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Let me start with this question:

In string perturbation theory, how
does one decide if a given string theory compactification is
modular-invariant? Actually I want to narrow the question to the
case that the anomalies of interest all involve fermions (possibly
fermions coupled as part of a σ-model). That is because I want to
focus on questions that have analogs in higher dimension – for
fermions that live on the world-volume of a brane, and in other
applications of quantum field theory above 1 + 1 dimension. In two
dimensions, we could study more general questions of rational
conformal field theory, but we are not going to discuss things that
would be special to two dimensions.
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The most familiar answer is:

To decide if the theory is
modular-invariant, one calculates the partition function Z (τ) and
then one checks whether it is modular-invariant

Z (τ) = Z (τ + 1) = Z (−1/τ).
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This answer is certainly correct as far as it goes, but it has a few
drawbacks.

We might not be able to compute the complete Z (τ)
(especially in higher genus or higher dimension, of if the fermions
are part of a σ-model). Even if we can, the result might be very
complicated and one might wonder if the anomaly, which is
something simple, can somehow be computed directly rather than
first computing the complete function Z (τ). Shouldn’t it be easier
to decide if a theory is anomalous than to solve the theory?
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Beyond this, there is something a little misleading about the
standard answer: “Compute the partition function and check if it
is modular-invariant.”

This answer presumes that one knows how
to compute the partition function. That is true in genus 1 because
the partition function can be computed in a Hamiltonian formalism
as a sum over states,

Z (τ) = Tr exp(−βH + iθP).
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In higher genus (or on a generic manifold in higher dimension),
there is (well, almost) no standard and well-known recipe to
calculate the path integral for chiral fermions.

That is because, in the case of chiral fermions, it is not clear how
to define the phase of the fermion measure.



We often call the fermion path integral a “determinant” or a
“Pfaffian,” but this is a term of art.

If a “determinant” is
supposed to be a regularized product of eigenvalues, then the path
integral for chiral fermions is not really a determinant in that
specific sense, because the fermion eigenvalue problem

i /DΨ = λΨ

only makes sense if both chiralities of fermion are present. The
absolute value of the fermion path integral Zψ can be defined as a
regularized product of eigenvalues, but not Zψ itself.
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What then do we mean by the fermion path integral?

In a sense,
giving the best simple answer I can to this question is the purpose
of the lecture. But anyway, let us start with the best answer that is
well known.
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I should say that in some particular cases, ad hoc answers can be
given to the sort of questions I will be discussing today.

There
won’t be time to analyze all the ad hoc answers and see how far
they would get us. As one example, two-dimensional topology is so
simple that in that particular case one could normalize the higher
genus amplitudes using factorization

and I imagine that is the
first answer most people would give.
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Although there is no standard method to define the fermion path
integral Zψ, there is a standard method to compute how it is
supposed to change when one varies some background field – for
example, the metric tensor or gauge fields that the fermions are
coupled to.

Consider fermions on some D-manifold M – which
would be the string worldsheet in the example that I started with.
(The fermions may also be coupled to gauge fields but for brevity I
emphasize the coupling to gravity.) The response of Zψ to a
change in the metric of M is given by a standard formula

δ

δgµν(x)
logZψ = 〈Tµν(x)〉.

The right hand side is well-defined in a theory that is free of
perturbative anomalies. For instance, in perturbation theory we
can just compute it from Feynman diagrams. There is no subtlety
in the normalization.
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There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies.

Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x). The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied. We say that those theories have
perturbative gravitational anomalies and we discard them. At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies. Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x).

The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied. We say that those theories have
perturbative gravitational anomalies and we discard them. At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies. Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x). The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied. We say that those theories have
perturbative gravitational anomalies and we discard them. At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies. Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x). The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied.

We say that those theories have
perturbative gravitational anomalies and we discard them. At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies. Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x). The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied. We say that those theories have
perturbative gravitational anomalies and we discard them.

At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



There is a possible problem: when we compute 〈Tµν(x)〉 we might
run into perturbative anomalies. Specifically, we would like Zψ to
be invariant under infinitesimal diffeomorphisms of M,
δxµ = vµ(x). The condition for this is conservation of the stress
tensor

Dµ〈Tµν(x)〉 = 0.

In some theories, we cannot regularize 〈Tµν(x)〉 in such a way that
this condition will be satisfied. We say that those theories have
perturbative gravitational anomalies and we discard them. At least
in the traditional view, we only study more subtle questions like
modular invariance if the perturbative anomalies cancel (after
possibly combining together the contributions of a variety of
different bose and fermi fields).



If perturbative anomalies are absent, what might still go wrong?

Once we have a satisfactory definition of the right hand side, the
formula

δ

δgµν(x)
logZψ = 〈Tµν(x)〉

defines Zψ as a function of the metric – so let us call it Zψ(gµν) –
up to an overall phase. The indeterminacy is thus

Zψ(g)→ e iαZψ(g)

with a constant α.
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under “big” diffeomorphisms that are not so connected.
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For example, consider a two-torus Σ = T 2 parametrized by x , y
with 0 ≤ x , y ≤ 1.

An example of a “big” diffeomorphism is

φ : (x , y)→ (x + y , y).

This diffeomorphism corresponds to a modular transformation: if Σ
has a complex structure defined by saying that

z = x + τy

is holomorphic, then φ maps τ to τ + 1. So “modular invariance”
is the question of whether Zψ is invariant under “big”
diffeomorphisms such as φ. We describe non-invariance by saying
that there is a “global anomaly.”
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To decide if Zψ is φ-invariant amounts to the following.

Suppose
that g is some metric tensor on M, and suppose that φ transforms
g to gφ. One wants to know if Zψ(gφ) equals Zψ(g):

Zψ(gφ)
?
= Zψ(g).

In general, this might be wrong, but it will be always true that

δ

δg
logZψ(gφ) =

δ

δg
logZψ(g).

That is because the left and right hand sides both equal 〈Tµν〉,
which is manifestly invariant under all diffeomorphisms, big or
small. (This is true even in anomalous theories: gravitational
anomalies mean that 〈Tµν〉 is not conserved, but it is still
diffeomorphism invariant.)
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It follows that
Zψ(gφ) = e iαZψ(g)

where α is a constant, independent of the metric, and moreover α
is real, since the absolute value |Zψ| was well-defined to begin with.

The fact that α does not depend on the metric g means that it is
a topological invariant.
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If α is a topological invariant, what is it an invariant of?

One
answer is that it is an invariant of the equivalence class of the
“big” diffeomorphism φ, modulo“little” diffeomorphisms (under
which Zψ is invariant, since by hypothesis there are no perturbative
anomalies). But there is a more convenient answer. If we are
studying fermions on a D-manifold M, we use φ as gluing data to
build a D + 1-manifold Y .
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Anomalies” (1985).

The strategy was just to go to a limit in which
the u dependence of the metric is adiabatic, and to compute using
the usual adiabatic approximation of quantum mechanics.
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The answer was as follows.

One considers a non-chiral Dirac
operator on the D + 1-manifold Y . It has an eigenvalue problem

i /Dψ = λψ

and an Atiyah-Patodi-Singer η-invariant

η = lim
s→0

∑
i

|λi |−ssignλi .

I showed that this determines the global anomaly:

e iα = e iπη.
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The statement that the global anomaly is given by e iπη may not be
very familiar, but it is a slight refinement of something that
actually is well-known.

Perturbative anomalies in D dimensions are
related to Chern-Simons in D + 1-dimensions and thereby to a
characteristic class in D + 2 dimensions. According to
Atiyah-Patodi-Singer, η (mod 2) differs from Chern-Simons by a
constant:

δη = δCS.

This means roughly that η and Chern-Simons differ by a
topological invariant. Chern-Simons describes perturbative
anomalies and η is a slight refinement of Chern-Simons that
describes global anomalies as well.
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Generically e iπη is not a topological invariant, but it becomes a
topological invariant precisely in those theories that have no
perturbative anomaly.

That is basically because the variation of η
(when one changes the metric or gauge field on Y ) equals the
variation of Chern-Simons, which controls the perturbative
anomaly. The upshot is that a theory is free of global anomalies if
and only if e iπη = 1 for every D + 1-manifold that is a mapping
torus.
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Physically, there is more to life than making sure that there are no
global anomalies.

Saying the path integral is anomaly-free means
that the phase of Zψ on any given M can be defined without
running into a contradiction, but it does not tell us what is the
overall phase of Zψ. If we pick overall phases of Zψ at random for
different M’s, we will violate unitarity and gluing. We want a
consistent way to define overall phases of Zψ for all possible M’s
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It is not hard to give examples of theories that do not have global
anomalies but are apparently inconsistent because there is no
consistent way to define the overall phases of the path integral on
different M’s.

The perturbative heterotic string (in certain
backgrounds) is one example, and massless Majorana fermions in
three dimensions lead to another example.
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Although I do not claim a complete proof, I believe that there is a
general answer for when a theory with fermions is completely
consistent and anomaly-free, meaning that the path integral on a
general manifold can be defined in a way that is anomaly-free and
consistent with all principles of unitarity, locality and cutting and
pasting.

The condition is just that

e iπη = 1

for all D + 1-manifolds Y , not just for mapping tori. Anomaly
cancellation gives the same condition just for mapping tori.
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As an example, consider the worldsheet path integral of the
heterotic string. One integrates over maps ϕ : Σ→ S , where
Σ = M is the string worldsheet and S is spacetime.

When one
analyzes global anomalies, ϕ is extended to a map ϕ : Y → S ,
where Y is the mapping torus. One computes e iπη including
contributions from all of the worldsheet fields of the heterotic
string. The condition e iπη = 1 has the following interpretation.
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Let T be the tangent bundle of spacetime and V the gauge
bundle.

The α′-corrected supergravity equation

dH = trF ∧ F − trR ∧ R

implies that p1(T ) = p1(V ) at the level of differential forms, but
the condition e iπη = 1 implies the same thing at the level of
integral cohomology. This is more than one can prove via global
anomalies alone.
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The main evidence for the condition e iπη = 1 is what I call the
Dai-Freed theorem (hep-th/9405012).

Dai and Freed stated their
result in a way that sounded somewhat abstract to me when I first
heard it, and I did not realize that it entailed a better criterion for
consistency of theories with fermions.
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But now I would describe the Dai-Freed theorem as a useful way to
define a fermion path integral.

Suppose that we are trying to define
a path integral for fermions on M, and suppose that M is the
boundary of a manifold X (over which any important structures
such as spin structures, gauge bundles, etc., are extended).

Given this, the fermion
path integral on M can be defined as

Zψ(M) = |Zψ(M)| exp(iπηX ).



But now I would describe the Dai-Freed theorem as a useful way to
define a fermion path integral. Suppose that we are trying to define
a path integral for fermions on M, and suppose that M is the
boundary of a manifold X (over which any important structures
such as spin structures, gauge bundles, etc., are extended).

Given this, the fermion
path integral on M can be defined as

Zψ(M) = |Zψ(M)| exp(iπηX ).



But now I would describe the Dai-Freed theorem as a useful way to
define a fermion path integral. Suppose that we are trying to define
a path integral for fermions on M, and suppose that M is the
boundary of a manifold X (over which any important structures
such as spin structures, gauge bundles, etc., are extended).

Given this, the fermion
path integral on M can be defined as

Zψ(M) = |Zψ(M)| exp(iπηX ).



But now I would describe the Dai-Freed theorem as a useful way to
define a fermion path integral. Suppose that we are trying to define
a path integral for fermions on M, and suppose that M is the
boundary of a manifold X (over which any important structures
such as spin structures, gauge bundles, etc., are extended).

Given this, the fermion
path integral on M can be defined as

Zψ(M) = |Zψ(M)| exp(iπηX ).



The basic justification for this formula

Zψ(M) = |Zψ(M)| exp(iπηX )

for the fermion path integral is: (1) it is gauge-invariant and
consistent with unitarity and factorization; (2) it satisfies

δ

δgµν
logZψ = 〈Tµν〉.



For this to make sense, we need to know that the choice of X does
not matter.

If we have two X ’s, say X1 and X2, we can glue X1 to
−X2 to make a closed (D + 1)-manifold Y
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There is a gluing formula

exp(iπη(X1)) = exp(iπη(X2)) · exp(iπη(Y )).

We want exp(iπη(X1)) = exp(iπη(X2)) so that our definition of
the fermion path integral is well-defined. The condition for this is

exp(iπη(Y )) = 1

for any D + 1-manifold Y without boundary.
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So this is the general answer for when a definition of the fermion
path integral based on the Dai-Freed theorem makes sense: One
wants exp(iπη) = 1 for any closed D + 1-manifold X , with no
restriction to mapping tori.



What if no suitable X exists?

When this happens, we get a family
of possible definitions of the fermion path integral. I will just
explain this with an example: If we are in dimension 2, and M has
an odd spin structure, then M is not a boundary but two copies of
M are a boundary.

In this situation, we get no way to define ZM , but we can define
Z 2
M :

Zψ(M)2 = |Zψ(M)|2 exp(iπη(X )).
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Similarly we can define Zψ(M)Zψ(M ′), if M and M ′ both have odd
spin structure.

So what is undetermined is an overall sign,
independent of M, whenever M has odd spin structure. That is
the right answer: The theory remains consist if one reverses the
sign of Zψ(M) whenever M has odd spin structure. I believe that
this is the right answer in general: whatever is not determined by
the definition of Zψ given by the Dai-Freed theorem is really
undetermined, and represents a free parameter in the theory.
Depending on the context, the free parameter could be regarded as
a coupling constant or (in string theory) a background field.

(Nevertheless in some problems, one wants a better understanding
of the undetermined parameters. In Freed and Moore,
hep-th/0409135, a more precise treatment was given in one
example – the low energy effective action of M-theory.)
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As I’ve already mentioned, the perturbative heterotic string is one
example in which the answer that comes from the Dai-Freed
theorem is sharper than what one learns just from anomalies.

(I
treated it this way in hep-th/9907041.) I want to give a more
contemporary example, which will also lead us to reconsider
M2-branes and other string/M-theory branes (except that we won’t
have time for details).
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The example that I want to give is actually very fashionable in
current work in condensed matter physics, where it appears in the
theory of a (mostly hypothetical) topological superconductor.

The
theory we consider is simply a two-component massless Majorana
fermion in three dimensions, coupled to gravity only

I =

∫
d3x iψ̄ /Dψ.

If we consider this theory on an oriented three-manifold, then its
partition function ZM is real (because the Dirac operator is
hermitian) but not necessarily positive. One can show that there is
no anomaly in the sign of ZM , and therefore one might think the
theory is consistent. However, even though exp(iπη) is always 1 on
an orientable mapping torus, it is not always 1 on an orientable
four-manifold, and I believe this means that the theory is
inconsistent even if formulated on orientable manifolds only. There
is no natural way to choose the sign of Zψ(M), even though it has
no anomaly in the traditional sense.
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It is more interesting, however, to take advantage of the fact that
the theory of the massless Majorana fermion is parity-conserving
and to try to formulate it on a possibly unorientable
three-manifold.

In this case, one finds that there actually is a
global anomaly in general, and when we write

Zψ(M) = |Zψ(M)| exp(iπη(X ))

there really is a dependence on X . The way condensed matter
physicists interpret this is that the massless Majorana fermion
cannot exist on a bare three-manifold, but it can exist on a
three-manifold that is the boundary of a four-manifold:
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The (mostly hypothetical) material that does this is a topological
superconductor, which in bulk has a gap for fermionic excitations,
but has gapless fermionic modes on the boundary:

When we write

Zψ(M) = |Zψ(M)| exp(iπη(X )),

the bulk factor
exp(iπη(X ))

comes by integrating out the bulk gapped modes that live on X .
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One can ask more generally (and many condensed matter
physicists have asked this) whether a theory of ν massless
Majorana fermions, all transforming the same way under parity, is
consistent (on a possibly unorientable three-manifold).

To answer
this question from the present point of view, we need to know
whether exp(iπνη(X )) equals 1 for all four-manifolds X . It turns
out that this is so if and only if ν is a multiple of 16. RP4 is an
example of a four-manifold with exp(iπη) = exp(2πi/16). This
number 16 has been discovered and explained from several
different points of view in the condensed matter literature, initially
by Kitaev. The question as posed by condensed matter physicists
is this: For what values of ν is it possible, by adding interactions,
to make the boundary fermions gapped while preserving reflection
symmetry? (The relation to η was first suggested by Kapustin,
Thorngren, Turzillo, Wang, arXiv:1407.7329.)
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This is a case in which anomalies do not capture the full picture:
an “anomalies only” approach (i.e., only consider e iπη(Y ) where Y
is a mapping torus) would tell us that the theory is consistent if ν
is a multiple of 8, but the correct answer is 16.



Actually the case ν = 8 arises in M-theory on the world-volume of
an M2-brane.

The worldvolume of the M2-brane is a
three-manifold that I will call M. On M, there are ν = 8 Majorana
fermions, which are coupled to a rank 8 vector bundle (the positive
chirality spinors of the normal bundle to M in an
eleven-dimensional spacetime S). Since 8 is not a multiple of 16,
this theory is inconsistent by itself: in fact it has an anomaly
involving the normal bundle though the anomaly is not the full
story.
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I treated this question assuming that M is orientable and
considering anomalies only in hep-th/9609122.

A sufficiently
accurate answer to deal with this case is as follows: one has to
consider not just the fermion Pfaffian Pf( /D) but also the coupling
of the M2-brane to the three-form field C of M-theory:

Pf( /D) exp

(
i

∫
M
C

)
.

The first factor is anomalous, and the anomaly is canceled by the
second factor if this factor also has a suitable anomaly.
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To make exp
(
i
∫
M C

)
well-defined, we would ask that the periods

of the field strength G = dC should obey Dirac quantization: they
should be integral multiples of 2π.

To get an anomaly, we shift the
quantization condition on G and require∫

V

G

2π
=

1

2

∫
V

p1(T )

2
mod Z.

Here p1(T ) is the first Pontryagin class of the tangent bundle of
the spacetime. The integral

∫
V p1(T )/2 is an integer, so the

shifted quantization condition says that periods of G/2π can be
half-integers. The shift makes exp

(
i
∫
M C

)
anomalous and this

anomaly cancels the anomaly of the fermions.
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This is almost a sufficient answer if the worldvolume M of the
M2-brane is orientable, but M-theory does not require this in
general (the condition is rather that the normal bundle to M must
be orientable).

It is hard with traditional methods to define the
worldvolume path integral of the M2-brane properly if M is
unorientable, and this case has not been treated in the literature.
However, it can be treated using the Dai-Freed theorem, in a way
similar to what is needed to treat the topological superconductor
with ν = 8. (The M2-brane problem is a little more complicated
because of the coupling to the spinors of the normal bundle.)
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What got me into this subject was thinking about a more subtle
case that has not been treated in the literature even at the level of
anomalies only: The M2-brane path integral for the case of an
M2-brane that ends on an M5-brane.



This case is more complicated because the M2-brane fermions live
on a three-manifold with boundary.

To analyze this case, one
needs to consider the worldvolume path integral of the fermions,
the coupling to the C -field, and the coupling of the boundary of
the M2-brane to the two-form of selfdual curvature that lives on
the M5-brane. All of these factors are anomalous. I believe it is
hard to analyze this problem effectively without a tool such as the
Dai-Freed theorem.
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One can ask what would be a condensed matter analog of the
M2-M5 problem.

A partial analog would be a topological
superconductor with 3 + 1-dimensional worldvolume Y , whose
boundary M is divided in two parts with two different boundary
conditions (possibly because half of the boundary is in contact
with some other material).
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The boundary condition on one part, say M1, is a “free fermion”
boundary condition that we discussed before, such that there are ν
massless free fermions on the boundary, and the boundary
condition on the other part, M2, is a “gapped symmetry preserving
boundary condition,” only possible because of interactions, so that
that part of the boundary is gapped. (There is by now an extensive
condensed matter literature on such boundary conditions.)
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I hope I have at least succeeded today in giving an overview of the
tools that are needed to study the subtle fermion integrals that
frequently arise in string/M-theory.

A detailed analysis of a specific
problem would really require a different lecture. Write-ups of some
of the problems I’ve mentioned – and some similar ones – will
appear soon.
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