Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions

Some results on thermalization in 2D CFT and their holographic interpretation

Gautam Mandal TIFR, Mumbai

23 June, Strings 2015, ICTS, Bangalore

Based on: GM, R. Sinha, N. Sorokhaibam (1405.6695, 1501.04580), GM, T. Morita (1302.0859), P. Caupta, GM, R. Sinha (1306.4974), ongoing work with S. Paranjape, R. Sinha, N. Sorokhaibam and T. Ugajin

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov, Sengupta, Silva, Vengalattore 2011

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov, Sengupta, Silva, Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov,Sengupta,Silva,Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov,Sengupta,Silva,Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

(b) Does the existence/nature of the equilibrium configuration depend on the system/the observable/quench protocol g(t)?

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov,Sengupta,Silva,Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

(b) Does the existence/nature of the equilibrium configuration depend on the system/the observable/quench protocol g(t)?

• Quantum Ergodic Hypothesis (QEH): $\rho_{eqm} = \rho_{micro}(E)$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov,Sengupta,Silva,Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

(b) Does the existence/nature of the equilibrium configuration depend on the system/the observable/quench protocol g(t)?

• Quantum Ergodic Hypothesis (QEH): $\rho_{eqm} = \rho_{micro}(E)$ i.e. an equilibrium configuration exists and depends only on the energy *E* of the initial state. For quench to a critical point (for *H* conformal), equilibrium properties are governed by Wilsonian universality.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov, Sengupta, Silva, Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

(b) Does the existence/nature of the equilibrium configuration depend on the system/the observable/quench protocol g(t)?

• Quantum Ergodic Hypothesis (QEH): $\rho_{eqm} = \rho_{micro}(E)$ i.e. an equilibrium configuration exists and depends only on the energy *E* of the initial state. For quench to a critical point (for *H* conformal), equilibrium properties are governed by Wilsonian universality.

• Is there some kind of universality in the short/long time behaviour of $O_i(t)$ e.g. $O_i(t) \sim t^{-\alpha_i}$ (non-critical), $e^{-\gamma_i t}$ (critical)?

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Suppose that a system, initially in its ground state, is perturbed by a time-dependent coupling $\int d^d x g(t) O(x)$ for some time (quantum quench). [cold atoms, hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov, Sengupta, Silva, Vengalattore 2011

After the time-dependence of g(t) ceases (say at t = 0), the post-quench dynamics is described by the final hamiltonian H and some excited state $|\psi_0\rangle$ which serves as the initial state at t = 0.

(a) Do observables of the system approach an "equilibrium"?

$$\langle O_i(t) \rangle = \langle \psi_0 | O_i(t) | \psi_0 \rangle \xrightarrow{t > t_{eqm,i}} \operatorname{Tr}(\rho_{eqm} | O_i)$$

(b) Does the existence/nature of the equilibrium configuration depend on the system/the observable/quench protocol g(t)?

• Quantum Ergodic Hypothesis (QEH): $\rho_{eqm} = \rho_{micro}(E)$ i.e. an equilibrium configuration exists and depends only on the energy *E* of the initial state. For quench to a critical point (for *H* conformal), equilibrium properties are governed by Wilsonian universality.

• Is there some kind of universality in the short/long time behaviour of $O_i(t)$ e.g. $O_i(t) \sim t^{-\alpha_i}$ (non-critical), $e^{-\gamma_i t}$ (critical)?

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

Consider 2D dynamics. Assume that (a) the post-quench dynamics is conformal: $S = S_{CFT} + \int d^2x \ g(t) \ O_{\Delta}(x)$. (b) Quench is sudden: $g = g_0 \theta(-t)$ t = 0In this case, the only length scale describing the quench is $\kappa = g_0^{1/(d-\Delta)}$. At length/distance scales $I, t \gg \kappa$, the initial state is approximated by $|\psi_0\rangle = e^{-\kappa H_{CFT}} |Bd\rangle$ Calabrese-Cardy 2005

where $|Bd\rangle$ is a 'boundary' state compatible with conformal invariance.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Consider 2D dynamics. Assume that (a) the post-quench dynamics is conformal: $S = S_{CFT} + \int d^2 x \ g(t) \ O_{\Delta}(x)$. (b) Quench is sudden: $g = g_0 \theta(-t)$ t = 0 g=0. In this case, the only length scale describing the quench is $\kappa = g_0^{1/(d-\Delta)}$. At length/distance scales $I, t \gg \kappa$, the initial state is approximated by $|\psi_0\rangle = e^{-\kappa H_{CFT}} |Bd\rangle$ Calabrese-Cardy 2005

where $|Bd\rangle$ is a 'boundary' state compatible with conformal invariance. Results: (I) One-point functions thermalize exponentially fast

$$\langle \psi_0 | O_i(x,t) | \psi_0 \rangle \xrightarrow{t > t_{eqm}} \operatorname{Tr} (O_i(0,0) \rho_\beta) + \alpha_i \ e^{-\gamma_i t}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Consider 2D dynamics. Assume that (a) the post-quench dynamics is conformal: $S = S_{CFT} + \int d^2x \ g(t) \ O_{\Delta}(x)$. (b) Quench is sudden: $g = g_0 \theta(-t)$ t=0 g=0. In this case, the only length scale describing the quench is $\kappa = g_0^{1/(d-\Delta)}$. At length/distance scales $l, t \gg \kappa$, the initial state is approximated by

 $|\psi_0
angle = e^{-\kappa H_{CFT}}|Bd
angle$ Calabrese-Cardy 2005

where $|Bd\rangle$ is a 'boundary' state compatible with conformal invariance. Results: (I) One-point functions thermalize exponentially fast

$$\langle \psi_0 | O_i(\mathbf{x}, t) | \psi_0 \rangle \xrightarrow{t > t_{eqm}} \operatorname{Tr} (O_i(0, 0) \rho_\beta) + \alpha_i e^{-\gamma_i t}$$

• QEH holds. $\rho_{eqm} = \rho_{\beta} = e^{-\beta H}/Z, \ \beta = 4\kappa$, Exponent: $\gamma_i = 2\pi\Delta_i/\beta$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Consider 2D dynamics. Assume that (a) the post-quench dynamics is conformal: $S = S_{CFT} + \int d^2x \ g(t) \ O_{\Delta}(x)$. (b) Quench is sudden: $g = g_0 \theta(-t)$ t=0 g=0. In this case, the only length scale describing the quench is $\kappa = g_0^{1/(d-\Delta)}$. At length/distance scales $l, t \gg \kappa$, the initial state is approximated by

 $|\psi_0
angle = e^{-\kappa H_{CFT}}|Bd
angle$ Calabrese-Cardy 2005

where $|Bd\rangle$ is a 'boundary' state compatible with conformal invariance. Results: (I) One-point functions thermalize exponentially fast

$$\langle \psi_0 | O_i(x,t) | \psi_0 \rangle \xrightarrow{t > t_{eqm}} \operatorname{Tr} (O_i(0,0) \ \rho_\beta) + \alpha_i \ e^{-\gamma_i t}$$

• QEH holds. $\rho_{eqm} = \rho_{\beta} = e^{-\beta H}/Z, \ \beta = 4\kappa$, Exponent: $\gamma_i = 2\pi \Delta_i/\beta$

• These depend on the quench protocol (on the single parameter g_0 , through β).

However, the ratios $\gamma_i/\gamma_i = \Delta_i/\Delta_i$ are universal (determined entirely by the final CFT).

From the viewpoint of black hole physics, the scale β , related to the mass of the black hole is also universal; only the initial energy is remembered

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
00000						

Consider 2D dynamics. Assume that (a) the post-quench dynamics is conformal: $S = S_{CFT} + \int d^2x \ g(t) \ O_{\Delta}(x)$. (b) Quench is sudden: $g = g_0 \theta(-t)$ t = 0In this case, the only length scale describing the quench is $\kappa = g_0^{1/(d-\Delta)}$. At length/distance scales $I, t \gg \kappa$, the initial state is approximated by $|\psi_0\rangle = e^{-\kappa H_{CFT}} |Bd\rangle$ Calabrese-Cardy 2005

 $|\psi_0
angle= e^{-im_{CFT}}|Bd
angle$ Calabrese-Cardy 2005

where $|Bd\rangle$ is a 'boundary' state compatible with conformal invariance. Results: (I) One-point functions thermalize exponentially fast

$$\langle \psi_0 | O_i(x,t) | \psi_0 \rangle \xrightarrow{t > t_{eqm}} \operatorname{Tr} \left(O_i(0,0) \ \rho_\beta \right) + \alpha_i \ e^{-\gamma_i t}$$

• QEH holds. $\rho_{eqm} = \rho_{\beta} = e^{-\beta H}/Z$, $\beta = 4\kappa$, Exponent: $\gamma_i = 2\pi \Delta_i/\beta$

• These depend on the quench protocol (on the single parameter g_0 , through β).

However, the ratios $\gamma_i/\gamma_i = \Delta_i/\Delta_i$ are universal (determined entirely by the final CFT).

From the viewpoint of black hole physics, the scale β , related to the mass of the black hole is also universal; only the initial energy is remembered

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

(II) An arbitrary string of local operators, contained within an interval A of size I, also thermalizes (conjecture Cardy 2014)

$$\langle \psi_0 | O_i(x_i, t) O_j(x_j, t) ... | \psi_0 \rangle \xrightarrow{t > t_{eqm}} \operatorname{Tr} \left(O_i(x_i, 0) O_j(x_j, 0) \rho_\beta \right) + C e^{-\gamma_{min} t}$$

The thermal correlator on the right shows usual universality known from critical phenomena. The exponent $\gamma_{min} = 2\pi \Delta_{min}/\beta$, refers to the most relevant operator. (It's assumed that the CFT has a gapped spectrum of the scaling operator).

We will show later how to prove this, using the late time behaviour of the reduced density matrix $\rho_{dvn,A}$ of the interval *A*.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

The Calabrese-Cardy state fails to take into account the following:

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

The Calabrese-Cardy state fails to take into account the following:

(a) Multiple scales: when the quench protocol g(t) has more scales, e.g. $g(t) = g_0 f(t/\delta t)$,

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

The Calabrese-Cardy state fails to take into account the following:

(a) Multiple scales: when the quench protocol g(t) has more scales, e.g. $g(t) = g_0 f(t/\delta t)$,

(b) Multiple charges: when there are other conserved charges, the thermal or microcaconical ensemble ansatz for $\rho_{micro}(E)$ is inadequate.

 g_0

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

The Calabrese-Cardy state fails to take into account the following:

(a) Multiple scales: when the quench protocol g(t) has more scales, e.g. $g(t) = g_0 f(t/\delta t)$,

(b) Multiple charges: when there are other conserved charges, the thermal or microcaconical ensemble ansatz for $\rho_{micro}(E)$ is inadequate. We propose that in a CFT with additional charges W_n we can solve both issues with

the following generalized Calabrese-Cardy (gCC) state

$$|\psi_0\rangle = e^{-(\kappa_2 H + \sum_n \kappa_n W_n + ...)} |Bd\rangle,$$

We will require that W_n are obtained from local currents which are primary or quasiprimary operators.

Multiple cut-off parameters \leftrightarrow multiple scales.

We include integrable conformal theories with ∞ number of conserved charges.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

Free scalar quench and the gCC state

• For a scalar field with a time-dependent mass $m^2(t)$ the initial vacuum $|0, in\rangle$ is related to the final vacuum $|0, out\rangle$ by a Bogoliukov transformation

$$|0, in
angle = \exp\left[-\sum_{k}\gamma(k)a^{\dagger}(k)a^{\dagger}(-k)
ight]|0, out
angle,$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

Free scalar quench and the gCC state

• For a scalar field with a time-dependent mass $m^2(t)$ the initial vacuum $|0, in\rangle$ is related to the final vacuum $|0, out\rangle$ by a Bogoliukov transformation

$$|0,in
angle = \exp\left[-\sum_{k}\gamma(k)a^{\dagger}(k)a^{\dagger}(-k)
ight]|0,out
angle,$$

For a simple quench protocol, e.g. $m^2(t) = m_0^2(1 - \tanh(t/\delta t))/2$, it is easy to explicitly determine $\gamma(k)$ Birrell, Davies 1994, which, expanded in small $|k|/m_0, m_0\delta t$, looks like

$$\gamma(k; m_0, \delta t) = -1 + \frac{|k|}{m_0} \left(1 + \frac{\pi^2}{6} (m_0 \delta t)^2 + \dots \right) - \frac{1}{2} \left(\frac{|k|}{m_0} \right)^2 \left(1 + \frac{\pi^2}{3} (m_0 \delta t)^2 + \dots \right) + \dots$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000						

Free scalar quench and the gCC state

• For a scalar field with a time-dependent mass $m^2(t)$ the initial vacuum $|0, in\rangle$ is related to the final vacuum $|0, out\rangle$ by a Bogoliukov transformation

$$|0,in
angle = \exp\left[-\sum_{k}\gamma(k)a^{\dagger}(k)a^{\dagger}(-k)
ight]|0,out
angle,$$

$$\gamma(k; m_0, \delta t) = -1 + \frac{|k|}{m_0} \left(1 + \frac{\pi^2}{6} (m_0 \delta t)^2 + \dots \right) - \frac{1}{2} \left(\frac{|k|}{m_0} \right)^2 \left(1 + \frac{\pi^2}{3} (m_0 \delta t)^2 + \dots \right) + \dots$$

By using a variant of the BCH formula, we can write $|0, in\rangle$ in the form:

$$\begin{aligned} |0, in\rangle &= \exp\left[-\frac{1}{m_0}\left(1 + \frac{\pi^2}{6}(m_0\delta t)^2 + ...\right)\sum_k |k|a^{\dagger}(k)a(k) - \frac{1}{6m_0^3}\left(1 - \frac{\pi^2}{2}(m_0\delta t)^2 + ...\right) \right. \\ &\times \sum_k |k|^3 a^{\dagger}(k)a(k) + ...\right] \exp\left[\sum_k a^{\dagger}_{out}(k)a^{\dagger}_{out}(-k)\right] \left|0, out\rangle, \end{aligned}$$

which becomes a generalized CC state, with the boundary state identified as a Dirichlet state and a cut-off for all even W_{∞} charges (as expected for a c = 1 scalar) $\kappa_2 = 1/(2\pi m_0)(1 + \pi^2(m_0\delta t)^2/6), \ \kappa_3 = 0, \ \kappa_4 = -1/(768\pi m_0^3)(1 - \pi^2(m_0\delta t)^2/2), ...$

Introduction ○○○○○●	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions 000
Plan of	f the rest of	the talk				

• Thermalization of one-point function for the generalized quench. New universality relations.

Dian of	the rest of	the telk				
Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions

- Thermalization of one-point function for the generalized quench. New universality relations.
- Thermalization of integrable conformal models. Comparison with massive cases.

Plan of	the rest of	the talk				
Introduction	One-point functions	Reduced density matrix	Thermal correlators ○	Holography	Other generalizations	Conclusions 000

- Thermalization of one-point function for the generalized quench. New universality relations.
- Thermalization of integrable conformal models. Comparison with massive cases.
- Late time dynamics of reduced density matrix. Thermalization of arbitrary string of local observables. Relation to Entanglement entropy.

Plan of	the rest of	the talk				
Introduction	One-point functions	Reduced density matrix	Thermal correlators ○	Holography	Other generalizations	Conclusions 000

- Thermalization of one-point function for the generalized quench. New universality relations.
- Thermalization of integrable conformal models. Comparison with massive cases.
- Late time dynamics of reduced density matrix. Thermalization of arbitrary string of local observables. Relation to Entanglement entropy.
- Decay of thermal correlators.

Introduction	One-point functions	Reduced density matrix	Thermal correlators o	Holography 000	Other generalizations	Conclusions
Diam of		46 - 4 - 11 -				

Plan of the rest of the talk

- Thermalization of one-point function for the generalized quench. New universality relations.
- Thermalization of integrable conformal models. Comparison with massive cases.
- Late time dynamics of reduced density matrix. Thermalization of arbitrary string of local observables. Relation to Entanglement entropy.
- Decay of thermal correlators.
- Holographic interpretation. Higher spin black holes.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
-						

Plan of the rest of the talk

- Thermalization of one-point function for the generalized quench. New universality relations.
- Thermalization of integrable conformal models. Comparison with massive cases.
- Late time dynamics of reduced density matrix. Thermalization of arbitrary string of local observables. Relation to Entanglement entropy.
- Decay of thermal correlators.

• Holographic interpretation. Higher spin black holes. Matching of thermal correlation exponents with quasinormal frequencies of a higher spin black hole.

• Generalization to imhogoneous quench, and quench with spatial boundaries.

000000		000	0	000	000	000			
Review of Calabrese-Cardy									

- Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x,\tau) \rangle$ = insertion of O on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

• Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x,\tau) \rangle$ = insertion of *O* on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

• Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x, \tau) \rangle$ = insertion of O on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

• Disconnected part of two-point function involves $\langle O(z) \rangle_{plane} \propto \langle O(z) \rangle_{cylinder}$, Thermal ensemble, with $\beta \leftrightarrow 2\pi \leftrightarrow 4\kappa$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
_						

• Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x, \tau) \rangle$ = insertion of O on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

• Disconnected part of two-point function involves $\langle O(z) \rangle_{plane} \propto \langle O(z) \rangle_{cylinder}$, Thermal ensemble, with $\beta \leftrightarrow 2\pi \leftrightarrow 4\kappa$

• Thermalization exponent: $\gamma = \frac{\pi}{2\kappa}\Delta = \frac{2\pi}{\beta}\Delta, \Delta = h + \bar{h}$, Equilibrium ensemble ρ_{eqm} given by $\beta = 4\kappa$.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

• Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x, \tau) \rangle$ = insertion of O on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

• Disconnected part of two-point function involves $\langle O(z) \rangle_{plane} \propto \langle O(z) \rangle_{cylinder}$, Thermal ensemble, with $\beta \leftrightarrow 2\pi \leftrightarrow 4\kappa$

• Thermalization exponent: $\gamma = \frac{\pi}{2\kappa}\Delta = \frac{2\pi}{\beta}\Delta, \Delta = h + \bar{h}$, Equilibrium ensemble ρ_{eqm} given by $\beta = 4\kappa$.

Same exponent also describes decay of a thermal perturbation.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

• Calabrese-Cardy state is interpreted in terms of Euclidean $\tau\text{-evolution Calabrese,Cardy}$ 2005

$$|\psi_0
angle = e^{-\kappa H}|Bd
angle$$

Thus, $\langle O(x, \tau) \rangle$ = insertion of O on a strip $\propto \langle O \rangle_{UHP} = \langle O(z)O(z') \rangle_{plane}$

• Disconnected part of two-point function involves $\langle O(z) \rangle_{plane} \propto \langle O(z) \rangle_{cylinder}$, Thermal ensemble, with $\beta \leftrightarrow 2\pi \leftrightarrow 4\kappa$

• Thermalization exponent: $\gamma = \frac{\pi}{2\kappa} \Delta = \frac{2\pi}{\beta} \Delta, \Delta = h + \bar{h}$, Equilibrium ensemble ρ_{eqm} given by $\beta = 4\kappa$.

Same exponent also describes decay of a thermal perturbation.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Generalized CC state

Do the above results extend to the gCC state

$$|\psi_0\rangle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n]|Bd\rangle?$$

The W_n 's are conserved charges which we assume are obtained from local currents which are primary or quasiprimary operators. We have included the case of integrable CFT's; examples are provided by CFT's carrying a W_∞ algebra. We will prove the following results (Caputa, GM, Sinha 2013; GM, Sinha, Sorokhaibam 2015):

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Generalized CC state

• Do the above results extend to the gCC state

$$|\psi_0
angle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n]|Bd
angle?$$

The W_n 's are conserved charges which we assume are obtained from local currents which are primary or quasiprimary operators. We have included the case of integrable CFT's; examples are provided by CFT's carrying a W_∞ algebra. We will prove the following results (Caputa, GM, Sinha 2013; GM, Sinha, Sorokhaibam 2015):

• 1. Single operators equilibrate, as follows

$$\langle \psi(t)|O(x)|\psi(t)\rangle \rightarrow \operatorname{Tr}(\rho_{eqm}O(x)) + \alpha \exp[-\gamma t]$$

The equilibrium ensemble is related to the cut-off parameters defining the state

$$\rho_{eqm} = \frac{1}{Z} \exp[-\beta H - \sum_{n} \mu_{n} W_{n}] = \rho_{GGE}, \ \kappa = \beta/4, \ \kappa_{n} = \mu_{n}/4, \ n = 3, 4, ...,$$

For integrable CFT's, the equilibrium ensemble above is the generalized Gibbs ensemble, the GGE.
Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Generalized CC state

Do the above results extend to the gCC state

$$|\psi_0\rangle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n]|Bd\rangle?$$

The W_n 's are conserved charges which we assume are obtained from local currents which are primary or quasiprimary operators. We have included the case of integrable CFT's; examples are provided by CFT's carrying a W_∞ algebra.

• 1. Single operators equilibrate, as follows

$$\langle \psi(t)|O(x)|\psi(t)\rangle \rightarrow \operatorname{Tr}(\rho_{eqm}O(x)) + \alpha \exp[-\gamma t]$$

The equilibrium ensemble is related to the cut-off parameters defining the state

$$\rho_{eqm} = \frac{1}{Z} \exp[-\beta H - \sum_{n} \mu_{n} W_{n}] = \rho_{GGE}, \ \kappa = \beta/4, \ \kappa_{n} = \mu_{n}/4, \ n = 3, 4, ...,$$

For integrable CFT's, the equilibrium ensemble above is the generalized Gibbs ensemble, the GGE.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Thermalization in integrable models

Thermalization of local observables has been discovered over the past eight years in several (massive) integrable models:

Integrable 2D: Transverse field Ising (Calabrese et al 2005) $H = -J \sum_{l=1}^{L} [\sigma_i^x \sigma_{l+1}^x + h(t)\sigma_l^z]$ Hard core boson chain (Rigol et al 2007) $H = -J \sum_{l=1}^{L(l)} b_i^{\dagger} b_{l+1} + h.c.$ Massive Scalar(Sotiriadis, Cardy 2010) $S = \int d^2 x [(\partial \phi)^2 - m^2(t)\phi^2]$ Matrix QM model (Morita, GM 2013) $S = \int dt [Tr(U^{\dagger} \partial_t U + a(t)(U + U^{\dagger})]$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Thermalization in integrable models

Thermalization of local observables has been discovered over the past eight years in several (massive) integrable models:

Morita, GM 2013

We show in the present work that thermalization to GGE is generic to all integrable CFT's.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Thermalization in integrable models

Thermalization of local observables has been discovered over the past eight years in several (massive) integrable models:

Morita, GM 2013

We show in the present work that thermalization to GGE is generic to all integrable CFT's.

For transverse field Ising model, the late time dynamics for $\langle \psi_0(t) | \sigma_i^z \sigma_{i+1}^z | \psi_0(t)$ smoothly interpolates from $t^{-3/2}$ (non-critical quench) to $\exp[-\gamma t]$ (critical quench) GM, Paranjape, Sorokhaibam 2015

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
Summa	arv of resul	ts				

• 1. Single operators equilibrate, as follows

 $\langle \psi(t) | O_i(x) | \psi(t) \rangle \rightarrow \operatorname{Tr}(\rho_{eqm} O_i(x)) + \alpha_i \exp[-\gamma_i t]$

Introduction One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
000000 000000					

Summary of results

• 1. Single operators equilibrate, as follows

$$\langle \psi(t) | O_i(x) | \psi(t) \rangle \rightarrow \operatorname{Tr}(\rho_{eqm} O_i(x)) + \alpha_i \, \exp[-\gamma_i t]$$

• 2. The thermalization exponent is given by

$$\gamma_i = \frac{2\pi}{\beta} \left[\Delta_i + \sum_n \tilde{\mu}_n Q_{n,i} + O(\tilde{\mu}^2) \right], \ \tilde{\mu}_n \equiv \frac{\mu_n}{\beta^{n-1}}$$

Here Δ_i and $Q_{n,i}$ are the scaling dimension and W_n -charges carried by O_i .

• 3. The result can be generalized to an arbitrary string of local operators (with a compact support of size *I*)

$$\langle \psi(t)|O_1(x_1)O_2(x_2)...|\psi(t)\rangle \xrightarrow{t\gg t_{eqm}} \operatorname{Tr}(\rho_{GGE}O_1(x_1)O_2(x_2)...) + C e^{-\gamma_{min}t}, \quad (1)$$

where γ_{min} now refers to the most relevant operator in the theory, and $t_{eqm} = I/2$. (We assume here that the spectrum of conformal dimensions is gapped).

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	000000					

Summary of results

• 1. Single operators equilibrate, as follows

$$\langle \psi(t) | O_i(x) | \psi(t) \rangle \rightarrow \operatorname{Tr}(\rho_{eqm} O_i(x)) + \alpha_i \, \exp[-\gamma_i t]$$

• 2. The thermalization exponent is given by

$$\gamma_i = \frac{2\pi}{\beta} \left[\Delta_i + \sum_n \tilde{\mu}_n Q_{n,i} + O(\tilde{\mu}^2) \right], \ \tilde{\mu}_n \equiv \frac{\mu_n}{\beta^{n-1}}$$

Here Δ_i and $Q_{n,i}$ are the scaling dimension and W_n -charges carried by O_i .

• 3. The result can be generalized to an arbitrary string of local operators (with a compact support of size *I*)

$$\langle \psi(t)|O_1(x_1)O_2(x_2)...|\psi(t)\rangle \xrightarrow{t\gg t_{eqm}} \operatorname{Tr}(\rho_{GGE}O_1(x_1)O_2(x_2)...) + C e^{-\gamma_{min}t}, \quad (1)$$

where γ_{min} now refers to the most relevant operator in the theory, and $t_{eqm} = I/2$. (We assume here that the spectrum of conformal dimensions is gapped).

 4. The above follows from a result about reduced density matrices which we will prove below

$$\rho_{\rm dyn,A}(t) \rightarrow \rho_{\rm GGE,A} + \alpha \; {\rm e}^{-2\gamma_{\rm min}t}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	000000					

New Universality relations

The ratios γ_i / γ_i now depend on μ :

For the Cardy-Calabrese state, the ratios γ_i/γ_j are universal. With the generalized CC state, these ratios cease to be universal. For example, in the presence of one extra charge, we have $\gamma_i = \frac{2\pi}{3} \left[\Delta_i + \tilde{\mu} Q_i \right]$,

1.8

1.6

1.4

 Δ_3/Δ_1

 Δ / Δ

 $\gamma_{\rm s}/\gamma_{\rm s}$

 γ_2/γ_1

non-universal ratios

However, it is easy to see that the μ -dependence can be eliminated by considering new ratios such as $(a_{31}\gamma_2 + a_{12}\gamma_3)/\gamma_1$, $(a_{41}\gamma_3 + a_{13}\gamma_4)/\gamma_1$, with $a_{ij} = \Delta_{[i}Q_{j]}$, are independent of μ , and depend only on the spectrum of the final CFT.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Proof of thermalization: one-point function

Recall

$$|\psi_0\rangle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] |Bd\rangle?$$

Consider evaluating

$$\langle \psi_0 | O(x) | \psi_0 \rangle = \langle Bd | \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] O(x) \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] | Bd \rangle$$

The first term in the exponential represents a Euclidean time evolution; however, there is no such interpretation for the remaining exponentials. Thus, we are forced to expand them and treat them as multiple insertion of charged currents on the strip/UHP.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Proof of thermalization: one-point function

Recall

$$|\psi_0\rangle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] |Bd\rangle?$$

Consider evaluating

$$\langle \psi_0 | O(x) | \psi_0 \rangle = \langle Bd | \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] O(x) \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] | Bd \rangle$$

The first term in the exponential represents a Euclidean time evolution; however, there is no such interpretation for the remaining exponentials. Thus, we are forced to expand them and treat them as multiple insertion of charged currents on the strip/UHP.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
	00000					

Proof of thermalization: one-point function

Recall

$$|\psi_0\rangle = \exp[-\kappa_2 H - \sum_{n=3}^{\infty} \kappa_n W_n] |Bd\rangle?$$

Consider evaluating

At large times $t \gg \beta$, the Feynman diagrams exponentiate

$$\langle O(t) \rangle_{\kappa_n} = \langle O(t) \rangle_0 \left(1 - f_n \kappa_n t + \frac{(f_n \kappa_n t)^2}{2!} + \dots \right) = \langle O \rangle_{eqm,\beta,\mu_n} + \alpha \exp[-\gamma_0 t - f_n \mu_n t/4 + O(\mu^2)]$$

Introduction	One-point functions	Reduced density matrix ●00	Thermal correlators	Holography	Other generalizations	Conclusions
Genera	al correlato	rs $\langle O_1 O_2 angle$				

We will now the extend the above result on thermalization to an arbitrary string of local operators contained in an interval of size *I*, by following the proposal of Cardy 2014.

Introduction	One-point functions	Reduced density matrix •oo	Thermal correlators O	Holography	Other generalizations	Conclusions	
General correlators $\langle O_1 O_2 \rangle$							

We will now the extend the above result on thermalization to an arbitrary string of local operators contained in an interval of size *I*, by following the proposal of Cardy 2014.

Cardy (2014) proposed a "thermalization function" for a subsystem A, I/2 > x > -I/2:

$$\begin{split} I_{A}(t) &= \mathrm{Tr}(\hat{\rho}_{A,dynamical}\hat{\rho}_{A,eqm}(\beta))\\ \rho_{A,dynamical}(t) &= \mathrm{Tr}_{\bar{A}}(\rho_{dynamical}(t)), \ \rho_{dynamical} = |\psi(t)\rangle\langle\psi(t)|,\\ \rho_{A,eqm}(\beta) &= \mathrm{Tr}_{\bar{A}}(\rho_{eqm}(\beta)), \ \rho_{eqm} = \frac{1}{Z}e^{-\beta H} \end{split}$$

where $\hat{\rho}=\rho/\sqrt{\mathrm{Tr}\rho^2}$ are square-normalized matrices.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		00				

General correlators $\langle O_1 O_2 ... \rangle$

We will now the extend the above result on thermalization to an arbitrary string of local operators contained in an interval of size *I*, by following the proposal of Cardy 2014.

Cardy (2014) proposed a "thermalization function" for a subsystem A, I/2 > x > -I/2:

$$I_{A}(t) = \operatorname{Tr}(\hat{
ho}_{A, dynamical} \hat{
ho}_{A, eqm}(eta))$$

Cardy (2014) conjectured that, for the simple CC state $e^{-\kappa H}|Bd\rangle$, that (for $t > t_{eqm} = I/2$) $I_A(t) = 1 - \alpha e^{-2\gamma_{min}(t - t_{eqm})}$ + faster transients

where $\gamma_{min} = \frac{2\pi}{\beta} \Delta_{min}$ refers to the thermalization exponent of the most relevant operator, $\beta = 4\kappa$. (proved in GM,Sinha,Sorokhaibam 2015)

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		00				

General correlators $\langle O_1 O_2 ... \rangle$

We will now the extend the above result on thermalization to an arbitrary string of local operators contained in an interval of size *I*, by following the proposal of Cardy 2014.

Cardy (2014) proposed a "thermalization function" for a subsystem A, I/2 > x > -I/2:

$$I_{A}(t) = \operatorname{Tr}(\hat{
ho}_{A, dynamical} \hat{
ho}_{A, eqm}(eta))$$

Cardy (2014) conjectured that, for the simple CC state $e^{-\kappa H}|Bd\rangle$, that (for $t > t_{eqm} = I/2$) $I_A(t) = 1 - \alpha e^{-2\gamma_{min}(t - t_{eqm})}$ + faster transients

where $\gamma_{min} = \frac{2\pi}{\beta} \Delta_{min}$ refers to the thermalization exponent of the most relevant operator, $\beta = 4\kappa$. (proved in GM,Sinha,Sorokhaibam 2015)

Implication:

$$\begin{array}{l}\rho_{A,dynamical}(t) \xrightarrow{t>t_{eqm}} \rho_{A,eqm}\\ \langle \psi(t)|O_1(x_1)O_2(x_2)....|\psi(t)\rangle \to \operatorname{Tr}(\rho_{eqm,\beta}O_1(x_1)O_2(x_2)....)+...\end{array}$$

up to terms vanishing as fast as $e^{-\gamma_{min}t}$.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		000				

The thermalization function

$$I_{A}(t) = \text{Tr}(\hat{\rho}_{A, dynamical} \hat{\rho}_{A, eqm}(\beta)) = \frac{\hat{Z}_{sc}}{\sqrt{\hat{Z}_{ss}\hat{Z}_{cc}}}$$

involves gluing a strip and a cylinder along an interval. We compute this by using the short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		000				

The thermalization function

$$V_{\mathcal{A}}(t) = \operatorname{Tr}(\hat{
ho}_{A, \, dynamical} \hat{
ho}_{A, \, eqm}(eta)) = rac{Z_{sc}}{\sqrt{\hat{Z}_{ss}\hat{Z}_{cc}}}$$

involves gluing a strip and a cylinder along an interval. We compute this by using the short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		000				

The thermalization function

$$V_{\mathcal{A}}(t) = \operatorname{Tr}(\hat{
ho}_{A, \, dynamical} \hat{
ho}_{A, \, eqm}(eta)) = rac{Z_{SC}}{\sqrt{\hat{Z}_{SS}\hat{Z}_{CC}}}$$

involves gluing a strip and a cylinder along an interval. We compute this by using the short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

$$\begin{split} \hat{Z}_{sc} &= C_{0,0}(1+S_{1}^{sc}), \ S_{1}^{sc} = \sum_{a} \hat{C}_{a,0}(\langle O_{a} \rangle_{str}^{\mu} + \langle O_{a} \rangle_{cyl}^{\mu}) + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{str}^{\mu} \langle O_{b} \rangle_{cyl}^{\mu} \\ \hat{Z}_{ss} &= C_{0,0}(1+S_{1}^{ss}+S_{2}^{ss}), \ S_{1}^{ss} = 2\sum_{a} \hat{C}_{a,0} \langle O_{a} \rangle_{str}^{\mu} + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{str}^{\mu} \langle O_{b} \rangle_{str}^{\mu}, \ S_{2}^{ss} = \sum_{k} \hat{C}_{k,k} (\langle O_{k} \rangle_{str}^{\mu})^{2} \\ \hat{Z}_{cc} &= C_{0,0}(1+S_{1}^{cc}), \ S_{1}^{cc} = 2\sum_{a} \hat{C}_{a,0} \langle O_{a} \rangle_{cyl}^{\mu} + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{cyl}^{\mu} \langle O_{b} \rangle_{cyl}^{\mu} \end{split}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		000				

The thermalization function

$$I_{A}(t) = \text{Tr}(\hat{\rho}_{A, dynamical} \hat{\rho}_{A, eqm}(\beta)) = \frac{\hat{Z}_{sc}}{\sqrt{\hat{Z}_{ss}\hat{Z}_{cc}}}$$

involves gluing a strip and a cylinder along an interval. We compute this by using the short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

$$\begin{split} \hat{Z}_{sc} &= C_{0,0}(1+S_{1}^{sc}), \ S_{1}^{sc} = \sum_{a} \hat{C}_{a,0}(\langle O_{a} \rangle_{str}^{\mu} + \langle O_{a} \rangle_{cyl}^{\mu}) + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{str}^{\mu} \langle O_{b} \rangle_{cyl}^{\mu} \\ \hat{Z}_{ss} &= C_{0,0}(1+S_{1}^{ss}+S_{2}^{ss}), \ S_{1}^{ss} = 2\sum_{a} \hat{C}_{a,0} \langle O_{a} \rangle_{str}^{\mu} + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{str}^{\mu} \langle O_{b} \rangle_{str}^{\mu}, \ S_{2}^{ss} = \sum_{k} \hat{C}_{k,k} (\langle O_{k} \rangle_{str}^{\mu})^{2} \\ \hat{Z}_{cc} &= C_{0,0}(1+S_{1}^{cc}), \ S_{1}^{cc} = 2\sum_{a} \hat{C}_{a,0} \langle O_{a} \rangle_{cyl}^{\mu} + \sum_{ab} \hat{C}_{a,b} \langle O_{a} \rangle_{cyl}^{\mu} \langle O_{b} \rangle_{cyl}^{\mu} \end{split}$$

At $t \to \infty$ all one-point functions reduce to thermal one-point function. Thus, $\hat{Z}_{sc} = \hat{Z}_{ss} = \hat{Z}_{ss}$. Hence $I(\infty) = 1$. The slowest transient comes from S_2^{ss} which contains $\langle O_m \rangle_{str}^{\mu} \rangle^2 \sim \exp[-2\gamma_m t]$.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
		000				

Relation to entanglement entropy

The linear segments of the graph Calabrese-Cardy 2005, Hartman-Maldacena 2013 follow in the factorization limits of a four-twist operator.

Corrections to the above limits involve subleading terms in the twist-field OPE's. In the time interval $|t - t_{eqm}| \lesssim \beta$, using the techniques in the previous slides, we can show that

$$S_{EE}(t) = S_{EE, linear} - Ce^{-2\gamma_{min}t}$$

where γ_{min} refers to the thermalization exponent of the lowest operator appearing in the twist-field OPE.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
Therm	al correlato	r				

• Consider the following correlator in the GGE

$$G_{+}(t,l;\beta,\mu) \equiv \frac{1}{Z} \operatorname{Tr}(O(l,t)O(0,0)e^{-\beta H - \sum_{n} \mu_{n} W_{n}})$$

Introduction 000000	One-point functions	Reduced density matrix	Thermal correlators	Holography 000	Other generalizations	Conclusions

Consider the following correlator in the GGE

$$G_{+}(t,l;\beta,\mu) \equiv \frac{1}{Z} \operatorname{Tr}(O(l,t)O(0,0)e^{-\beta H - \sum_{n} \mu_{n} W_{n}})$$

By a conformal map, this can be reduced to a correlator on the plane

$$\langle O(z,\bar{z})O(y,\bar{y})e^{-\sum_{n}\mu_{n}W_{n}}\rangle, \quad z=ie^{2\pi(l-t)/\beta}, \bar{z}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l-t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l-t)/\beta}, z=-ie^{2\pi(l-t)/\beta}, z=-ie^{2\pi(l-t)/\beta$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
			•			

Consider the following correlator in the GGE

$$G_{+}(t,l;\beta,\mu) \equiv \frac{1}{Z} \operatorname{Tr}(O(l,t)O(0,0)e^{-\beta H - \sum_{n}\mu_{n}W_{n}})$$

By a conformal map, this can be reduced to a correlator on the plane

$$\langle O(z,\bar{z})O(y,\bar{y})e^{-\sum_{n}\mu_{n}W_{n}}\rangle, \quad z=ie^{2\pi(l-t)/\beta}, \bar{z}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{$$

• For $\mu = 0$, the above two-point function is given by

$$G_{+}(t, l; \beta, 0) \xrightarrow{t, l \gg \beta} \begin{cases} \text{ const } e^{-2\pi t \Delta_{k}/\beta}, \quad (t-l) \gg \beta \\ \text{ const } e^{-2\pi l \Delta_{k}/\beta}, \quad (l-t) \gg \beta \end{cases}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
			•			

Consider the following correlator in the GGE

$$G_{+}(t,l;\beta,\mu) \equiv \frac{1}{Z} \operatorname{Tr}(O(l,t)O(0,0)e^{-\beta H - \sum_{n} \mu_{n} W_{n}})$$

By a conformal map, this can be reduced to a correlator on the plane

$$\langle O(z,\bar{z})O(y,\bar{y})e^{-\sum_{n}\mu_{n}W_{n}}\rangle, \quad z=ie^{2\pi(l-t)/\beta}, \bar{z}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{$$

• For $\mu = 0$, the above two-point function is given by

$$G_{+}(t,l;\beta,0) \xrightarrow{t,l \gg \beta} \begin{cases} \text{ const } e^{-2\pi t \Delta_{k}/\beta}, \quad (t-l) \gg \beta \\ \text{ const } e^{-2\pi l \Delta_{k}/\beta}, \quad (l-t) \gg \beta \end{cases}$$

 The effect of turning on the chemical potentials can be dealt with as before, by inserting an infinite series of charge contours. By resumming the series, we find

$$G_+(t,0;\beta,\mu) \xrightarrow{t \to \infty} G_+(0,0;\beta,0) + b(\mu)e^{-\gamma_k t}$$

where $b(\mu)$ is time-independent, and is of the form $b(\mu) = 1 + O(\mu)$.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
			•			

Consider the following correlator in the GGE

$$G_{+}(t,l;\beta,\mu) \equiv \frac{1}{Z} \operatorname{Tr}(O(l,t)O(0,0)e^{-\beta H - \sum_{n} \mu_{n} W_{n}})$$

By a conformal map, this can be reduced to a correlator on the plane

$$\langle O(z,\bar{z})O(y,\bar{y})e^{-\sum_{n}\mu_{n}W_{n}}\rangle, \quad z=ie^{2\pi(l-t)/\beta}, \bar{z}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{2\pi(l+t)/\beta}, y=i, \bar{y}=-ie^{$$

• For $\mu = 0$, the above two-point function is given by

$$G_{+}(t,l;\beta,0) \xrightarrow{t,l \gg \beta} \begin{cases} \text{ const } e^{-2\pi t \Delta_{k}/\beta}, \quad (t-l) \gg \beta \\ \text{ const } e^{-2\pi l \Delta_{k}/\beta}, \quad (l-t) \gg \beta \end{cases}$$

 The effect of turning on the chemical potentials can be dealt with as before, by inserting an infinite series of charge contours. By resumming the series, we find

$$G_+(t,0;eta,\mu) \xrightarrow{t o \infty} G_+(0,0;eta,0) + b(\mu) e^{-\gamma_k t}$$

where $b(\mu)$ is time-independent, and is of the form $b(\mu) = 1 + O(\mu)$.

• This long time decay is the same as that of the one-point function in the quenched state.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Black hole interpretation of thermal decay

A thermal state in a 2D CFT (admitting a holographic description) is dual to a BTZ black hole. The thermofield double is dual to the eternal black hole. Maldacena 2002.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Black hole interpretation of thermal decay

A thermal state in a 2D CFT (admitting a holographic description) is dual to a BTZ black hole. The thermofield double is dual to the eternal black hole. Maldacena 2002.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Black hole interpretation of thermal decay

A thermal state in a 2D CFT (admitting a holographic description) is dual to a BTZ black hole. The thermofield double is dual to the eternal black hole. Maldacena 2002.

Thermal decay:

(a) Heavy operators: thermal two-point function $\langle O(P)O(Q) \rangle_{CFT,\beta} = e^{-\Delta L(P,Q)} = e^{-\gamma t}$ (b)For light CFT operators, perturbations to the thermal state= perturbation of black hole by a probe field. Hence thermal decay= Quasinormal decay. Explicit calculation of BTZ quasinormal frequency gives Im $(\omega) = \gamma = (2\pi/\beta)\Delta = \gamma_{CFT}$ Sachs 2010

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is described by a 'quarter' of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is described by a 'quarter' of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et al 2010. Hartman-Maldacena 2013

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is described by a 'quarter' of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013

 $\langle O(P) \rangle_{CFT} = e^{-\Delta L(P)}$, where $L(P) = \frac{1}{2}L(P, P')$. This gives $\langle O(P) \rangle_{CFT} \sim \exp[-\gamma t]$, which agrees with CFT. The relation to the thermal decay is obvious from holography.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is described by a 'quarter' of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013

 $\langle O(P) \rangle_{CFT} = e^{-\Delta L(P)}$, where $L(P) = \frac{1}{2}L(P, P')$. This gives $\langle O(P) \rangle_{CFT} \sim \exp[-\gamma t]$, which agrees with CFT. The relation to the thermal decay is obvious from holography.

An alternative holographic picture of a quench is given by a Vaidya spacetime Chesler, Yaffe 2008, Bhattacharya, Minwalla 2009.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

A simple example of an additional charge is an overall momentum P, for which the correspondence works out. Caputa, GM, R.Sinha 2013

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a representation of W_{∞} ?

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a representation of W_{∞} ?

Grand canonical partition function of a $W_{\infty}[\lambda]$ coset CFT = partition function of a higher spin (hs[λ]) Gaberdiel, Gopakumar 2010 black hole in two special cases [$\lambda = 0$ (free fermions, $\lambda = 1$ (free bosons)]. Kraus Gutperle 2011
Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

The holographic dual to the generalized quench state (gCC)

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a representation of W_{∞} ?

Grand canonical partition function of a $W_{\infty}[\lambda]$ coset CFT = partition function of a higher spin (hs[λ]) Gaberdiel, Gopakumar 2010 black hole in two special cases [$\lambda = 0$ (free fermions, $\lambda = 1$ (free bosons)]. Kraus Gutperle 2011

• $|gCC\rangle$ = higher spin black hole? (or a quarter of it?).

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

The holographic dual to the generalized quench state (gCC)

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a representation of W_{∞} ?

• $|gCC\rangle$ = higher spin black hole? (or a quarter of it?).

We find that

thermalization exponent in the generalized quench state = the thermal decay rate in the GGE = (imaginary part of) quasinormal frequency for the corresponding bulk field in a higher-spin black hole Cabo-Bizet, Gava, Giraldo-Rivera, Narain 2014

$$\mathrm{Im}\,\omega = \frac{2\pi}{\beta}\left(1 + \lambda + \frac{\tilde{\mu}_3}{3}(1 + \lambda)(2 + \lambda)\right) = \gamma_{CFT} \quad \mathrm{GM}, \mathrm{Sinha}, \mathrm{Sorokhaibam} \text{ 2015}, \mathrm{Thakur}, \mathrm{GM} \text{ 2015}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
				000		

The holographic dual to the generalized quench state (gCC)

• We found that the gCC state $\exp[-\kappa_2 H - \sum_n \kappa_n W_n] |Bd\rangle$ thermalizes to an equilibrium ensemble characterized by additional charges/chemical potentials. Such a thermal ensemble should be holographically dual to a black hole with additional charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a representation of W_{∞} ?

• $|gCC\rangle$ = higher spin black hole? (or a quarter of it?).

We find that

thermalization exponent in the generalized quench state = the thermal decay rate in the GGE = (imaginary part of) quasinormal frequency for the corresponding bulk field in a higher-spin black hole Cabo-Bizet, Gava, Giraldo-Rivera, Narain 2014

$$\mathrm{Im}\,\omega = \frac{2\pi}{\beta}\left(1 + \lambda + \frac{\tilde{\mu}_3}{3}(1 + \lambda)(2 + \lambda)\right) = \gamma_{CFT} \quad \mathrm{GM}, \mathrm{Sinha}, \mathrm{Sorokhaibam} \text{ 2015}, \mathrm{Thakur}, \mathrm{GM} \text{ 2015}$$

We have used $\Delta = 1 + \lambda$, and $Q_3 = \frac{1}{3}(1 + \lambda)(2 + \lambda)$, for the operator dual to the bulk field. Gaberdiel-Gopakumar 2010, Gaberdiel-Hartman 2011, Ammon-Kraus-Gutperle 2011

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					● 00	

Above, we have considered translationally invariant states. The energy density is uniform (so are the densities of the other charges). Can we generalize the above results to inhomogeneous quenches?

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Above, we have considered translationally invariant states. The energy density is uniform (so are the densities of the other charges). Can we generalize the above results to inhomogeneous quenches? Consider

$$|\widetilde{\psi_0}\rangle = \exp\left[-\sum_n \left(\kappa_n L_n + \bar{\kappa}_n \bar{L}_n\right)\right] |Bd\rangle = U_{f,\bar{f}}|\psi_0\rangle$$

which implements a conformal transformation z = f(u).

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Above, we have considered translationally invariant states. The energy density is uniform (so are the densities of the other charges). Can we generalize the above results to inhomogeneous quenches? Consider

$$|\widetilde{\psi_0}\rangle = \exp\left[-\sum_n \left(\kappa_n L_n + \bar{\kappa}_n \bar{L}_n\right)\right] |Bd\rangle = U_{f,\bar{f}} |\psi_0\rangle$$

which implements a conformal transformation z = f(u). We find (GM, Sinha, Sorokhaibam, in progress)

$$\langle \widetilde{\psi_0} | T(w) | \widetilde{\psi_0}
angle = -rac{c}{6} \left(rac{\pi^2}{\beta^2} + rac{f'(u)^2}{2} \{z, u\}
ight)$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Above, we have considered translationally invariant states. The energy density is uniform (so are the densities of the other charges). Can we generalize the above results to inhomogeneous quenches? Consider

$$|\widetilde{\psi_0}\rangle = \exp\left[-\sum_n \left(\kappa_n L_n + \bar{\kappa}_n \bar{L}_n\right)\right] |Bd\rangle = U_{f,\bar{f}} |\psi_0\rangle$$

which implements a conformal transformation z = f(u). We find (GM, Sinha, Sorokhaibam, in progress)

$$\widetilde{|\psi_0|}T(w)|\widetilde{\psi_0}
angle = -rac{c}{6}\left(rac{\pi^2}{eta^2}+rac{f'(u)^2}{2}\{z,u\}
ight)$$

For compact inhomogeneity, limited to a region B, the thermalization results, relevant for a subregion A, hold true after the light crossing time from B to A.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Finite spatial extent— non-thermalization

So far the systems we have considered have infinite spatial extent. With finite boundaries at $x = \pm L/2$, one deals with functional integrals over a rectangular strip. One can apply the technique of conformal maps to reduce the problem to that of an UHP.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Finite spatial extent— non-thermalization

So far the systems we have considered have infinite spatial extent. With finite boundaries at $x = \pm L/2$, one deals with functional integrals over a rectangular strip. One can apply the technique of conformal maps to reduce the problem to that of an UHP.

The one-point function of a conformal field typically has a periodic behaviour in time: GM, Sinha, Ugajin, in Progress

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Revival function

$$F(t) = |\langle \psi(t) | \psi_0 \rangle|^2 = (f_0(t) + f_h(t) + ...)(\bar{f}_0(t) + \bar{f}_{\bar{h}}(t) + ...)$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Revival function

$$F(t) = |\langle \psi(t) | \psi_0 \rangle|^2 = (f_0(t) + f_h(t) + \dots)(\bar{f}_0(t) + \bar{f}_{\bar{h}}(t) + \dots)$$

Cardy 2014 shows that, for rational CFT's (with rational conformal dimensions)

$$F(t + nL/2) \approx (f_0(t) + e^{2\pi i nh} f_h(t) + ...)(\bar{f}_0(t) + e^{-2\pi i nh} \bar{f}_{\bar{h}}(t) + ...)$$

which clearly has a revival for sufficiently large *n* (related to the LCM of the denominators involved in the rational representation of *h*, \bar{h} 's).

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
					000	

Revival function

$$F(t) = |\langle \psi(t) | \psi_0 \rangle|^2 = (f_0(t) + f_h(t) + \dots)(\bar{f}_0(t) + \bar{f}_{\bar{h}}(t) + \dots)$$

Cardy 2014 shows that, for rational CFT's (with rational conformal dimensions)

$$F(t + nL/2) \approx (f_0(t) + e^{2\pi i nh} f_h(t) + ...)(\bar{f}_0(t) + e^{-2\pi i nh} \bar{f}_{\bar{h}}(t) + ...)$$

which clearly has a revival for sufficiently large *n* (related to the LCM of the denominators involved in the rational representation of *h*, \bar{h} 's). However, CFT's with holographic duals may not have this property generally, in which case, one will have thermalization even in compact space. This will be dual to black hole formation.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions ●○○
Conclu	isions					

Introduction	One-point functions	Reduced density matrix	Thermal correlators o	Holography 000	Other generalizations	Conclusions ●○○	
Conclusions							

• A local operator <u>always</u> thermalizes, to a grand canonical enmseble average (GGE in case of integrable models). The late time dynamics is given by $e^{-\gamma t}$, with

$$\gamma = \frac{2\pi}{\beta} \left[\Delta + \sum_{n} \tilde{\mu}_{n} Q_{n} + O(\tilde{\mu}^{2}) \right], \ \tilde{\mu}_{n} \equiv \frac{\mu_{n}}{\beta^{n-1}}$$

Introduction	One-point functions	Reduced density matrix	Thermal correlators o	Holography 000	Other generalizations	Conclusions ●○○	
Conclusions							

• A local operator <u>always</u> thermalizes, to a grand canonical enmseble average (GGE in case of integrable models). The late time dynamics is given by $e^{-\gamma t}$, with

$$\gamma = \frac{2\pi}{\beta} \left[\Delta + \sum_{n} \tilde{\mu}_{n} Q_{n} + O(\tilde{\mu}^{2}) \right], \ \tilde{\mu}_{n} \equiv \frac{\mu_{n}}{\beta^{n-1}}$$

• The exponent γ remembers only about the conserved quantities of the initial state (mass, charges) ("no hair"). From the viewpoint of condensed matter, these are memories of the quench protocol; we constructed universal ratios which are independent of <u>all</u> quench parameters.

Introduction	One-point functions	Reduced density matrix	Thermal correlators o	Holography 000	Other generalizations	Conclusions ●○○	
Conclusions							

• A local operator <u>always</u> thermalizes, to a grand canonical enmseble average (GGE in case of integrable models). The late time dynamics is given by $e^{-\gamma t}$, with

$$\gamma = \frac{2\pi}{\beta} \left[\Delta + \sum_{n} \tilde{\mu}_{n} Q_{n} + O(\tilde{\mu}^{2}) \right], \ \tilde{\mu}_{n} \equiv \frac{\mu_{n}}{\beta^{n-1}}$$

• The exponent γ remembers only about the conserved quantities of the initial state (mass, charges) ("no hair"). From the viewpoint of condensed matter, these are memories of the quench protocol; we constructed universal ratios which are independent of <u>all</u> quench parameters.

• Thermalization works for an arbitrary string of operators, as long as they are contained in a finite interval.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
						000

Conclusions— contd.

• We generalized our results to inhomogeneous quench and quench with spatial boundaries (the latter shows "revival").

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
						000

Conclusions— contd.

- We generalized our results to inhomogeneous quench and quench with spatial boundaries (the latter shows "revival").
- The holographic dual to the generalized CC state appears to be a higher spin black hole. The CFT thermalization exponent exactly agrees with the quasinormal frequency of the black hole.

Introduction	One-point functions	Reduced density matrix	Thermal correlators	Holography	Other generalizations	Conclusions
						000

Open questions

- Are details of the quench protocol remembered even in the absence of additional charges? ("no hair")
- Generalization to Vaidya spacetimes.
- Generalization to higher dimensions.
- Connection to short time dynamics Das, Gallante, Myers 2014-15
- Can one prove similarly general statements about late time dynamics of massive theories?