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•  Inflation is an attractive idea.  

•  It explains the approximate 
homogeneity and isotropy of the 
universe. 

•  And also gives rise to small 
perturbations, which can explain the 
fluctuations  seen in the CMB and 
provide  the seed for structure 
formation.  

Introduction 



 

•  These perturbations are generated 
due  to  the rapidly evolving universe. 

• They are quantum effects involving 
gravity.  

• Thus clearly of interest in any study 
of quantum gravity.  

Introduction 



 

•  The two point correlator (for scalar 
perturbations) has been observed.  

• Subsequent progress will hopefully 
lead to an observation of non-
Gaussianity (three point function etc).  

Introduction 



Multipole l  

Planck TT spectrum (2013) 



During inflation universe was 
approximately deSitter space. 

The symmetry group of 4-dim.   
deSitter space is SO(1,4) 

Introduction 
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H: Hubble parameter 



The question we will ask :  

What constraints do the  symmetries  
impose on correlation functions of the 
quantum perturbations produced 
inflation? 

Introduction 

Our analysis will include the small 
breaking of the symmetries 



Introduction 

Such a symmetry based analysis 
has the advantage of being robust 
and model independent.  



Introduction 

The basic idea in a large class of 
inflation models : 
 
•   An additional scalar field, the 

inflaton.  
 
•  Slowly varying potential. 

(we will only consider  models of 
single field inflation) 



Scalar Field:        Inflaton �



Canonical Slow Roll Model: 

Two derivative terms 



However, higher derivative corrections 
may be important. 
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This could happen e.g., in weakly 
String Theory 
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Introduction 

• Given our poor understanding of string 
theory in time dependent situations we 
cannot directly calculate the resulting 
quantum perturbations in such a 
situation today.  

• However symmetry considerations 
should still hold and conclusions 
obtained from them should apply here 
too. 



In fact we will find that symmetry 
based considerations can be  quite 
powerful.  

Introduction 



Symmetries 

The symmetries of deSitter space: 
 
 
 
SO(1,4):                generators 
 
Translations:  3 
Rotations:       3 
Scaling:           1  
 



Special Conformal Transformations : 3  

Symmetries 



The SO(1,4) symmetries of        
are the same as those of a three 
dimensional Euclidean CFT.  
 
We will call this symmetry group 
the conformal group.  
 

Symmetries 

dS4



•  However, we will not assume any 
dS-CFT correspondence. 

•  Rather the observations relating 
symmetries of dS and CFT’s  will 
only serve to organise our 
discussion of symmetries in the 
inflationary context.  

Symmetries 



During Inflation the conformal  
symmetries are not exact.  
 
But breaking is small. 
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Symmetries 



 Wave Function  

The wave function is a useful way to 
organise the discussion of 
symmetries. 
 
Once the constraints imposed by 
symmetries on the wave function are 
understood, all constraints on 
correlators follow.  



We will be interested in the wave 
function at late times:  
 

Spatial 
slice  

 [�]

Functional of 
perturbations 

�
 [�]

Wave Function 



Late time: when modes of interest  have 
exited the horizon and stopped evolving.  
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Wave Function 



Massless fields then become time 
independent due to Hubble friction. 
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Symmetry Considerations 

For a system which is close to Gaussian we 
can expand   the wave function as follows: 
 
 
 
 
 
 
 
 

                                  for now are just 
coefficients which determine the wave 
function.  



Symmetry Considerations 

•  Symmetry considerations lead to 
conditions on the coefficient 
functions.  

•  These will turn out to be identical to 
the Ward identities of conformal 
invariance satisfied by the 
corresponding correlator in a CFT.   



Symmetry Considerations 

•   In this way the study of constraints 
imposed by the conformal symmetries 
on the wave function will be mapped 
to a  study of constraints on 
correlations in a CFT.  
 
•  This is the central idea behind the 
analysis.   



Symmetry Considerations 

• The breaking of conformal invariance 
will give rise to corrections to these 
Ward identities. 

•  The resulting  relations  will be the 
analogue of the Callan Symanzik 
equations.  



The wave function on a spatial  slice  
can be obtained by carrying out a path 
integral 
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The Wave Function 

We will choose Bunch Davies initial 
conditions. These preserve conformal 
invariance.  



By appropriate rescaling the action 
can be written as: 

S = (
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H2
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Since gravity waves produced during 
inflation have not been observed 
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Thus the path integral 
 
 
 
Can be carried out in the semi 
classical approximation.  
 
By solving the  equations of 
motion subject to the boundary 
conditions.  
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Loop effects are unimportant but       
effects may be significant. 

The Wave Function 

↵0



The wave function is analogous to 
the partition function in AdS/CFT. 

 [�] $ Z[�]

Late time  
value of 
perturbation 

Source in 
boundary field 
theory 

Analogy with AdS/CFT 



In fact, situation is analogous to the 
large N limit in AdS/CFT 
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Analogy with AdS/CFT 



One important difference. 
 
Observables are expectation values 
to be calculated from the wave 
function: 
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Z
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Analogy with AdS/CFT 



The Perturbations 

The SO(3) rotational symmetry can be 
used to classify perturbations: 
 
1)  Spin 2: tensor perturbations 
 
2)  Spin 0 : scalar perturbations (arises 

from a mixing of the inflaton 
perturbation and metric)  

Derivation of the Ward Identities 



Derivation of Ward Identities 

Metric in ADM form: 
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2
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i
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Set N=1;                 
 
  (synchronous gauge)  

N i = 0



EOM for                   must still be 
imposed.  
 
These lead to  conditions ensuring  that 
the wave function is invariant under 
residual gauge transformations which  
preserve synchronous gauge.  
 

N,N i

Derivation Of Ward Identities 



       EOM: spatial reparametrisations 
 
 

N i

x

i ! x

i + ✏

i(~x)

N EOM: time reparametrisations 
                     
 
(accompanying spatial reparametrisation 
vanishes at late times) 

t ! t+ ✏(x)

Derivation of Ward Identities 



Derivation Of Ward Identities 

•  These conditions then lead to the 
ward identities of conformal 
invariance.  

•  More generally the identities 
including the breaking of 
conformal invariance.   



N EOM: time reparametrisations 
                     
 

t ! t+ ✏(x)

x
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Z
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Accompanying spatial transformation 
vanishes at late time  
 
 
 



For example in dS space:  
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 Ward Identities 

Invariance of       under time 
reparametrisation                           
leads to condition 

⇣ ! ⇣ +H✏(x)
 

T i
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T i
i

More correctly, coefficient functions 
containing       vanish.   

< T i
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In inflationary background 
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In inflationary background 

� = �̄(t) + ��

Now under  
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Invariance of wave function leads to  

T i
i +

˙̄�

H
O = 0

This is analogous to a CFT perturbed 
by an operator which breaks 
conformal invariance. 

Inflationary Background 
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This relation between       and O 
provides a convenient way to compute 
coefficient functions of      to leading 
order in slow roll approximation 

T i
i

can be calculated in dS 
space 

Specific Correlators 
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Specific Correlators 

The coefficient function 
Is completely fixed by conformal 
invariance. 
 
     Corresponds to an operator of 
dimension 3.  
           to the stress tensor.  
  

< OOTij >

O

Tij

Mata, Raju, Trivedi, 1211.5482   



Specific Correlator 

Result: 
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Result: 

Specific Correlators 



Result has a  detailed functional form. 
 
If observed would be a direct check of 
a central assumption of inflation 
namely approximate conformal 
invariance.  
 
(Includes contact terms which can be 
important). 

Specific Correlators 



Specific Correlators 

Caveat:      actually refers to  the 
Sassaki -Mukhanov variable. 
 
Conserved outside the horizon. 
 
In the gauge              it is     

⇣

�� = 0 ⇣



Observationally the most significant 
non-gaussianity is from the scalar 3-pt 
function.  
 
In this case the breaking of conformal 
invariance cannot be neglected, even 
for leading order answer.  

Specific Correlators 

Kundu, Shukla, Trivedi, arXiv:1410.2606 



Ward identities: 



Linear equations for <OOO> with 
source term determined by 
<OOOO> in suitable limit. 
 
General solution : 
 
 

< OOO >= SH + SI

homogenous inhomogeneous 

Specific Correlators 



        Uniquely determined by 
<OOOO> 
 
To leading order <OOOO> can be 
calculated in conformal limit.  
    
        completely fixed from conformal 
invariance. Corresponds to the 3 pt 
function of a marginal scalar.  

SI

SH

Three Point Scalar  Correlator 



In this way 3 –pt function is fixed by 
data obtained in the conformally 
invariant limit.  
 
In slow roll approx. generically  
  will dominate over  
 
Resulting answer not unique, 
because 4 pt function <OOOO> is not 
unique.  

SH

SI

Three Point Scalar Correlator 



Generically <OOOO> will not vanish 
in conformally invariant limit.  
 
Thus, 
 
And  
 
This will be the extent of the 
suppression for the 3 pt. function.  
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Three Point Scalar Correlator 
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Roughly, although functional form is 
different, generically we learn from the 
ward identities that   
 
 
Thus the Non-Gaussianity will be 
suppressed.  
 
Hard to observe in CMB.  

fNL ⇠ ✏

Scalar Three Point Function 



Scalar Three Point Function 

But might be observed through  galaxy 
surveys. 
 
Or 21 cm physics.  

A firm prediction just from symmetries.  

fNL ⇠ ✏ ⇠ 10�2



Could be bigger. 
 
If there are particles with                
With enhanced couplings to inflaton 
(compared to graviton).  
 
The four point function <OOOO> will 
then be bigger. And so will the 3 pt 
function.   

M ⇠ H

Scalar Three Point Function 

Arkani-Hamed, Maldacena: arXiv: 1503.08043 



The four point function <OOOO> can  be 
enhanced if there are extra particles with                  
 
Which have couplings to the inflaton that 
are enhanced (compared to those of the 
graviton).  
 
Then the 3 pt function will also be 
enhanced.   

M ⇠ H

Scalar Three Point Function 

Arkani-Hamed, Maldacena: arXiv: 1503.08043 



Or if the scalar sector in  inflation 
breaks conformal invariance in a 
significant way, e.g. DBI inflation 
etc.  
 

Scalar Three Point Function 



 4 point  scalar correlator in dS 
space does not seem to satisfy 
the ward identities of conformal 
transformations. 

General Ward Identities 

Puzzle: 

Serry, Sloth, Vernizzi, JCAP 0701 
(2007) 0903 (2009) 018. 



Issue : 

We are computing local correlators in 
a theory of quantum gravity. 
 
 
These are well defined only after 
gauge fixing.  

< ⇣(x1)⇣(x2) · · · ⇣(xn) >

A general conformal transformation 
will lead to a change of gauge 

Ghosh, Kundu, Raju, SPT, arXiv: 1401.1406  



Resolution : 

The conformal transformation 
must be accompanied by a 
compensating coordinate  
transformation that restores the 
gauge.  
 
The resulting ward identities are 
then satisfied.  



In Practical Terms: 
 
Additional gauge fixing is needed in 
going from the wave function to 
expectation values.  

Gauge fixing needed to make sum 
over metrics well defined.  

< ⇣(x1)⇣(x2) · · · ⇣(xn) >=

Z
D[�ij ]| |2⇣(x1)⇣(x2) · · · ⇣(xn)



Can be important even for 
calculating scalar correlators.  



General Ward Identities 

General Ward Identities valid to all 
orders in the slow roll expansion can 
now be written down.  

Nilay Kundu, Ashish Shukla, SPT, In 
Prep. 



Scale Invariance 

Maldacena Consistency Conditions 



Special Conformal Transformations 



Summary 

•  Approximate Conformal Invariance 
is  a powerful constraint. 

• Hopefully Non-Gaussianity will be 
observed and we will be able to test 
whether the early universe was 
approximately conformally invariant.  



Summary 

•  Methods can be extended to DBI 
inflation etc. 

• Perhaps these considerations can 
help also in formulating a more 
precise dS/CFT correspondence.  
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