The $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ Superstring Action

John H. Schwarz

California Institute of Technology

Strings 2015
June 22, 2015

Introduction

Previous studies of the type IIB superstring in an $A d S_{5} \times S^{5}$ background (Metsaev and Tseytlin, 1998) are based on the quotient space

$$
P S U(2,2 \mid 4) / S O(4,1) \times S O(5)
$$

I will present an alternative approach in which the Grassmann coordinates provide a nonlinear realization of $\operatorname{PSU}(2,2 \mid 4)$ based on the quotient space

$$
P S U(2,2 \mid 4) / S U(2,2) \times S U(4)
$$

and the bosonic coordinates are described as a submanifold of $S U(2,2) \times S U(4)$.

The bosonic truncation

The unit-radius sphere:

$$
\hat{z} \cdot \hat{z}=\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}+\ldots+\left(z^{6}\right)^{2}=1
$$

The unit-radius anti de Sitter space:

$$
\hat{y} \cdot \hat{y}=-\left(y^{0}\right)^{2}+\left(y^{1}\right)^{2}+\ldots+\left(y^{4}\right)^{2}-\left(y^{5}\right)^{2}=-1
$$

The unit-radius metric:

$$
d s^{2}=d \hat{z} \cdot d \hat{z}+d \hat{y} \cdot d \hat{y}
$$

The induced world-sheet metric:

$$
G_{\alpha \beta}=\partial_{\alpha} \hat{z} \cdot \partial_{\beta} \hat{z}+\partial_{\alpha} \hat{y} \cdot \partial_{\beta} \hat{y}
$$

The bosonic part of the radius R superstring action:

$$
S=-\frac{R^{2}}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} G_{\alpha \beta}
$$

AdS/CFT implies that

$$
R^{2}=\alpha^{\prime} \sqrt{\lambda}
$$

where $\lambda=g_{Y M}^{2} N$ is the 't Hooft parameter of the dual CFT, which is $\mathcal{N}=4$ SYM with gauge group $U(N)$.

Supermatrices

$$
M=\left(\begin{array}{cc}
a & \tau b \\
\tau c & d
\end{array}\right), \quad \tau=e^{-i \pi / 4}
$$

a and d are even blocks referring to $S U(4)$ and $S U(2,2)$.
b and c are odd blocks that transform as bifundamentals.
The "superadjoint" is defined by

$$
M^{\dagger}=\left(\begin{array}{cc}
a^{\dagger} & -\tau c^{\dagger} \\
-\tau b^{\dagger} & d^{\dagger}
\end{array}\right)
$$

This satisfies $\left(M_{1} M_{2}\right)^{\dagger}=M_{2}^{\dagger} M_{1}^{\dagger}$.

A unitary supermatrix satisfies $M M^{\dagger}=I$ and an antihermitian supermatrix satisfies $M+M^{\dagger}=0$.

The "supertrace" is defined (as usual) by

$$
\operatorname{str} M=\operatorname{tr} a-\operatorname{tr} d
$$

The main virtue of this definition is that

$$
\operatorname{str}\left(M_{1} M_{2}\right)=\operatorname{str}\left(M_{2} M_{1}\right)
$$

The $\mathfrak{p s u}(2,2 \mid 4)$ algebra is described by $\mathfrak{s u}(2,2 \mid 4)$ matrices modded out by the equivalence relation

$$
M \sim M+\lambda I
$$

Nonlinear realization of the superalgebra

The θ coordinates are 16 complex Grassmann numbers that transform under $S U(4) \times S U(2,2)$ as $(\mathbf{4}, \overline{\mathbf{4}})$.

It is natural to describe them by 4×4 matrices, rather than by 32-component spinors as we did for the flat-space limit. No Fierz transformations will be required!

The rule

$$
\delta \theta=\omega \theta-\theta \tilde{\omega}+\varepsilon+\theta \varepsilon^{\dagger} \theta
$$

closes precisely on the $\mathfrak{p s u}(2,2 \mid 4)$ algebra. It is reminiscent of Volkov-Akulov Goldstino transformations.

We construct supermatrices $\Gamma(\theta) \in P S U(2,2 \mid 4)$ of the form

$$
\Gamma=\left(\begin{array}{cc}
I & \tau \theta \\
\tau \theta^{\dagger} & I
\end{array}\right)\left(\begin{array}{cc}
f^{-1} & 0 \\
0 & \tilde{f}^{-1}
\end{array}\right)
$$

by choosing f and \tilde{f} such that $\Gamma \Gamma^{\dagger}=I$. This is achieved for

$$
\begin{aligned}
& f=\sqrt{I+u}=I+\frac{1}{2} u+\ldots \\
& \tilde{f}=\sqrt{I+\tilde{u}}=I+\frac{1}{2} \tilde{u}+\ldots
\end{aligned}
$$

where

$$
u=i \theta \theta^{\dagger} \quad \text { and } \quad \tilde{u}=i \theta^{\dagger} \theta
$$

are hermitian matrices.

It then follows that

$$
\delta_{\varepsilon} \Gamma=\left(\begin{array}{cc}
M(\varepsilon) & 0 \\
0 & \tilde{M}(\varepsilon)
\end{array}\right) \Gamma+\Gamma\left(\begin{array}{cc}
0 & \tau \varepsilon \\
\tau \varepsilon^{\dagger} & 0
\end{array}\right)
$$

where

$$
\begin{gathered}
M(\varepsilon)=\left(\delta_{\varepsilon} f-i f \varepsilon \theta^{\dagger}\right) f^{-1} \\
\tilde{M}(\varepsilon)=\left(\delta_{\varepsilon} \tilde{f}-i \tilde{f}^{\dagger} \theta\right) \tilde{f}^{-1} .
\end{gathered}
$$

The natural interpretation is that θ and Γ describe the coset space

$$
P S U(2,2 \mid 4) / S U(4) \times S U(2,2)
$$

A flat connection

Now consider

$$
A=\Gamma^{-1} d \Gamma=\left(\begin{array}{cc}
K & \tau \Psi \\
\tau \Psi^{\dagger} & \tilde{K}
\end{array}\right)
$$

This one-form supermatrix is constructed entirely out of
θ. It is super-antihermitian and flat $(d A+A \wedge A=0)$.
Under a supersymmetry transformation

$$
\delta_{\varepsilon} A=-d\left(\begin{array}{cc}
M & 0 \\
0 & \tilde{M}
\end{array}\right)-\left[A,\left(\begin{array}{cc}
M & 0 \\
0 & \tilde{M}
\end{array}\right)\right] .
$$

Inclusion of bosonic coordinates

$$
Z=\left(\begin{array}{cccc}
0 & u & v & w \\
-u & 0 & -\bar{w} & \bar{v} \\
-v & \bar{w} & 0 & -\bar{u} \\
-w & -\bar{v} & \bar{u} & 0
\end{array}\right)=\Sigma_{a} z^{a}
$$

where $u=z^{1}+i z^{2}, v=z^{3}+i z^{4}$, and $w=z^{5}+i z^{6}$.
Using $|u|^{2}+|v|^{2}+|w|^{2}=1$,

$$
Z=-Z^{T}, \quad Z Z^{\dagger}=I, \quad \operatorname{det} Z=1
$$

The only purpose in displaying all the elements of the matrix Z is to establish beyond any doubt the existence of a matrix with all of these properties. Otherwise, explicit representations are never used in this work. There is a very similar construction for Y.

The matrix Z defines a codimension 10 map of S^{5} into $S U(4)$. Similarly, $Y: A d S_{5} \rightarrow S U(2,2)$.

The supersymmetry transformations of the bosonic coordinates are

$$
\delta_{\varepsilon} Z=M Z+Z M^{T} \quad \text { and } \quad \delta_{\varepsilon} Y=\tilde{M} Y+Y \tilde{M}^{T}
$$

The antihermitian connections

$$
\begin{aligned}
& \Omega=Z d Z^{-1}-K-Z K^{T} Z^{-1} \\
& \tilde{\Omega}=Y d Y^{-1}-\tilde{K}-Y \tilde{K}^{T} Y^{-1}
\end{aligned}
$$

transform nicely under supersymmetry transformations

$$
\delta_{\varepsilon} \Omega=[M, \Omega] \text { and } \delta_{\varepsilon} \tilde{\Omega}=[\tilde{M}, \tilde{\Omega}] .
$$

Therefore, the $\operatorname{PSU}(2,2 \mid 4)$ invariant metric with the correct bosonic truncation is

$$
d s^{2}=-\frac{1}{4}\left(\operatorname{tr}\left(\Omega^{2}\right)-\operatorname{tr}\left(\tilde{\Omega}^{2}\right)\right) .
$$

Majorana-Weyl matrices

We wish to split objects transforming as $(\mathbf{4}, \overline{\mathbf{4}})$ into two pieces that correspond to MW spinors in the flatspace limit while respecting the group theory.

To do this, we define an involution

$$
\Psi \rightarrow \Psi^{\prime}=Z \Psi^{\star} Y^{-1}
$$

Then

$$
\Psi=\Psi_{1}+i \Psi_{2} \quad \text { and } \quad \Psi^{\prime}=\Psi_{1}-i \Psi_{2}
$$

where Ψ_{1} and Ψ_{2} are MW matrices for which

$$
\Psi_{I}^{\prime}=\Psi_{I} \quad I=1,2
$$

Let us now define three supermatrix one-forms

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc}
\Omega & 0 \\
0 & \tilde{\Omega}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & \tau \Psi \\
\tau \Psi^{\dagger} & 0
\end{array}\right) \\
A_{3}=\left(\begin{array}{cc}
0 & \tau \Psi^{\prime} \\
\tau \Psi^{\prime \dagger} & 0
\end{array}\right)
\end{gathered}
$$

In all three cases

$$
\delta_{\varepsilon} A_{i}=\left[\left(\begin{array}{cc}
M & 0 \\
0 & \tilde{M}
\end{array}\right), A_{i}\right] .
$$

By making the unitary transformation

$$
J_{i}=\Gamma^{-1} A_{i} \Gamma \quad i=1,2,3
$$

we obtain supermatrices that transform under $\mathfrak{p s u}(2,2 \mid 4)$ in the natural way:

$$
\delta_{\Lambda} J_{i}=\left[\Lambda, J_{i}\right]
$$

The infinitesimal parameters are given by

$$
\Lambda=\left(\begin{array}{cc}
\omega & -\tau \varepsilon \\
-\tau \varepsilon^{\dagger} & \tilde{\omega}
\end{array}\right)
$$

We will formulate the superstring action and its equations of motion entirely in terms of these three one-forms.

Maurer-Cartan equations

Using the explicit formulas that have been given, one obtains the Maurer-Cartan equations

$$
\begin{gathered}
d J_{1}=-J_{1} \wedge J_{1}+J_{2} \wedge J_{2}+J_{3} \wedge J_{3}-J_{1} \wedge J_{2}-J_{2} \wedge J_{1} \\
d J_{2}=-2 J_{2} \wedge J_{2} \\
d J_{3}=-\left(J_{1}+J_{2}\right) \wedge J_{3}-J_{3} \wedge\left(J_{1}+J_{2}\right)
\end{gathered}
$$

These imply that

$$
J_{ \pm}=J_{1}+J_{2} \pm i J_{3}
$$

and $2 J_{2}$ are flat.

The Wess-Zumino term

The closed three-form that determines the WZ term for the fundamental string is also exact $\left(H_{3}=d B_{2}\right)$. Therefore, we can look for a suitable two-form B_{2}.

Consider the invariant two-forms

$$
\operatorname{str}\left(J_{i} \wedge J_{j}\right)=-\operatorname{str}\left(J_{j} \wedge J_{i}\right)
$$

The only one of these that is nonzero is

$$
\operatorname{str}\left(J_{2} \wedge J_{3}\right)
$$

The correct coefficient will be determined (up to a sign) by requiring local kappa symmetry.

The superstring world-sheet action

The induced invariant metric is

$$
G_{\alpha \beta}=-\frac{1}{4}\left(\operatorname{tr}\left(\Omega_{\alpha} \Omega_{\beta}\right)-\operatorname{tr}\left(\tilde{\Omega}_{\alpha} \tilde{\Omega}_{\beta}\right)\right)=-\frac{1}{4} \operatorname{str}\left(J_{1 \alpha} J_{1 \beta}\right)
$$

and the superstring world-sheet action is

$$
S=-\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} G_{\alpha \beta}-\frac{\sqrt{\lambda}}{8 \pi} \int \operatorname{str}\left(J_{2} \wedge J_{3}\right)
$$

This gives the $\operatorname{PSU}(2,2 \mid 4)$ Noether current

$$
J=J_{1}+\star J_{3}
$$

Its conservation encodes equations of motion:

$$
d \star J=d \star J_{1}+d J_{3}=0 .
$$

Theta variations

For an arbitrary variation $\delta \theta$

$$
\delta A=-d\left(\begin{array}{cc}
\mathcal{M} & \tau \rho \\
\tau \rho^{\dagger} & \tilde{\mathcal{M}}
\end{array}\right)-\left[A,\left(\begin{array}{cc}
\mathcal{M} & \tau \rho \\
\tau \rho^{\dagger} & \tilde{\mathcal{M}}
\end{array}\right)\right]
$$

where

$$
\rho=f^{-1} \delta \theta \tilde{f}^{-1}
$$

and

$$
\mathcal{M}=-f^{-1} \delta f+i \rho \theta^{\dagger}, \quad \tilde{\mathcal{M}}=-\tilde{f}^{-1} \delta \tilde{f}+i \rho^{\dagger} \theta
$$

To get simple formulas, we simultaneously vary the bosonic coordinates

$$
\delta Z=\mathcal{M} Z+Z \mathcal{M}^{T} \quad \text { and } \quad \delta Y=\tilde{\mathcal{M}} Y+Y \tilde{\mathcal{M}}^{T} .
$$

In terms of supermatrices and differential forms, these variations give

$$
\begin{gathered}
\delta S_{1}=-\frac{\sqrt{\lambda}}{4 \pi} \int \operatorname{str}\left(R\left[A_{1} \wedge \star A_{2}+\star A_{2} \wedge A_{1}\right]\right) \\
\delta S_{2}=-\frac{\sqrt{\lambda}}{4 \pi} \int \operatorname{str}\left(R\left[A_{3} \wedge A_{1}+A_{1} \wedge A_{3}\right]\right)
\end{gathered}
$$

where

$$
R=\left(\begin{array}{cc}
0 & \tau \rho \\
\tau \rho^{\dagger} & 0
\end{array}\right)
$$

This provides additional equations of motion, which can be brought to the form

$$
\star J_{1} \wedge J_{2}+J_{2} \wedge \star J_{1}=J_{1} \wedge J_{3}+J_{3} \wedge J_{1}
$$

or, equivalently,

$$
\star J_{1} \wedge J_{3}+J_{3} \wedge \star J_{1}=J_{1} \wedge J_{2}+J_{2} \wedge J_{1} .
$$

Integrability

These equations, together with $d \star J_{1}+d J_{3}=0$ and the MC equations, imply that

$$
J=c_{1} J_{1}+c_{1}^{\prime} \star J_{1}+c_{2} J_{2}+c_{3} J_{3}
$$

is flat (i.e., $d J+J \wedge J=0$) for

$$
\begin{gathered}
c_{1}=-\sinh ^{2} \lambda, \quad c_{1}^{\prime}= \pm \sinh \lambda \cosh \lambda \\
c_{2}=1 \mp \cosh \lambda, \quad c_{3}=\sinh \lambda
\end{gathered}
$$

This is how Bena, Polchinski, and Roiban proved integrability in 2003.

Kappa Symmetry

The previous variations leave the action invariant provided that $\delta \theta$ is suitably restricted. The restriction is parametrized by a MW matrix κ.

Reexpressed in terms of MW matrices,

$$
\delta\left(d s^{2}\right)=-2 i \sum_{I=1}^{2} \operatorname{tr}\left(\Psi_{I}^{\dagger}\left[\Omega \rho_{I}-\rho_{I} \tilde{\Omega}\right]\right)
$$

and

$$
\begin{aligned}
& \delta \operatorname{str}\left(J_{2} \wedge J_{3}\right)=4 i \operatorname{tr}\left(\Psi_{1}^{\dagger} \wedge\left[\Omega \rho_{1}-\rho_{1} \tilde{\Omega}\right]\right) \\
&-4 i \operatorname{tr}\left(\Psi_{2}^{\dagger} \wedge\left[\Omega \rho_{2}-\rho_{2} \tilde{\Omega}\right]\right)
\end{aligned}
$$

There exists another involution, $\rho \rightarrow \gamma(\rho)$ given by

$$
\gamma(\rho)=-\frac{1}{2} \frac{\varepsilon^{\alpha \beta}}{\sqrt{-G}}\left(\Omega_{\alpha} \Omega_{\beta} \rho-2 \Omega_{\alpha} \rho^{\prime} \tilde{\Omega}_{\beta}+\rho \tilde{\Omega}_{\alpha} \tilde{\Omega}_{\beta}\right)
$$

The proof that $\gamma \circ \gamma=I$ involves forming a determinant in the numerator to cancel the one in the denominator.

This involution combines with the two other involutions $\rho \rightarrow \rho^{\prime}$ and $\Omega \rightarrow \star \Omega$ to give the identity

$$
\Omega \gamma\left(\rho^{\prime}\right)-\gamma(\rho) \tilde{\Omega}=\star\left(\Omega \rho^{\prime}-\rho \tilde{\Omega}\right)
$$

Putting these facts together,

$$
\begin{aligned}
\delta S= & i \frac{\sqrt{\lambda}}{\pi} \int \operatorname{tr}\left(\Psi_{1}^{\dagger} \wedge\left[\Omega \gamma_{+}\left(\rho_{1}\right)-\gamma_{+}\left(\rho_{1}\right) \tilde{\Omega}\right]\right) \\
& -\operatorname{tr}\left(\Psi_{2}^{\dagger} \wedge\left[\Omega \gamma_{-}\left(\rho_{2}\right)-\gamma_{-}\left(\rho_{2}\right) \tilde{\Omega}\right]\right)
\end{aligned}
$$

where we have introduced projections

$$
\gamma_{ \pm}\left(\rho_{I}\right)=\frac{1}{2}\left(\rho_{I} \pm \gamma\left(\rho_{I}\right)\right)
$$

Thus, recalling $\rho=f^{-1} \delta \theta \tilde{f}^{-1}, S$ is invariant for

$$
\delta \theta=f\left(\gamma_{-}(\kappa)+i \gamma_{+}(\kappa)\right) \tilde{f}
$$

where $\kappa(\sigma)$ is an arbitrary MW matrix.

Conclusion

So far, the main achievement of this work is to reproduce well-known results. However, the formulation described here has some attractive features that are not shared by previous ones:

- The complete θ dependence of all quantities is described by simple analytic expressions.
- All formulas have manifest $S U(4) \times S U(2,2)$ symmetry, and many have manifest $\operatorname{PSU}(2,2 \mid 4)$ symmetry.

The utility of this formalism for obtaining new results remains to be demonstrated. There are two main directions to explore.

- deriving new facts about this theory
- formulating (or reformulating) other theories in a similar way.

The End

Thank you for your attention.

