Quantum Mechanics and the Geometry of Spacetime

Juan Maldacena

Institute for Advanced Study

Strings 2015 Bangalore, India

100th anniversary of General Relativity session

GR produced two stunning predictions

- Black holes
- Expanding universe

"Your math is great, but your physics is dismal"

(Einstein to LeMaitre)

Both involve drastic stretching of space and/or time

Incorporating Quantum Mechanics A simple approach

- General relativity

 is a classical field theory
- We should quantize it
- It is hard to change the shape of spacetime
- For most situations

 quantum fields in a fixed geometry is a good approximation
- General relativity as an effective field theory
 Systematic low energy approximation.

• Even this simple approximation gives surprising predictions.

Two surprising predictions

Black holes have a temperature

$$T \sim \frac{\hbar}{r_H}$$

Hawking

An accelerating universe also has a temperature

Chernikov, Tagirov, Figari, Hoegh-Krohn, Nappi, Gibbons, Hawking, Bunch, Davies,

$$T \sim \hbar H = \frac{\hbar}{R_H}$$

Very relevant for us!

<u>Inflation</u>

Starobinski, Mukhanov Guth, Linde, Albrecht, Steinhardt, ...

- Period of expansion with almost constant acceleration.
- Produces a large homogeneous universe

Quantum mechanics is crucial for understanding the large scale geometry of the universe.

JM2

Juan Maldacena, 4/24/2011

Why a temperature?

Special relativity + quantum mechanics

Accelerated observer → energy = boost generator.

Continue to Euclidean space → boost becomes rotation.

Why a temperature?

Continue to Euclidean space → boost becomes rotation.

Angle is periodic → temperature

$$\beta = \frac{1}{T} = 2\pi r$$

Entanglement & temperature

Accelerated observer only has access to the right wedge.

If we only make observations on the right wedge \rightarrow do not see the whole system \rightarrow get a mixed state.

Vacuum is highly entangled!

Black hole case

We only see the region outside the horizon, if we stay outside.

Black hole from collapse

Black hole entropy

$$T \sim rac{\hbar}{r_H}$$

Special relativity near the black hole horizon

$$r_H \leftrightarrow M$$

Einstein equations

$$dM = TdS$$

1st Law of thermodynamics

$$S = \frac{\text{(Area)}}{4\hbar G_N}$$

Black hole entropy

Bekenstein, Hawking

2nd Law → area increase from Einstein equations and positive null energy condition.

Hawking

General relativity and thermodynamics

- Viewing the black hole from outside, this suggests that that general relativity is giving us a thermodynamic (approximate) description of the system if we stay outside.
- Quantum mechanics suggests that there should be an exact description where entropy does not increase. (As viewed from outside). And where Hawking radiation is not mixed.
- 2nd law suggests that information is not lost (if information were lost, why should the 2nd law be valid ?). View entropy as the information that we could in principle have but we don't.

Unitarity from outside?

- Identify the degrees of freedom that give rise to black hole entropy.
- Black hole entropy depends only on gravity ->
 fundamental degrees of freedom of quantum gravity.
- Should reveal the quantum structure of spacetime.
- Understand their dynamics.

 This is something that requires going beyond perturbation theory, beyond gravity as an effective theory.

String theory

- String theory started out defined as a perturbative expansion.
- For the black hole problem > we need to go beyond perturbation theory.
- String theory contains interesting solitons: D-branes.
- D-branes inspired some non-perturbative definitions of the theory in some cases.

Matrix theory: Banks, Fischler, Shenker, Susskind Gauge/gravity duality: JM, Gubser, Klebanov, Polyakov, Witten

Gauge/Gravity Duality

(or gauge/string duality, AdS/CFT, holography)

Quantum Field Theory

Theories of quantum interacting particles

Dynamical
Space-time
(General relativity)
string theory

Gravity in asymptotically Anti de Sitter Space

Anti de Sitter = hyperbolic space with a time-like direction

Gravity in asymptotically Anti de Sitter Space

Duality

Quantum field theory

Brane argument

JM 1997

Large N gauge theories and strings

Gluon: color and anti-color

Take N colors instead of 3, SU(N)

t' Hooft '74

Large N limit

 g^2N = effective interaction strength. Keep it fixed when $N \rightarrow$ infinity

Closed strings → glueballs

String coupling ~ 1/N

Experimental evidence for strings in chromodynamics

From E. Klempt hep-ex/0101031

Rotating String model

$$m^2 \sim T J_{\text{max}} + const$$

Gravity from strings

 $\frac{\text{Radius of curvature}}{\text{size of string}} \sim (\text{effective field theory coupling})^{\text{positive}}$

string coupling $\sim G_N \propto \frac{1}{N^2}$

Einstein gravity → We need large N and strong coupling.

Einstein Gravity in the interior \rightarrow Described by very strongly interacting particles on the boundary.

 Entropy = Area of the horizon = Number of states in the boundary theory.

 Falling into the black hole = thermalization of a perturbation in the boundary theory.

Black holes and hydrodynamics

 Field theory at finite temperature = black brane in Anti-de-Sitter space

Ripples on the black brane = hydrodynamic modes

Absorption into the black hole = dissipation, viscosity.

Transport coefficients → Solving wave equations in this background.

Einstein equations → hydrodynamics

(Navier Stokes equations)

Discovery of the role of anomalies in hydrodynamics

Damour, Herzog, Son, Kovtun, Starinets, Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall, Bredberg, Keeler, Lysov, Strominger...

- We can form a black hole and predict what comes out by using the boundary theory.
- If you assume the duality

 unitary evolution for the outside observer, no information loss.

How established is the gauge/gravity duality?

- Lots of evidence in the simplest examples.
- Large N: Techniques of integrability

 computations at any value of the effective coupling.

Minahan, Zarembo, Beisert, Eden, Staudacher Gromov, Kazakov, Vieira Arutynov, Frolov Bombardeli, Fioravanti, Tateo

. . . .

 No explicit change of variables between bulk and boundary theories (as in a Fourier transform). In the meantime...

Black holes as a source of information

Strongly coupled field theory problems >
Simple gravity problems.

Heavy ion collisions, high temperature superconductors, etc...

- Geometrization of physics!
- Why could strong coupling simplify the problem?

Ex: Gas of particles → Hydrodynamics

Need some strong enough interactions (zero interactions → Infinite viscosity)

Gravity is the "hydrodynamics of entanglement"

Entanglement and geometry

- The entanglement pattern present in the state of the boundary theory can translate into geometrical features of the interior.
- Spacetime is closely connected to the entanglement properties of the fundamental degrees of freedom.
- Slogan: Entanglement is the glue that holds spacetime together...

Two sided Schwarzschild solution

Simplest spherically symmetric solution of pure Einstein gravity (with no matter)

Two sided AdS black hole

Entangled state in two <u>non-interacting</u> CFT's.

R

Geometric connection from entanglement

Israel JM

$$|\Psi\rangle = \sum e^{-\beta E_n/2} |\bar{E}_n\rangle_L \times |E_n\rangle_R \qquad \text{EPR}$$

Back to the two sided Schwarzschild solution

Wormhole interpretation.

Note: If you find two black holes in nature, produced by gravitational collapse, they will not be described by this geometry

No faster than light travel

Fuller, Wheeler, Friedman, Schleich, Witt, Galloway, Wooglar

A forbidden meeting

ER = EPR

 Wormhole = EPR pair of two black holes in a particular entangled state:

- Large amounts of entanglement <u>can</u> give rise to a geometric connection.

Black hole interior

- We do not understand how to describe it in the boundary theory.
- General relativity tells us that we have and interior but it is not clear that the exterior is unitary.
- Some paradoxes arise in some naïve constructions

Hawking, Mathur, Almheiri, Marolf, Polchinski, Sully

Actively explored... Under construction...

Error correcting codes

Nonlinear quantum mechanics

Entanglement

Firewalls/Fuzzballs

Non-locality Final state projection

Conclusions

- Quantum mechanics in curved spacetime gives rise to interesting effects: Hawking radiation and primordial inflationary fluctuations.
- These effects are crucial for explaining features of our universe.
- Black hole thermodynamics poses interesting problems: Entropy, Unitarity, Information problem.

Conclusions

- Exploration of these problems lead to connections between strongly coupled quantum field theories and gravity.
- This connection has ``practical'' applications to other fields of physics. GR for superconductors.
- Patterns of entanglement are connected to geometry.
- The black hole interior continues to be a puzzling problem, whose resolution will give us new insights into the structure of spacetime.