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General question of consistency in quantum gravity
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€ Need scalars with sub-Planckian potential through
possibly super-Planckian field range

€ Suppression of corrections in non-susy models motivates
use of fields with additional symmetry

AXxions: Periodic scalars with (perturbative) shift symmetry
O — ¢+ A

broken to discrete periodicity by:

- Non-perturbative effects = natural inflation

- Monodromic effects = axion monodromy
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€ Proposals to avoid, in multiple axion models
- N-flation Dimopoulos, Kachru, McGreevy, Wacker

- Kinetic alignment  McAllister et al

- Lattice alignment Kim, Nilles, Peloso
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¢ Consider solutions of GR+axion with instanton charge n

S~ nMp (in strings, can regard as effective
f description of D-brane instantons)

¢ Generically (susy) contribute to scalar potential

= higher harmonics reduce the rolling range < Mp
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¢ Consistent with Weak Gravity Conjecture
Arkani-Hamed, Motl, Nicolis, Vafa
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¢ Absence of wormholes necessary, not sufficient
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€ Generalize to arbitrary p-form field, e.g. axions (0-forms)
In quantum gravity with single axion, there exists an
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€ Strong form very stringent for multi-axion models
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- Strings seems to satisfy strong version = constraining

€ Open challenge to show otherwise
& realize transplanckian natural inflation
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McAllister, Silverstein, VWestphal

€ Axion from IIB RR 2-form over 2-cycle

€ Monodromy from (NS)5-brane-antibranes on two
homologous 2-cycles on separate throats

¢ To suppress log backreaction, Conlon

put at bottom of overall throat C
Flauger, McAllister, Pajer, Westphal, Xu

¢ Bifid throat looks “ugly”, but
- hosted by simple geometries
- has tractable holographic dual

Retolaza, A.U,Westphal
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€ Recall warped deformed conifold throat Klebanov, Strassler
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€ Throats with three 3-cycles and homologous 2-cyc|g
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Just a Z2 x Z3 orbifold of the conifold
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€ Allows for completely explicit choice of fractional
branes triggering an RG flow dual to the bifid throat

Give a sketch of the main steps
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Holographic dual of bifid throat
€ UV of overall throat: Duality cascade on conifold/(Z2xZ3)
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€ Daughter throats: baryonic Higgsing to two conifold/Z?2
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€ IR of daughters: Deformation to complex curve of C%/Z2
Just a Z2 orbifold of Klebanov-Strassler

- Log backreaction of branes is RG evolution of gauge
couplings

Already studied in N=2 fractional branes by Grana, Polchinski

¢ Induced D3 charge still subject to antibrane controversy
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€ More work needed...
Important from first-principles perspective

but hopefully relevant to new cosmo data



Thank you!



