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Thermalization/equilibration: search for universality in dynamics

Suppose that a system, initially in its ground state, is perturbed by a time-dependent

coupling
∫

dd x g(t) O(x) for some time (quantum quench). [cold atoms,

hydrodynamics, Kibble-Zurek, black hole formation] review:

Polkhovnikhov,Sengupta,Silva,Vengalattore 2011
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state. For quench to a critical point (for H conformal), equilibrium properties are

governed by Wilsonian universality.
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Single scale model of 2D critical quench: Calabrese-Cardy

Consider 2D dynamics. Assume that

(a) the post-quench dynamics is conformal: S = SCFT +
∫

d2x g(t) O∆(x).

(b) Quench is sudden: g = g0θ(−t)

g0

g=0t=0 .

In this case, the only length scale describing the quench is κ = g
1/(d−∆)
0

.

At length/distance scales l, t ≫ κ, the initial state is approximated by

|ψ0〉 = e−κHCFT |Bd〉 Calabrese-Cardy 2005

where |Bd〉 is a ‘boundary’ state compatible with conformal invariance.
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• These depend on the quench protocol (on the single parameter g0, through β).

However, the ratios γi/γj = ∆i/∆j are universal (determined entirely by the final CFT).

From the viewpoint of black hole physics, the scale β, related to the mass of the black

hole is also universal; only the initial energy is remembered
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(II) An arbitrary string of local operators, contained within an interval A of size l , also

thermalizes (conjecture Cardy 2014)

〈ψ0|Oi (xi , t)Oj (xj , t)...|ψ0〉
t>teqm
−−−−→ Tr

(
Oi (xi , 0)Oj (xj , 0)ρβ

)
+ C e−γmin t

The thermal correlator on the right shows usual universality known from critical

phenomena. The exponent γmin = 2π∆min/β, refers to the most relevant operator. (It’s

assumed that the CFT has a gapped spectrum of the scaling operator).

We will show later how to prove this, using the late time behaviour of the reduced

density matrix ρdyn,A of the interval A.
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(a) Multiple scales: when the quench protocol g(t)

has more scales, e.g. g(t) = g0 f (t/δt),

g0

g=0
δt

(b) Multiple charges: when there are other conserved charges, the thermal or

microcaconical ensemble ansatz for ρ
micro

(E) is inadequate.

We propose that in a CFT with additional charges Wn we can solve both issues with

the following generalized Calabrese-Cardy (gCC) state

|ψ0〉 = e−(κ2H+
∑

n κnWn+...)|Bd〉,

We will require that Wn are obtained from local currents which are primary or

quasiprimary operators.

Multiple cut-off parameters ↔ multiple scales.

We include integrable conformal theories with ∞ number of conserved charges.
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Free scalar quench and the gCC state

• For a scalar field with a time-dependent mass m2(t) the initial vacuum |0, in〉 is

related to the final vacuum |0, out〉 by a Bogoliukov transformation

|0, in〉 = exp

[
−
∑

k

γ(k)a†(k)a†(−k)

]
|0, out〉,
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|0, in〉 = exp

[
−
∑

k

γ(k)a†(k)a†(−k)

]
|0, out〉,

For a simple quench protocol, e.g. m2(t) = m2
0
(1 − tanh(t/δt))/2, it is easy to explicitly

determine γ(k) Birrell, Davies 1994, which, expanded in small |k |/m0,m0δt , looks like

γ(k ;m0, δt) = −1+
|k |

m0

(
1 +

π2

6
(m0δt)

2 + ...

)
−

1

2

(
|k |

m0

)2
(

1 +
π2

3
(m0δt)

2 + ...

)
+...
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By using a variant of the BCH formula, we can write |0, in〉 in the form:

|0, in〉 = exp

[
−

1

m0

(
1 +

π2

6
(m0δt)

2 + ...

)
∑

k

|k |a†(k)a(k)−
1

6m3
0

(
1 −

π2

2
(m0δt)

2 + ...

)

×
∑

k

|k |3a†(k)a(k) + ...

]
exp

[
∑

k

a
†
out (k)a

†
out (−k)]

∣∣∣∣∣ 0, out〉,

which becomes a generalized CC state, with the boundary state identified as a

Dirichlet state and a cut-off for all even W∞ charges (as expected for a c = 1 scalar)

κ2 = 1/(2πm0)(1 + π2(m0δt)
2/6), κ3 = 0, κ4 = −1/(768πm3

0)(1 − π2(m0δt)
2/2), ...
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Plan of the rest of the talk

• Thermalization of one-point function for the generalized quench. New

universality relations.

• Thermalization of integrable conformal models. Comparison with massive

cases.

• Late time dynamics of reduced density matrix. Thermalization of arbitrary

string of local observables. Relation to Entanglement entropy.

• Decay of thermal correlators.

• Holographic interpretation. Higher spin black holes.

Matching of thermal correlation exponents with quasinormal frequencies of a

higher spin black hole.

• Generalization to imhogoneous quench, and quench with spatial

boundaries.
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Review of Calabrese-Cardy

• Calabrese-Cardy state is interpreted in terms of Euclidean τ -evolution Calabrese,Cardy

2005

|ψ0〉 = e−κH |Bd〉

Thus, 〈O(x , τ)〉 = insertion of O on a strip ∝ 〈O〉UHP = 〈O(z)O(z′)〉plane
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Thus, 〈O(x , τ)〉 = insertion of O on a strip ∝ 〈O〉UHP = 〈O(z)O(z′)〉plane

τ = -κ

τ = κ

w=x+iτ 

τ = 0

Strip geometry

P
z= i exp[πw/κ]

UHP

P

P

P'

image

Plane
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|ψ0〉 = e−κH |Bd〉

Thus, 〈O(x , τ)〉 = insertion of O on a strip ∝ 〈O〉UHP = 〈O(z)O(z′)〉plane

• Disconnected part of two-point function involves 〈O(z)〉plane ∝ 〈O(z)〉cylinder ,

Thermal ensemble, with β ↔ 2π ↔ 4κ
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Plane

β

w= x+ i τ

τ=0

τ=β

z=i exp[2π/β]

P

cylinder, β= inv. temp  
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P
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τ = i t

z � � �x�[-πt/κ]

z� � -� �x�[πt/κ]

P���� (r��� e���)

• Thermalization exponent: γ = π
2κ

∆ = 2π
β
∆,∆ = h + h̄, Equilibrium ensemble ρeqm

given by β = 4κ.
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• Thermalization exponent: γ = π
2κ

∆ = 2π
β
∆,∆ = h + h̄, Equilibrium ensemble ρeqm

given by β = 4κ.

Same exponent also describes decay of a thermal perturbation.



Introduction One-point functions Reduced density matrix Thermal correlators Holography Other generalizations Conclusions

Review of Calabrese-Cardy

• Calabrese-Cardy state is interpreted in terms of Euclidean τ -evolution Calabrese,Cardy

2005

|ψ0〉 = e−κH |Bd〉

Thus, 〈O(x , τ)〉 = insertion of O on a strip ∝ 〈O〉UHP = 〈O(z)O(z′)〉plane

• Disconnected part of two-point function involves 〈O(z)〉plane ∝ 〈O(z)〉cylinder ,

Thermal ensemble, with β ↔ 2π ↔ 4κ

Connected part (real time):

〈O(z)O(z′)〉plane,conn ∝ exp[−γt]

P

P'

τ = i t

� � � ���[�πt/κ]

�� � �� ���[πt/κ]

� !"� (r�! #�$�)

• Thermalization exponent: γ = π
2κ

∆ = 2π
β
∆,∆ = h + h̄, Equilibrium ensemble ρeqm

given by β = 4κ.

Same exponent also describes decay of a thermal perturbation.
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Generalized CC state

• Do the above results extend to the gCC state

|ψ0〉 = exp[−κ2H −
∞∑

n=3

κnWn]|Bd〉?

The Wn ’s are conserved charges which we assume are obtained from local currents

which are primary or quasiprimary operators. We have included the case of integrable

CFT’s; examples are provided by CFT’s carrying a W∞ algebra.

We will prove the following results (Caputa, GM, Sinha 2013; GM, Sinha, Sorokhaibam 2015):
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The Wn ’s are conserved charges which we assume are obtained from local currents

which are primary or quasiprimary operators. We have included the case of integrable

CFT’s; examples are provided by CFT’s carrying a W∞ algebra.

We will prove the following results (Caputa, GM, Sinha 2013; GM, Sinha, Sorokhaibam 2015):

• 1. Single operators equilibrate, as follows

〈ψ(t)|O(x)|ψ(t)〉 → Tr(ρeqm O(x)) + α exp[−γt]

The equilibrium ensemble is related to the cut-off parameters defining the state

ρeqm =
1

Z
exp[−βH −

∑

n

µnWn] = ρ
GGE

, κ = β/4, κn = µn/4, n = 3, 4, ...,

For integrable CFT’s, the equilibrium ensemble above is the generalized Gibbs

ensemble, the GGE.
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Thermalization in integrable models

Thermalization of local observables has been discovered over the past eight years in

several (massive) integrable models:

Integrable 2D:

Transverse field Ising (Calabrese et al 2005)

H = −J
∑L

i=1[σ
x
i σ

x
i+1 + h(t)σz

i ]

Hard core boson chain (Rigol et al 2007)

H = −J
∑L(t)

i=1
b
†
i

bi+1 + h.c.

Massive Scalar(Sotiriadis, Cardy 2010)

S =
∫

d2x [(∂φ)2 − m2(t)φ2]

Matrix QM model (Morita, GM 2013)

S =
∫

dt[Tr(U†∂t U + a(t)(U + U†)]

Morita, GM 2013
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We show in the present work that thermalization to GGE is generic to all integrable

CFT’s.
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S =
∫

dt[Tr(U†∂t U + a(t)(U + U†)]

Morita, GM 2013

We show in the present work that thermalization to GGE is generic to all integrable

CFT’s.

For transverse field Ising model, the late time dynamics for 〈ψ0(t)|σ
z
i
σz

i+l
|ψ0(t)

smoothly interpolates from t−3/2 (non-critical quench) to exp[−γt] (critical quench) GM,

Paranjape, Sorokhaibam 2015
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Summary of results

• 1. Single operators equilibrate, as follows

〈ψ(t)|Oi (x)|ψ(t)〉 → Tr(ρeqm Oi (x)) + αi exp[−γi t]
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Summary of results

• 1. Single operators equilibrate, as follows

〈ψ(t)|Oi (x)|ψ(t)〉 → Tr(ρeqm Oi (x)) + αi exp[−γi t]

• 2. The thermalization exponent is given by

γi =
2π

β

[
∆i +

∑

n

µ̃nQn,i + O(µ̃2)

]
, µ̃n ≡

µn

βn−1

Here ∆i and Qn,i are the scaling dimension and Wn-charges carried by Oi .

• 3. The result can be generalized to an arbitrary string of local operators (with a

compact support of size l)

〈ψ(t)|O1(x1)O2(x2)...|ψ(t)〉
t≫teqm
−−−−−→ Tr(ρ

GGE
O1(x1)O2(x2)...) + C e−γmin t , (1)

where γmin now refers to the most relevant operator in the theory, and teqm = l/2. (We

assume here that the spectrum of conformal dimensions is gapped).
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〈ψ(t)|Oi (x)|ψ(t)〉 → Tr(ρeqm Oi (x)) + αi exp[−γi t]

• 2. The thermalization exponent is given by

γi =
2π

β

[
∆i +

∑

n

µ̃nQn,i + O(µ̃2)

]
, µ̃n ≡

µn

βn−1

Here ∆i and Qn,i are the scaling dimension and Wn-charges carried by Oi .

• 3. The result can be generalized to an arbitrary string of local operators (with a

compact support of size l)

〈ψ(t)|O1(x1)O2(x2)...|ψ(t)〉
t≫teqm
−−−−−→ Tr(ρ

GGE
O1(x1)O2(x2)...) + C e−γmin t , (1)

where γmin now refers to the most relevant operator in the theory, and teqm = l/2. (We

assume here that the spectrum of conformal dimensions is gapped).

• 4. The above follows from a result about reduced density matrices which we will

prove below

ρ
dyn,A

(t) → ρ
GGE,A

+ α e−2γmin t
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New Universality relations

For the Cardy-Calabrese state, the ratios γi/γj are universal.

With the generalized CC state, these ratios cease to be universal. For example, in the

presence of one extra charge, we have γi =
2π
β

[∆i + µ̃Qi ] ,

The ratios γi/γj now depend on µ:

µ

∆3/∆1

∆2/∆1

γ3/γ1

γ2/γ1

n%n&'n()*+,./ +.a(%,

However, it is easy to see that the µ-dependence can be eliminated by considering new

ratios such as (a31γ2 + a12γ3)/γ1, (a41γ3 + a13γ4)/γ1, with aij = ∆[i Qj], are

independent of µ, and depend only on the spectrum of the final CFT.

(a41 γ3+ a13 γ4)/γ1     

(a31 γ2+ a12 γ3)/γ1

µ
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Proof of thermalization: one-point function

Recall

|ψ0〉 = exp[−κ2H −
∞∑

n=3

κnWn]|Bd〉?

Consider evaluating

〈ψ0|O(x)|ψ0〉 = 〈Bd | exp[−κ2H −

∞∑

n=3

κnWn]O(x) exp[−κ2H −

∞∑

n=3

κnWn]|Bd〉

The first term in the exponential represents a Euclidean time evolution; however, there

is no such interpretation for the remaining exponentials. Thus, we are forced to expand

them and treat them as multiple insertion of charged currents on the strip/UHP.
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The first term in the exponential represents a Euclidean time evolution; however, there

is no such interpretation for the remaining exponentials. Thus, we are forced to expand

them and treat them as multiple insertion of charged currents on the strip/UHP.

G0(z) G0(z) fn log(z) G0(z) fnfm  log(z)2/2!

Wn
Wn

Wm

+ + +...

z zz
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Recall

|ψ0〉 = exp[−κ2H −
∞∑

n=3

κnWn]|Bd〉?

Consider evaluating

〈ψ0|O(x)|ψ0〉 = 〈Bd | exp[−κ2H −
∞∑

n=3

κnWn]O(x) exp[−κ2H −
∞∑

n=3

κnWn]|Bd〉

G0(z) G0(z) fn log(z) G0(z) fnfm  log(z)2/2!

Wn
Wn

Wm

+ + +...

z zz

At large times t ≫ β, the Feynman diagrams exponentiate

〈O(t)〉κn= 〈O(t)〉0

(
1 − fnκnt +

(fnκnt)2

2!
+ ...

)
= 〈O〉eqm,β,µn

+α exp[−γ0t−fnµnt/4+O(µ2)]
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General correlators 〈O1O2...〉

We will now the extend the above result on thermalization to an arbitrary string of local

operators contained in an interval of size l , by following the proposal of Cardy 2014.
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General correlators 〈O1O2...〉

We will now the extend the above result on thermalization to an arbitrary string of local

operators contained in an interval of size l , by following the proposal of Cardy 2014.

Cardy (2014) proposed a “thermalization function” for a subsystem A, l/2 > x > −l/2:

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β))

ρ
A,dynamical

(t) = TrĀ(ρdynamical
(t)), ρ

dynamical
= |ψ(t)〉〈ψ(t)|,

ρ
A,eqm

(β) = TrĀ(ρeqm (β)), ρeqm =
1

Z
e−βH

where ρ̂ = ρ/
√

Trρ2 are square-normalized matrices.
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General correlators 〈O1O2...〉

We will now the extend the above result on thermalization to an arbitrary string of local

operators contained in an interval of size l , by following the proposal of Cardy 2014.

Cardy (2014) proposed a “thermalization function” for a subsystem A, l/2 > x > −l/2:

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β))

Cardy (2014) conjectured that, for the simple CC state e−κH |Bd〉, that (for

t > teqm = l/2)

IA(t) = 1 − αe−2γmin(t−teqm) + faster transients

where γmin = 2π
β
∆min refers to the thermalization exponent of the most relevant

operator, β = 4κ. (proved in GM,Sinha,Sorokhaibam 2015)
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General correlators 〈O1O2...〉

We will now the extend the above result on thermalization to an arbitrary string of local

operators contained in an interval of size l , by following the proposal of Cardy 2014.

Cardy (2014) proposed a “thermalization function” for a subsystem A, l/2 > x > −l/2:

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β))

Cardy (2014) conjectured that, for the simple CC state e−κH |Bd〉, that (for

t > teqm = l/2)

IA(t) = 1 − αe−2γmin(t−teqm) + faster transients

where γmin = 2π
β
∆min refers to the thermalization exponent of the most relevant

operator, β = 4κ. (proved in GM,Sinha,Sorokhaibam 2015)

Implication:

ρ
A,dynamical

(t)
t>teqm
−−−−→ ρ

A,eqm

〈ψ(t)|O1(x1)O2(x2)....|ψ(t)〉 → Tr(ρ
eqm,β

O1(x1)O2(x2)....) + ...

up to terms vanishing as fast as e−γmin t .
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Proof: gluing different geometries— short interval expansion

The thermalization function

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β)) =
Ẑsc√
ẐssẐcc

involves gluing a strip and a cylinder along an interval. We compute this by using the

short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is

replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)
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Proof: gluing different geometries— short interval expansion

The thermalization function

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β)) =
Ẑsc√
ẐssẐcc

involves gluing a strip and a cylinder along an interval. We compute this by using the

short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is

replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

Ẑsc = C0,0(1 + S
sc
1 ), S

sc
1 =

∑

a

Ĉa,0(〈Oa〉
µ
str

+ 〈Oa〉
µ
cyl

) +
∑

ab

Ĉa,b〈Oa〉
µ
str

〈Ob〉
µ
cyl

Ẑss = C0,0(1 + S
ss
1 + S

ss
2 ), S

ss
1 = 2

∑

a

Ĉa,0〈Oa〉
µ
str

+
∑

ab

Ĉa,b〈Oa〉
µ
str

〈Ob〉
µ
str

, S
ss
2 =

∑

k

Ĉk,k (〈Ok 〉
µ
str

)
2

Ẑcc = C0,0(1 + S
cc
1 ), S

cc
1 = 2

∑

a

Ĉa,0〈Oa〉
µ
cyl

+
∑

ab

Ĉa,b〈Oa〉
µ
cyl

〈Ob〉
µ
cyl
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Proof: gluing different geometries— short interval expansion

The thermalization function

IA(t) = Tr(ρ̂
A,dynamical

ρ̂
A,eqm

(β)) =
Ẑsc√
ẐssẐcc

involves gluing a strip and a cylinder along an interval. We compute this by using the

short interval expansion (Headrick 2010, Calabrese, Cardy, Tonni 2011) in which each interval is

replaced by a direct sum of conformal fields. (GM,Sinha,Sorokhaibam 2015)

Ẑsc = C0,0(1 + S
sc
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∑
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+ 〈Oa〉
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) +
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+
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∑
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+
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At t → ∞ all one-point functions reduce to thermal one-point function. Thus,

Ẑsc = Ẑss = Ẑss . Hence I(∞) = 1. The slowest transient comes from Sss
2

which

contains 〈Om〉µstr )
2 ∼∼ exp[−2γmt].
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Relation to entanglement entropy

The linear segments of the graph Calabrese-Cardy 2005, Hartman-Maldacena 2013 follow in the

factorization limits of a four-twist operator.

Corrections to the above limits involve subleading terms in the twist-field OPE’s. In the

time interval |t − teqm|
<
∼ β, using the techniques in the previous slides, we can show

that

SEE (t) = SEE,linear − Ce−2γmin t

where γmin refers to the thermalization exponent of the lowest operator appearing in

the twist-field OPE.
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Thermal correlator

• Consider the following correlator in the GGE

G+(t , l;β, µ) ≡
1

Z
Tr(O(l, t)O(0, 0)e−βH−

∑
n µnWn )



Introduction One-point functions Reduced density matrix Thermal correlators Holography Other generalizations Conclusions

Thermal correlator

• Consider the following correlator in the GGE

G+(t , l;β, µ) ≡
1

Z
Tr(O(l, t)O(0, 0)e−βH−

∑
n µnWn )

By a conformal map, this can be reduced to a correlator on the plane

〈O(z, z̄)O(y , ȳ)e−
∑

n µnWn 〉, z = ie2π(l−t)/β , z̄ = −ie2π(l+t)/β , y = i, ȳ = −i
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Thermal correlator

• Consider the following correlator in the GGE

G+(t , l;β, µ) ≡
1

Z
Tr(O(l, t)O(0, 0)e−βH−

∑
n µnWn )

By a conformal map, this can be reduced to a correlator on the plane

〈O(z, z̄)O(y , ȳ)e−
∑

n µnWn 〉, z = ie2π(l−t)/β , z̄ = −ie2π(l+t)/β , y = i, ȳ = −i

• For µ = 0, the above two-point function is given by

G+(t , l;β, 0)
t,l≫β
−−−−→

{
const e−2πt∆k/β , (t − l) ≫ β

const e−2πl∆k/β , (l − t) ≫ β
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Thermal correlator

• Consider the following correlator in the GGE
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∑
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• For µ = 0, the above two-point function is given by

G+(t , l;β, 0)
t,l≫β
−−−−→

{
const e−2πt∆k/β , (t − l) ≫ β

const e−2πl∆k/β , (l − t) ≫ β

• The effect of turning on the chemical potentials can be dealt with as before, by

inserting an infinite series of charge contours. By resumming the series, we find

G+(t , 0;β, µ)
t→∞
−−−−→ G+(0, 0;β, 0) + b(µ)e−γk t

where b(µ) is time-independent, and is of the form b(µ) = 1 + O(µ).
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Thermal correlator

• Consider the following correlator in the GGE

G+(t , l;β, µ) ≡
1

Z
Tr(O(l, t)O(0, 0)e−βH−

∑
n µnWn )

By a conformal map, this can be reduced to a correlator on the plane

〈O(z, z̄)O(y , ȳ)e−
∑

n µnWn 〉, z = ie2π(l−t)/β , z̄ = −ie2π(l+t)/β , y = i, ȳ = −i

• For µ = 0, the above two-point function is given by

G+(t , l;β, 0)
t,l≫β
−−−−→

{
const e−2πt∆k/β , (t − l) ≫ β

const e−2πl∆k/β , (l − t) ≫ β

• The effect of turning on the chemical potentials can be dealt with as before, by

inserting an infinite series of charge contours. By resumming the series, we find

G+(t , 0;β, µ)
t→∞
−−−−→ G+(0, 0;β, 0) + b(µ)e−γk t

where b(µ) is time-independent, and is of the form b(µ) = 1 + O(µ).

• This long time decay is the same as that of the one-point function in the quenched

state.
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Black hole interpretation of thermal decay

A thermal state in a 2D CFT (admitting a holographic description) is dual to a BTZ

black hole. The thermofield double is dual to the eternal black hole. Maldacena 2002.
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Black hole interpretation of thermal decay

A thermal state in a 2D CFT (admitting a holographic description) is dual to a BTZ

black hole. The thermofield double is dual to the eternal black hole. Maldacena 2002.

P

Thermal decay:

(a) Heavy operators: thermal two-point function 〈O(P)O(Q)〉
CFT ,β

= e−∆L(P,Q) = e−γt

(b)For light CFT operators, perturbations to the thermal state= perturbation of black

hole by a probe field. Hence thermal decay= Quasinormal decay. Explicit calculation of

BTZ quasinormal frequency gives Im (ω) = γ = (2π/β)∆ = γCFT Sachs 2010
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Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is

described by a ‘quarter’ of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013
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Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is

described by a ‘quarter’ of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013

P

〈O(P)〉CFT = e−∆L(P), where L(P) = 1
2

L(P,P′). This gives 〈O(P)〉CFT ∼ exp[−γt],

which agrees with CFT. The relation to the thermal decay is obvious from holography.
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Holographic dual to the CC state

Dynamics: The time-dependent geometry dual to the CC quench state, for t > 0, is

described by a ‘quarter’ of the Penrose diagram Maldacena 2002, Takayanagi et al 2010, Aharony et

al 2010, Hartman-Maldacena 2013

P

〈O(P)〉CFT = e−∆L(P), where L(P) = 1
2

L(P,P′). This gives 〈O(P)〉CFT ∼ exp[−γt],

which agrees with CFT. The relation to the thermal decay is obvious from holography.

An alternative holographic picture of a quench is given by a Vaidya spacetime Chesler,

Yaffe 2008, Bhattacharya, Minwalla 2009.
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The holographic dual to the generalized quench state (gCC)

• We found that the gCC state exp[−κ2H −
∑

n κnWn]|Bd〉 thermalizes to an

equilibrium ensemble characterized by additional charges/chemical potentials. Such a

thermal ensemble should be holographically dual to a black hole with additional

charges.
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The holographic dual to the generalized quench state (gCC)

• We found that the gCC state exp[−κ2H −
∑

n κnWn]|Bd〉 thermalizes to an

equilibrium ensemble characterized by additional charges/chemical potentials. Such a

thermal ensemble should be holographically dual to a black hole with additional

charges.

A simple example of an additional charge is an overall momentum P, for which the

correspondence works out. Caputa, GM, R.Sinha 2013
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• What happens for an infinite number of charges? e.g. a CFT carrying a

representation of W∞?
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thermal ensemble should be holographically dual to a black hole with additional
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• What happens for an infinite number of charges? e.g. a CFT carrying a

representation of W∞?

Grand canonical partition function of a W∞[λ] coset CFT = partition function of a

higher spin (hs[λ]) Gaberdiel, Gopakumar 2010 black hole in two special cases [λ = 0 (free

fermions, λ = 1 (free bosons)]. Kraus Gutperle 2011
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The holographic dual to the generalized quench state (gCC)

• We found that the gCC state exp[−κ2H −
∑

n κnWn]|Bd〉 thermalizes to an

equilibrium ensemble characterized by additional charges/chemical potentials. Such a

thermal ensemble should be holographically dual to a black hole with additional

charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a

representation of W∞?

Grand canonical partition function of a W∞[λ] coset CFT = partition function of a

higher spin (hs[λ]) Gaberdiel, Gopakumar 2010 black hole in two special cases [λ = 0 (free

fermions, λ = 1 (free bosons)]. Kraus Gutperle 2011

• |gCC〉 = higher spin black hole? (or a quarter of it?).
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The holographic dual to the generalized quench state (gCC)

• We found that the gCC state exp[−κ2H −
∑

n κnWn]|Bd〉 thermalizes to an

equilibrium ensemble characterized by additional charges/chemical potentials. Such a

thermal ensemble should be holographically dual to a black hole with additional

charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a

representation of W∞?

• |gCC〉 = higher spin black hole? (or a quarter of it?).

We find that

thermalization exponent in the generalized quench state = the thermal decay rate in the

GGE = (imaginary part of) quasinormal frequency for the corresponding bulk field in a

higher-spin black hole Cabo-Bizet, Gava, Giraldo-Rivera, Narain 2014

Im ω =
2π

β

(
1 + λ+

µ̃3

3
(1 + λ)(2 + λ)

)
= γCFT GM,Sinha,Sorokhaibam 2015, Thakur,GM 2015
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The holographic dual to the generalized quench state (gCC)

• We found that the gCC state exp[−κ2H −
∑

n κnWn]|Bd〉 thermalizes to an

equilibrium ensemble characterized by additional charges/chemical potentials. Such a

thermal ensemble should be holographically dual to a black hole with additional

charges.

• What happens for an infinite number of charges? e.g. a CFT carrying a

representation of W∞?

• |gCC〉 = higher spin black hole? (or a quarter of it?).

We find that

thermalization exponent in the generalized quench state = the thermal decay rate in the

GGE = (imaginary part of) quasinormal frequency for the corresponding bulk field in a

higher-spin black hole Cabo-Bizet, Gava, Giraldo-Rivera, Narain 2014

Im ω =
2π

β

(
1 + λ+

µ̃3

3
(1 + λ)(2 + λ)

)
= γCFT GM,Sinha,Sorokhaibam 2015, Thakur,GM 2015

We have used ∆ = 1 + λ, and Q3 = 1
3
(1 + λ)(2 + λ), for the operator dual to the bulk

field. Gaberdiel-Gopakumar 2010, Gaberdiel-Hartman 2011, Ammon-Kraus-Gutperle 2011
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results to inhomogeneous quenches?
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|ψ̃0〉 = exp
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−
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]
|Bd〉 = Uf ,f̄ |ψ0〉

which implements a conformal transformation z = f (u).
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Above, we have considered translationally invariant states. The energy density is

uniform (so are the densities of the other charges). Can we generalize the above

results to inhomogeneous quenches?

Consider

|ψ̃0〉 = exp

[
−
∑

n

(
κnLn + κ̄nL̄n

)
]
|Bd〉 = Uf ,f̄ |ψ0〉

which implements a conformal transformation z = f (u).

We find (GM, Sinha, Sorokhaibam, in progress)

〈ψ̃0|T (w)|ψ̃0〉 = −
c

6

(
π2

β2
+

f ′(u)2

2
{z, u}

)
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Inhomogeneous quench

Above, we have considered translationally invariant states. The energy density is

uniform (so are the densities of the other charges). Can we generalize the above

results to inhomogeneous quenches?

Consider

|ψ̃0〉 = exp

[
−
∑

n

(
κnLn + κ̄nL̄n

)
]
|Bd〉 = Uf ,f̄ |ψ0〉

which implements a conformal transformation z = f (u).

We find (GM, Sinha, Sorokhaibam, in progress)

〈ψ̃0|T (w)|ψ̃0〉 = −
c

6

(
π2

β2
+

f ′(u)2

2
{z, u}

)
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For compact inhomogeneity, limited to a region B, the thermalization results, relevant

for a subregion A, hold true after the light crossing time from B to A.
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Finite spatial extent— non-thermalization

So far the systems we have considered have infinite spatial extent. With finite

boundaries at x = ±L/2, one deals with functional integrals over a rectangular strip.

One can apply the technique of conformal maps to reduce the problem to that of an

UHP.
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Finite spatial extent— non-thermalization

So far the systems we have considered have infinite spatial extent. With finite

boundaries at x = ±L/2, one deals with functional integrals over a rectangular strip.

One can apply the technique of conformal maps to reduce the problem to that of an

UHP.

/2 β/4 /2 β/4

/2+iβ/4/2+iβ/4

1/ 1/

The one-point function of a conformal field typically has a periodic behaviour in time:

GM, Sinha, Ugajin, in Progress

O=T T

_

FG/2 L/2t
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Revival function

F (t) = |〈ψ(t)|ψ0〉|
2 = (f0(t) + fh(t) + ...)(f̄0(t) + f̄h̄(t) + ...)
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Revival function

F (t) = |〈ψ(t)|ψ0〉|
2 = (f0(t) + fh(t) + ...)(f̄0(t) + f̄h̄(t) + ...)

Cardy 2014 shows that, for rational CFT’s (with rational conformal dimensions)

F (t + nL/2) ≈ (f0(t) + e2πinhfh(t) + ...)(f̄0(t) + e−2πinh̄ f̄h̄(t) + ...)

which clearly has a revival for sufficiently large n (related to the LCM of the

denominators involved in the rational representation of h, h̄’s).
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Revival function

F (t) = |〈ψ(t)|ψ0〉|
2 = (f0(t) + fh(t) + ...)(f̄0(t) + f̄h̄(t) + ...)

Cardy 2014 shows that, for rational CFT’s (with rational conformal dimensions)

F (t + nL/2) ≈ (f0(t) + e2πinhfh(t) + ...)(f̄0(t) + e−2πinh̄ f̄h̄(t) + ...)

which clearly has a revival for sufficiently large n (related to the LCM of the

denominators involved in the rational representation of h, h̄’s).

However, CFT’s with holographic duals may not have this property generally, in which

case, one will have thermalization even in compact space. This will be dual to black

hole formation.
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• We introduced a general class of quench states in 2D critical quantum quench, which

takes into account additional conserved charges and consequently additional scales in

the quantum quench protocol.
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• A local operator always thermalizes, to a grand canonical enmseble average (GGE in

case of integrable models). The late time dynamics is given by e−γt , with

γ =
2π

β

[
∆+

∑

n

µ̃nQn + O(µ̃2)

]
, µ̃n ≡

µn

βn−1



Introduction One-point functions Reduced density matrix Thermal correlators Holography Other generalizations Conclusions

Conclusions

• We introduced a general class of quench states in 2D critical quantum quench, which

takes into account additional conserved charges and consequently additional scales in

the quantum quench protocol.

• A local operator always thermalizes, to a grand canonical enmseble average (GGE in

case of integrable models). The late time dynamics is given by e−γt , with

γ =
2π

β

[
∆+

∑

n

µ̃nQn + O(µ̃2)

]
, µ̃n ≡

µn

βn−1

• The exponent γ remembers only about the conserved quantities of the initial state

(mass, charges) (“no hair”). From the viewpoint of condensed matter, these are

memories of the quench protocol; we constructed universal ratios which are

independent of all quench parameters.
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Conclusions

• We introduced a general class of quench states in 2D critical quantum quench, which

takes into account additional conserved charges and consequently additional scales in

the quantum quench protocol.

• A local operator always thermalizes, to a grand canonical enmseble average (GGE in

case of integrable models). The late time dynamics is given by e−γt , with

γ =
2π

β

[
∆+

∑

n

µ̃nQn + O(µ̃2)

]
, µ̃n ≡

µn

βn−1

• The exponent γ remembers only about the conserved quantities of the initial state

(mass, charges) (“no hair”). From the viewpoint of condensed matter, these are

memories of the quench protocol; we constructed universal ratios which are

independent of all quench parameters.

• Thermalization works for an arbitrary string of operators, as long as they are

contained in a finite interval.
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Conclusions— contd.

• We generalized our results to inhomogeneous quench and quench with spatial

boundaries (the latter shows “revival”).
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Conclusions— contd.

• We generalized our results to inhomogeneous quench and quench with spatial

boundaries (the latter shows “revival”).

• The holographic dual to the generalized CC state appears to be a higher spin black

hole. The CFT thermalization exponent exactly agrees with the quasinormal frequency

of the black hole.
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Open questions

• Are details of the quench protocol remembered even in the absence of additional

charges? (“no hair”)

• Generalization to Vaidya spacetimes.

• Generalization to higher dimensions.

• Connection to short time dynamics Das, Gallante, Myers 2014-15

• Can one prove similarly general statements about late time dynamics of massive

theories?
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