\widetilde{\mathcal{O}}_{\omega}=\sqrt{\frac{C}{\pi \beta^{2}}} \int_{-T_{\text {cut }}}^{T_{\text {cut }}} \mathcal{O}_{L \omega}\left(T_{i}\right) P_{\mathcal{H}_{T_{T}}} d T_{i}
$$

- Smear with appropriate mode functions

$$
\phi(x)=\sum_{\omega}\left[\mathcal{O}_{\omega} g_{\omega}^{(1)}(x)+\widetilde{\mathcal{O}}_{\omega} g_{\omega}^{(2)}(x)+\text { h.c. }\right]
$$

Obtaining a Smooth Horizon

- We can probe the interior with correlators of these operators.

$$
\left\langle\Psi_{\mathrm{T}}\right| \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\left|\Psi_{\mathrm{T}}\right\rangle=G\left(x_{1}, \ldots x_{n}\right)
$$

- Explicitly consistent with perturbative fields propagating on a weakly curved spacetime near the horizon.

This construction explicitly resolves the information paradox for the eternal black hole. Problem of overcompleteness is resolved by state-dependence.

Outline

(1) The Old Information Paradox

(2) The Modern Information Paradox for the Eternal BH

3 State-Dependent Resolution of the Modern Information Paradox
(4) $E R=E P R$
(5) Significance of State-Dependence

New Applications

- Apart from resolving the information paradox, we can apply this construction of the interior to other entangled systems.
- Leads to a natural formulation of "ER=EPR". (Originally proposed as relation between entanglement and wormholes by Maldacena and Susskind.)

Simple Operators and the Little Hilbert Space for Entangled Systems

- Consider an entangled state

$$
\left|\Psi_{\mathrm{en}}\right\rangle=\sum \alpha_{i}\left|\widetilde{\Psi}_{i}\right\rangle \otimes\left|\Psi_{i}\right\rangle
$$

- Expand the set of simple operators to include both left and right operators.

$$
\mathcal{A}, \quad \mathcal{A}_{L}, \quad \mathcal{A}_{\text {prod }}=\mathcal{A}_{L} \otimes \mathcal{A}
$$

- Therefore the little Hilbert space is

$$
\mathcal{H}_{\Psi_{\mathrm{en}}}=\mathcal{A}_{\mathrm{prod}}\left|\Psi_{\mathrm{en}}\right\rangle
$$

Mirrors for Entangled States

$$
\mathcal{H} \Psi_{\text {en }}=\mathcal{A}_{\text {prod }}\left|\Psi_{\text {en }}^{j}\right\rangle=\bigoplus_{j} \mathcal{A}\left|\Psi_{\text {en }}^{j}\right\rangle
$$

- We may have null relations due to entanglement. For example, in the thermofield $\mathcal{O}_{L, \omega}\left|\Psi_{\text {tfd }}\right\rangle=e^{\frac{-\beta \omega}{2}} \mathcal{O}_{\omega}^{\dagger}\left|\Psi_{\text {tfd }}\right\rangle$.

$$
\mathcal{H}_{\Psi_{\mathrm{en}}} \not \not \mathcal{A}_{\mathrm{prod}}
$$

- Number of terms in the sum depends on number of null relations involving both left and right operators acting on the state.
- Define

$$
S=\sum_{j} S_{j}
$$

ER=EPR from Mirror Operators

Are correlators of right-relational observables affected by simple unitaries on the left?

- With $U_{L}=e^{i A_{L}}$, compare

$$
\left\langle\Psi_{\mathrm{en}}\right| U_{L}^{\dagger} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right) U_{L}\left|\Psi_{\mathrm{en}}\right\rangle
$$

and

$$
\left\langle\Psi_{\mathrm{en}}\right| \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)\left|\Psi_{\text {en }}\right\rangle
$$

- Equivalent diagnostic is
Commutator
$\left[\widetilde{\mathcal{O}}_{\omega}, \mathcal{O}_{L, \omega}^{\dagger}\right]\left|\Psi_{\text {en }}\right\rangle$
Two-Pt Function

$$
\left\langle\Psi_{\mathrm{en}}\right| \tilde{\mathcal{O}}_{\omega} \mathcal{O}_{L, \omega}^{\dagger}\left|\Psi_{\text {en }}\right\rangle
$$

- We can apply this diagnostic to several examples.

Standard Wormhole for the Thermofield

- Consider the thermofield double state

$$
\left|\Psi_{\mathrm{tfd}}\right\rangle=\frac{1}{\sqrt{Z}} \sum_{E} e^{-\frac{\beta E}{2}}|E, E\rangle
$$

- We find the commutator and two point function

$$
\left[\mathcal{O}_{L \omega}^{\dagger}, \widetilde{\mathcal{O}}_{\omega}\right] \doteq C_{\omega}, \quad\left\langle\Psi_{\mathrm{tfd}}\right| \widetilde{\mathcal{O}}_{\omega} \mathcal{O}_{L \omega}^{\dagger}\left|\Psi_{\mathrm{tfd}}\right\rangle=G_{\beta, \omega}
$$

- By computing these and other correlators we can obtain a picture of the dual geometry.

Generic Entanglement: "Long Wormhole"

- Consider a more "generic" entangled state

$$
\left|\Psi_{\text {gen }}\right\rangle=U_{L}^{\text {arb }}\left|\Psi_{\text {tad }}\right\rangle
$$

- Now we find that

$$
\left[\widetilde{\mathcal{O}}_{\omega}, \mathcal{O}_{L \omega}^{\dagger}\right] \doteq \mathrm{O}\left(e^{-\frac{s}{2}}\right), \quad\left\langle\Psi_{\text {gen }}\right| \widetilde{\mathcal{O}}_{\omega} \mathcal{O}_{L \omega}^{\dagger}\left|\Psi_{\text {gen }}\right\rangle=\mathrm{O}\left(e^{-\frac{s}{2}}\right) .
$$

- But for some generic CFT operator on the left

$$
\left.\left\langle\Psi_{\text {gen }}\right|\left[Y_{L}, \widetilde{\mathcal{O}}_{\omega}\right]\right|^{2}\left|\Psi_{\text {gen }}\right\rangle=O(1) .
$$

- These correlators suggest a dual geometric picture.

Microcanonical Double: Low Band-Pass Wormhole

- Consider the microcanonical doubled state.

$$
\left|\Psi_{\mathrm{md}}\right\rangle=\frac{1}{\sqrt{\mathcal{D}}} \sum_{E_{i}=E-\Delta}^{E_{i}=E+\Delta}\left|E_{i}, E_{i}\right\rangle
$$

Take $\beta \Delta \ll 1$. This leads to a low pass wormhole!

- For low frequencies, $\omega \ll \Delta$,

$$
\left[\widetilde{\mathcal{O}}_{\omega}, \mathcal{O}_{L \omega}^{\dagger}\right]=C_{\beta}(\omega), \quad\left\langle\Psi_{\mathrm{md}}\right| \widetilde{\mathcal{O}}_{\omega} \mathcal{O}_{L \omega}^{\dagger}\left|\Psi_{\mathrm{md}}\right\rangle=G_{\beta}(\omega)
$$

- But for high frequencies, $\omega \gg \Delta$,

$$
\left[\widetilde{\mathcal{O}}_{\omega}, \mathcal{O}_{L \omega}^{\dagger}\right]=0+\mathrm{O}\left(\frac{\omega}{\Delta}\right), \quad\left\langle\Psi_{\mathrm{md}}\right| \widetilde{\mathcal{O}}_{\omega} \mathcal{O}_{L \omega}^{\dagger}\left|\Psi_{\mathrm{md}}\right\rangle=0+\mathrm{O}\left(\frac{\omega}{\Delta}\right)
$$

Outline

(1) The Old Information Paradox

(2) The Modern Information Paradox for the Eternal BH
(3) State-Dependent Resolution of the Modern Information Paradox

4 $E R=E P R$
(5) Significance of State-Dependence

Why is State-Dependence Surprising?

- Canonical gravity suggests that relationally defined observables are linear operators on the H -space.
- Canonical gravity intuition valid for the little Hilbert space \Rightarrow no infalling observer can detect state-dependence within EFT.
- Violations of Born Rule \leftrightarrow conceptually defined local bulk observables correspond to non-linear CFT operators when considered on the full H -space

Failure of Canonical Intuition in TFD

- CFT inner-product has a fat tail invisible to canonical gravity.

$$
\begin{aligned}
& \left|\left\langle\Psi_{\mathrm{tfd}} \mid \Psi_{\mathrm{T}}\right\rangle\right|=e^{\frac{-C T^{2}}{2 \beta^{2}}}, \quad T \ll 1 \\
& \left|\left\langle\Psi_{\mathrm{tfd}} \mid \Psi_{\mathrm{T}}\right\rangle\right|=\mathrm{O}\left(e^{\frac{-S}{2}}\right), \quad T \gg 1
\end{aligned}
$$

- State-independence $\Leftrightarrow T_{\text {cut }} \rightarrow \infty$; Prevented by fat-tail.

Marolf-Polchinski Shells

- For every black hole with empty interior at late times, consider configuration with a ultra-relativistic shell just inside the horizon.
- Binding energy with BH cancels rest+kinetic energy of shell \Rightarrow increase in AdM energy is small.
- So, Marolf-Polchinski claim that as many states with firewalls as states with smooth interiors \Rightarrow mirror operators must be singular.

Back-Reaction

- However, the M-P states have singularities in the past.
- So, gravitational back-reaction important in out-of-time order correlator

$$
\langle\Psi| U_{\mathrm{MP}}^{\dagger} \phi\left(x_{\text {out }}\right) \phi\left(x_{\text {in }}\right) U_{\mathrm{MP}}|\Psi\rangle=\langle\Psi| \phi\left(x_{\text {out }}\right) \phi\left(x_{\text {in }}\right)|\Psi\rangle ?
$$

Other Examples of State-Dependence

- The Ryu-Takayanagi formula, and other attempts to relate geometry to entanglement are state-dependent.

$$
\frac{1}{4 G_{N}}\langle A(R)\rangle=S_{\mathrm{ent}}(R)
$$

- On the LHS, $A(R)$ is an operator in canonical gravity. But, easy to show that

$$
\nexists X, \text { s.t. }\langle X\rangle=S_{\mathrm{ent}}(R)
$$

- Similar comments hold for ER=EPR, and other relations involving complexity and geometry etc.
- This does not prove that geometric quantities are state dependent, but is suggestive.

Summary

- Modern Information Paradox can be rephrased as a question about the existence of CFT operators dual to bulk fields.
- Paradox extends to the eternal black hole.
- Can be resolved using a state-dependent map between boundary and bulk fields.
- This map can be written down precisely.
- Leads naturally to $E R=E P R$.

Appendix

More on back-reaction

- Naive MP prediction is that

$$
\langle\Psi| e^{-i N_{\omega} \theta} \widetilde{a}_{\omega^{\prime}} a_{\omega} e^{i N_{\omega} \theta}|\Psi\rangle=\frac{e^{\frac{-\beta \omega}{2}} e^{i \theta \omega}}{1-e^{-\beta \omega}} \delta\left(\omega-\omega^{\prime}\right)
$$

- Naively, one may also have thought that

$$
\langle\Psi| e^{-i H_{L} T} \widetilde{a}_{\omega^{\prime}} a_{\omega} e^{i H_{L} T}|\Psi\rangle=e^{i \omega T} \frac{e^{\frac{-\beta \omega}{2}}}{1-e^{-\beta \omega}} \delta\left(\omega-\omega^{\prime}\right)
$$

But this is incorrect.

- Phase operator is more non-trivial, but note that the naive prediction is clearly suspect in the presence of back-reaction.

Properties of Mirror Modes

- From analysis of large diffeomorphisms, we find

$$
\left\langle\Psi_{\mathrm{T}}\right| A_{R}\left[H, \widetilde{\mathcal{O}}_{\omega}\right]\left|\Psi_{\mathrm{T}}\right\rangle=\omega\left\langle\Psi_{\mathrm{T}}\right| A_{R} \omega \widetilde{\mathcal{O}}_{\omega}\left|\Psi_{\mathrm{T}}\right\rangle
$$

- Demanding that two-pt function of ϕ agrees with effective field theory

$$
\left\langle\Psi_{\mathrm{T}}\right| \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}\left|\Psi_{\mathrm{T}}\right\rangle=e^{\beta \omega}\left\langle\Psi_{\mathrm{T}}\right| \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}\left|\Psi_{\mathrm{T}}\right\rangle
$$

Long Time Average

- Long Time Average \Rightarrow cross-terms drop out.

$$
\begin{aligned}
& \frac{1}{T_{\mathrm{av}}} \int_{-T_{\mathrm{av}}}^{T_{\mathrm{av}}}\left\langle\Psi_{\mathrm{T}}\right| X\left|\Psi_{\mathrm{T}}\right\rangle d T=\frac{1}{Z} e^{-\beta E}\langle E, E| X|E, E\rangle \\
& \quad+\frac{e^{-\frac{\beta(E+F)}{2}}}{Z T_{\mathrm{av}}} \sin \left[(E-F) T_{\mathrm{av}}\right] \sum_{E, F}\langle E, E| X|F, F\rangle
\end{aligned}
$$

- From a Laplace Transform

$$
\begin{aligned}
& \langle E, E| \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}|E, E\rangle=e^{-\beta \omega}\langle E, E| \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}|E, E\rangle \\
& \langle E, E| A_{R}\left[H, \widetilde{\mathcal{O}}_{\omega}\right]|E, E\rangle=\omega\langle E, E| A_{R} \widetilde{\mathcal{O}}_{\omega}|E, E\rangle
\end{aligned}
$$

No Wormhole in Eigenstate Pairs

- QUESTION: How can state-independent operators describe smooth effective field theory in eigenstate pairs - which have no entanglement - if they cannot do so in single eigenstates.
- To sharpen this: assume that there is no "wormhole" in eigenstate pairs.

$$
\langle E, E| U_{L}^{\dagger} \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right) U_{L}|E, E\rangle=\langle E, E| \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|E, E\rangle, \forall U_{L}
$$

The "Occupancy" Paradox for the Eternal Black Hole

- Now, we can set up a version of the AMPSS paradox.

$$
\begin{aligned}
& \langle\Omega, E| \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}|\Omega, E\rangle \approx \frac{1}{Z(\beta)} \operatorname{Tr}_{R}\left(e^{-\beta H_{R}} \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}\right) \\
& =\frac{1}{Z(\beta)} e^{-\beta \omega} \operatorname{Tr}\left(e^{-\beta H} \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}\right) \approx e^{-\beta \omega}\langle\Omega, E| \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}|\Omega, E\rangle ?
\end{aligned}
$$

- Here, we use equivalence of microcanonical and canonical ensembles, cyclicity of trace and commutator with Hamiltonian.
- If we also use

$$
\langle\Omega, E|\left[\widetilde{\mathcal{O}}_{\omega}, \widetilde{\mathcal{O}}_{\omega}^{\dagger}\right]|\Omega, E\rangle>0
$$

then this suggests

$$
\langle\Omega, E| \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}|\Omega, E\rangle<0 ?
$$

