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Hollywood’s conception of black holes 



Singularity 

Relativist’s conception of a black hole 



Not every gravitational theory admits a geometrical 
description (or at least not an obvious one). 

Singularity 



Not every gravitational theory admits a geometrical 
description (or at least not an obvious one). 

Singularity 

If geometry is lacking,  
you might question the  relation among: 

Gravity  Thermodynamics 

Gravity  Entanglement 



This talk will report on recent progress related to …   

Gravity  Entanglement 

3d Higher Spin 
Theories  

Wilson Lines 



Based on work with: 

!  Martin Ammon & Nabil Iqbal 1306.4338 [hep-th] 

!  Eva Llabres 1410.2870 [hep-th] 

!  Jan de Boer, Eliot Hijano, Juan Jottar & Per Kraus 
1412.7520 [hep-th] 
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In progress with: 

!  Fotios Dimitrakopoulos, Eva Llabres & Nabil Iqbal  

!  Max Banados, Alberto Faraggi & Juan Jottar 
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1. Gravity & Chern-Simons Theory 

2. Wilson Lines  

3. Black Holes Revisited 

4. Outlook 



An old story revived 

1. Gravity & Chern-Simons 



3d Gravity 

In  2+1 dimensions, we have the luxury of casting general relativity in terms of: 

Einstein-Hilbert: Metric, curvature 

Chern-Simons: Flat connections  

[Acucharro & Townsend; Witten] 
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3d Gravity 

In  2+1 dimensions, we have the luxury of casting general relativity in terms of: 

Einstein-Hilbert: Metric, curvature 

Chern-Simons: Flat connections  

[Acucharro & Townsend; Witten] 

Local variables. 
Spacetime is explicit. 

Topological nature 
is explicit.  

OR 

Inclusion of massless higher spin 
fields is straightforward! 
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SEH = SCS[A]� SCS[Ā] (0.16)
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 

1.  Gauge Group:  
Organization of the massless modes 
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How to interpret Chern-Simons theory as a theory of gravity? 

It is not just a matter of actions and equations of motion.  
Other important INPUTS are: 

1.  Gauge Group:  
Organization of the massless modes 

2. Boundary Conditions:  
Setup the AdS/CFT dictionary 
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Observables 

How do we quantify and classify solutions? 



Observables 

1. Asymptotic Symmetry Group and Ward Identities 
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[Campoleoni et al] 

[Henneaux & Rey; Gaberdiel & Hartman ] 
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With central charge: 



Observables 

2. Non-perturbative Properties 
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a.  Trivial holonomy along thermal cycle: Euclidean Black Hole 
 
b.  Trivial holonomy along spatial cycle: Conical Defect 

3. Partition Functions, 1-loop Determinants, … (ask me later)   

[Kraus & Gutperle, AC et al, Compere et al, Bunster et al, …] 



Quick summary 

! We are working with a Chern-Simons formulation of 

higher spin theories.  

 

!  It is clear how to identify & organize finite charge 

configurations (ASG). 

 

!  It is clear how to construct Euclidean black holes and 

quantify its thermodynamics properties. 

! None of the above required, nor involved, a metric. 



2. Wilson Lines 
Building more observables 



Entanglement Entropy 

Minimal areas 
(geodesic in 3d) 

Entanglement Entropy 

Anti-de Sitter Gravity  Conformal Field theory 

X 

C 

CFT 

AdS [Ryu & Takayanagi] 



Entanglement Entropy 

Minimal areas 
(geodesic in 3d) 

Entanglement Entropy 

Anti-de Sitter Gravity  Conformal Field theory 

X 

C 

CFT 

AdS 

This prescription clearly fails in higher spin gravity.  
What is a geodesic in a theory without a metric? 

[Ryu & Takayanagi] 



Wilson line & massive probes 
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1.  We evaluated Renyi entropy using the bulk Chern-Simons action. 
 
2.  We showed how this parallels the CFT computation of correlation 

functions. 
 
3.  We also studied the corresponding computation in Toda theory. 
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Developments 

Large central charge limit, we have the correspondence 

Approximated by 
vacuum black 
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Developments 

Large central charge limit, we have the correspondence 

Approximated by 
the vacuum block 

Approximated by 
bulk classical action 

Reason: both governed by same monodromy problem (ODE) 
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Equivalent statements hold in 3d Gravity; the metric 
formulation just requires a bit more work.  

[Hartman; Faulkner] 



Developments 

Still large central charge limit, scale dimension of operators: 
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Light (e.g. twist fields) 

Heavy (e.g. black hole) 

Vacuum conformal block is computed by a bulk Wilson line probing 
an asymptotically AdS3 background with higher spin fields excited.  
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Penrose diagrams in higher spin theory  

3. Black Holes Revisited 



Until now we have only discussed physics at one boundary. 

X 

C 

CFT 
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And we have spectacular agreement with the CFT. 
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What if one end goes loose? 
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Does Chern-Simons theory know that  
an eternal black hole has two boundaries? 

Singularity 



Singularity 

Does Chern-Simons theory know that  
an eternal black hole has two boundaries? 

If yes, how does Chern-Simons know? 

Using a Wilson Line, we should be able to 
reconstruct and define a notion of Penrose diagram.  



Lorentzian HS Black Holes 

A  possible definition of Lorentzian black hole: 

An eternal black  is a thermo-field double state in the CFT. 

γE	
  

Whereas an Euclidean black holes satisfies: 
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Singularity 

An eternal black  is a thermo-field double state in the CFT. 

This imposes more restrictions than Euclidean regularity conditions 

the thermofield state with chemical potential, which when defined carefully is actually
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�
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The sum is over all energy eigenstates of the system, which each possess a conserved energy and U(1) charge.
Here U is the anti-unitary operator that implements CPT. If one constructs the thermofield state by cutting
open a path-integral (which is presumably what we are always doing in gravity) then this CPT operator must
be there. There is some flu↵y discussion of this in Dan Harlow’s lectures [2]. Recall that anti-unitary means
(e.g. see p51 in Weinberg Vol. 1)

U�1 = U † hU |U�i = h�| i (8) antiU

and the fact that it implements CPT means

U�1 (iH)U = �iH U�1OU ⌘ OCPT (9) CPTness

(it actually commutes with H, but anticommutes with i, and we denote the CPT conjugate of an operator
with a superscript). Now let us carefully compute
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The first equality uses (9) and the second uses (8). The last follows from the definition of the adjoint of a
normal linear operator. Thus we find
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This is starting to look like a normal thermal correlator. Now for many operators (e.g. a charged scalar),
CPT simply acts as complex conjugation, so we have OCPT = O†. For vector operators we pick up extra
signs which presumably should be kept track of. In any case, for a charged scalar O1 with a definite charge
q1 we find the following relation:
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This relation also explains what it means for “time to run backwards on the other side”. For operators
with more complicated CPT conjugations or that are not charge eigenstates we can work with the more
complicated (16).

Finally, we note that in the initial choice for time evolution we chose to evolve the system using only H, not
H +µQ; this is the ultimate origin for the extra factor of the scalar charge q1 appearing in (17). If we evolve
using H � µQ on the left and H + µQ on the right then we find the cleanest KMS condition, involving no
extra factors of the charge q1. This is likely what is happening in gravity, as mentioned above. As far as I
understand, when computing correlators of charge eigenstates these di↵erent choices only add extra phases
and likely only correspond to di↵erent bulk gauge choices.
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Testing this proposal is difficult:  non-trivial to have test particle. 
Important prior work made use of Vasiliev scalar field.  
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Problem as we pose it: given 

what is the appropriate causal diagram? 

[Kraus & Perlmutter] 

Singularity 

Left Right 



The Wilson line should behave according to our definition.  

1.  Signal of a bifurcation point. 
2.  Left-Left sided correlator should equal Right-Right sided.  
3.  Left-Right correlator should obey appropriate KMS conditions. 
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4. Outlook 
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2. We replaced and generalized the notion of 
distances. 

Wilson Lines & Entanglement  

1.  Higher spin theories unveil new features and 
 new challenges in quantum gravity. 

3. Plethora of quantitative checks within AdS/CFT.  
 

Chern-Simons versus Toda Theory 



In
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ss 
1. Global interpretation of Lorentzian solutions.  

The Wilson line is allowing us to decode the bulk. 

2. Extremal Black Holes: appropriate definition, 
characteristic and BPS features. 



THANK YOU! 


