A bound on chaos

Douglas Stanford

IAS
June 26, 2015

1. $1306.0622 \mathrm{w} /$ Shenker
2. $1312.3296 \quad \mathrm{w} /$ Shenker
3. $1409.8180 \quad$ w/ D. Roberts, Susskind
4. talks late 2014 Kitaev
5. 1412.6087
w/ Shenker
6. $1503.01409 \mathrm{w} /$ Maldacena, Shenker

See also work by Leichenauer ('14) and by Polchinski ('15).

state: $|\beta\rangle$

$\longrightarrow \quad \mathrm{t}$
$\longrightarrow t=0$

state: $\mathrm{V}|\beta\rangle$

state: $\mathrm{W}(\mathrm{t}) \mathrm{V}|\beta\rangle$

????
$t=0$
state: $\mathrm{W}(\mathrm{t}) \mathrm{V}|\beta\rangle$

state: $\mathrm{W}(\mathrm{t}) \mathrm{V}|\beta\rangle$

state: $\mathrm{V} \mathbf{W}(\mathrm{t})|\beta\rangle$

state: $\mathrm{W}(\mathrm{t}) \mathrm{V}|\beta\rangle$

state: $\mathrm{V} \mathrm{W}(\mathrm{t})|\beta\rangle$

These states are distinguishable, so their overlap

$$
\langle\beta| V W(t) V W(t)|\beta\rangle
$$

should be small. The butterfly effect is the statement that the overlap will be small, at sufficiently large t, for any* choice of V, W.
state: $\mathrm{W}(\mathrm{t}) \mathrm{V}|\beta\rangle$

state: $\mathrm{V} \mathrm{W}(\mathrm{t})|\beta\rangle$

These states are distinguishable, so their overlap

$$
\langle\beta| V(-t / 2) W(t / 2) V(-t / 2) W(t / 2)|\beta\rangle
$$

should be small. The butterfly effect is the statement that the overlap will be small, at sufficiently large t, for any* choice of V, W.

Energy of quantum is order thermal scale β^{-1}.

Rapidity of boost $=\frac{2 \pi}{\beta} \frac{t}{2}$, so

$$
p^{+} \sim \beta^{-1} \exp \frac{\pi t}{\beta}
$$

$W(t / 2)|\beta\rangle$

W quantum has $p^{+} \sim \beta^{-1} \exp \frac{\pi}{\beta} t$
V quantum has $q^{-} \sim \beta^{-1} \exp \frac{\pi}{\beta} t$

The inner product is a scattering amplitude, weighted by wave functions, for W, V quanta colliding near the horizon.

Both p^{+}and q^{-}are $\sim \beta^{-1} e^{\pi t / \beta}$, so the characteristic value of the Mandelstam s parameter is

$$
s=p^{+} q^{-} \sim \beta^{-2} e^{\frac{2 \pi}{\beta} t} .
$$

Representing the scattering amplitude as $e^{i \delta(s)}$, we have

$$
\langle V W(t) V W(t)\rangle=\int d p^{+} d q^{-} e^{i \delta\left(p^{+} q^{-}\right)}\left|\psi_{W}\left(p^{+}\right)\right|^{2}\left|\psi_{V}\left(q^{-}\right)\right|^{2}
$$

It turns out that the relevant regime is the elastic eikonal regime, where using shock waves, one can calculate ['t Hooft]

$$
\delta_{\operatorname{grav}}(s) \propto G_{N} s
$$

The growth with s is characteristic of the growth with energy of gravitational interactions.

Representing the scattering amplitude as $e^{i \delta(s)}$, we have

$$
\langle V W(t) V W(t)\rangle=\int d p^{+} d q^{-} e^{i \delta\left(p^{+} q^{-}\right)}\left|\psi_{W}\left(p^{+}\right)\right|^{2}\left|\psi_{V}\left(q^{-}\right)\right|^{2}
$$

It turns out that the relevant regime is the elastic eikonal regime, where using shock waves, one can calculate ['t Hooft]

$$
\delta_{\operatorname{grav}}(s) \propto G_{N} s
$$

The growth with s is characteristic of the growth with energy of gravitational interactions. Expanding in G_{N} :

$$
\langle\ldots\rangle=\left\langle V^{2}\right\rangle\left\langle W^{2}\right\rangle\left(1+\# i G_{N} e^{\frac{2 \pi}{\beta} t}+\ldots\right)
$$

The correction is growing exponentially. We can use this to define a Lyapunov exponent [Kitaev] so that the growth is $e^{\lambda_{L} t}$. For gravity,

$$
\lambda_{L}=\frac{2 \pi}{\beta} .
$$

At larger times, the integrand becomes highly oscillatory, and the overlap decays exponentially:

Crossover at

$$
t_{*}=\frac{\beta}{2 \pi} \log \frac{1}{G_{N}}=\frac{\beta}{2 \pi} \log N^{2}
$$

[Hayden/Preskill, Sekino/Susskind]

Regge behavior of string theory corrects this analysis:

$$
\delta_{\text {string }}(s, b) \propto s^{1-\# \alpha^{\prime} / \ell_{A d S}^{2}+\ldots}
$$

which leads to a slower Lyapunov exponent

$$
\lambda_{L}=\frac{2 \pi}{\beta}\left(1-\# \frac{\alpha^{\prime}}{\ell_{A d S}^{2}}+\ldots\right)
$$

Regge behavior of string theory corrects this analysis:

$$
\delta_{\text {string }}(s, b) \propto s^{1-\# \alpha^{\prime} / \ell_{A d S}^{2}+\ldots}
$$

which leads to a slower Lyapunov exponent

$$
\lambda_{L}=\frac{2 \pi}{\beta}\left(1-\# \frac{\alpha^{\prime}}{\ell_{A d S}^{2}}+\ldots\right)
$$

Evidence from [Camanho/Edelstein/Maldacena/Zhiboedov] suggests that $\delta(s, b) \propto s$ is the fastest growth allowed. Could there be a universal bound on λ_{L}, in the spirit of [Kovtun/Son/Starinets]?

A bound on chaos

$$
F(t) \equiv \operatorname{tr}[y V y W(t) y V y W(t)] \quad y=\rho(\beta)^{1 / 4}
$$

A bound on chaos

$$
F(t) \equiv \operatorname{tr}[y V y W(t) y V y W(t)] \quad y=\rho(\beta)^{1 / 4}
$$

Special case: in a large N theory with $\langle\beta| V W|\beta\rangle=0$,

$$
F(t)=F_{d}+O\left(N^{-2}\right) \quad F_{d} \equiv \operatorname{tr}\left[y^{2} V y^{2} V\right] \operatorname{tr}\left[y^{2} W y^{2} W\right] .
$$

A holographic calculation similar to above gives

$$
F(t)=F_{d}-\frac{1}{N^{2}} e^{\frac{2 \pi}{\beta} t}+O\left(N^{-4}\right)
$$

$F(t+i \tau)$ is analytic in a half-strip:

If we can show $|F| \leq F_{d}+\epsilon$ everywhere on boundary of strip, then complex analysis (Schwarz-Pick + Phragmen-Lindelof) \Longrightarrow

$$
\frac{d}{d t}\left(F_{d}-F(t)\right) \leq \frac{2 \pi}{\beta}\left(F_{d}-F(t)\right)+\epsilon
$$

Left boundary: large N factorization implies

$$
F(t)=F_{d}+O\left(N^{-2}\right)
$$

At the left boundary, the time parameter is not large, so there is no competing parameter and the second term can be bounded by $\epsilon=$ const $/ N^{2}$.

Left boundary: large N factorization implies

$$
F(t)=F_{d}+O\left(N^{-2}\right)
$$

At the left boundary, the time parameter is not large, so there is no competing parameter and the second term can be bounded by $\epsilon=$ const $/ N^{2}$.
Top/bottom boundaries: here t can be large, and factorization fails. However, Cauchy-Schwarz implies

$$
|F(t \pm i \beta / 4)| \leq \operatorname{tr}\left[V y^{2} V W(t) y^{2} W(t)\right]
$$

We assume RHS approximately factorizes, $R H S \approx F_{d} \pm$ const $/ N^{2}$, uniform in time. (Reminder: $F_{d} \equiv \operatorname{tr}\left[y^{2} V y^{2} V\right] \operatorname{tr}\left[y^{2} W y^{2} W\right]$.)

The result of all of this is that

$$
\frac{d}{d t}\left(F_{d}-F(t)\right) \leq \frac{2 \pi}{\beta}\left(F_{d}-F(t)\right)+\frac{\text { const }}{N^{2}} .
$$

Just to make the point, plug in $F(t)=F_{d}-N^{-2} e^{\lambda_{L} t}$. Then

$$
\frac{d}{d t} e^{\lambda_{L} t} \leq \frac{2 \pi}{\beta} e^{\lambda_{L} t}+\text { const } .
$$

As soon as t is more than a few times β, the constant is unimportant and we get

$$
\lambda_{L} \leq \frac{2 \pi}{\beta}
$$

Summary

- Chaos can be diagnosed using correlators like $\langle V W(t) V W(t)\rangle$.
- In AdS/CFT, these are computed by high energy scattering near a black hole horizon.
- The initial exponential growth of the influence of chaos on this correlator can be used to define a Lyapunov exponent λ_{L}. There is a universal bound on the Lyapunov exponent

$$
\lambda_{L} \leq \frac{2 \pi k_{B} T}{\hbar}
$$

saturated by systems dual to gravity.
Thank you!

