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Introduction

Previous studies of the type IIB superstring in an
AdS5 x S° background (Metsaev and Tseytlin, 1998)

are based on the quotient space

PSU(2,24)/SO(4,1) x SO(5).

[ will present an alternative approach in which the

Grassmann coordinates provide a nonlinear realization
of PSU(2,2|4) based on the quotient space

PSU(2,2|4)/SU(2,2) x SU(4)

and the bosonic coordinates are described as a subman-

ifold of SU(2,2) x SU(4).



The bosonic truncation

The unit-radius sphere:
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The unit-radius anti de Sitter space:
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The unit-radius metric:
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The induced world-sheet metric:

Gaﬁ = On2 - (952 + Oay - @5@

The bosonic part of the radius R superstring action:

2
5= /de/—th‘ﬁGaﬂ
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AdS/CFEFT implies that
R? =o'V,

where A\ = g}% 1NV 1s the 't Hooft parameter of the dual
CFT, which is N = 4 SYM with gauge group U(N).



Supermatrices

M: a Tb | 7-26_7;7-‘-/4
Tc d

a and d are even blocks referring to SU(4) and SU (2, 2).

b and c are odd blocks that transform as bifundamentals.

The “superadjoint” is defined by

P et
M= “ |
(ﬂff dl )

This satisfies (MyMy)T = M M].



A unitary supermatrix satisfies M M I = J and an

antihermitian supermatrix satisfies M + M =0
The “supertrace” is defined (as usual) by
strM = tra — trd.

The main virtue of this definition is that

str( My Moy) = str(MoMy).

The psu(2, 2|4) algebra is described by su(2,2|4) ma-

trices modded out by the equivalence relation

M ~ M+ M.



Nonlinear realization of the superalgebra

The 6 coordinates are 16 complex Grassmann num-
bers that transform under SU(4) x SU(2,2) as (4, 4).

It is natural to describe them by 4 x 4 matrices, rather
than by 32-component spinors as we did for the flat-space

limit. No Fierz transformations will be required!

The rule
60 = wl — 0 + ¢ + 016

closes precisely on the psu(2,2|4) algebra. It is reminis-

cent of Volkov-Akulov Goldstino transtormations.



We construct supermatrices I'(0) € PSU(2,2[4) of

the form
I 70\ (1t o
['= .
AN 0 f!

by choosing f and f such that ['TT = I. This is achieved

for

1
f=VIi+u=T+-u+...

2
~ 1
f:VI+a:I+§a+“w

where
w=1i00" and @ =i0H

are hermitian matrices.



It then follows that

[ M(e) 0 0 Te
M( 0 M<g)>F+F<TgT o)’

where

M(e) = (8. f —ifed) f~ 1,

~

M(e) = (6-f —ife’o)f 1.

The natural interpretation is that 6 and I' describe

the coset space

PSU(2,2|4)/SU(4) x SU(2,2).



A flat connection

Now consider

A-rtar=| %7V
ot K

This one-form supermatrix is constructed entirely out of
6. It is super-antihermitian and flat (dA + AN A = 0).

Under a supersymmetry transformation

M (M ]
55A:_d q — A7 Qv .
0 M 0 M




Inclusion of bosonic coordinates

where © = 21 + iz
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Using |ul? + [v]? + |w]? = 1,

/=

_ gl
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a
:ZCLZ ,

cand w = 2° 420,

CZZV =1, detZ =1.



The only purpose in displaying all the elements of the
matrix Z is to establish beyond any doubt the existence
of a matrix with all of these properties. Otherwise, ex-
plicit representations are never used in this work. There

is a very similar construction for Y.

The matrix Z defines a codimension 10 map of S°
into SU(4). Similarly, Y : AdS5 — SU(2,2).

The supersymmetry transformations of the bosonic

coordinates are

6-Z =MZ+7ZMY and 6.Y = MY + Y ML
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The antihermitian connections

O=2d7 ' - K-zKkTz71
Q=Ydy '-K-vKly™!
transtform nicely under supersymmetry transformations

0-0=[M,Q] and §:Q=[M, Q).

Therefore, the PSU(2,2|4) invariant metric with the

correct bosonic truncation is

ds? — —i (1r(02) — ().
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Majorana—Weyl matrices

We wish to split objects transforming as (4, 4) into
two pieces that correspond to MW spinors in the flat-

space limit while respecting the group theory:.
To do this, we define an involution
UV =zuy L
Then
V=" 40Uy and ¥ =V — iUy,
where W1 and Wy are MW matrices for which

Vv, =0; =12
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Let us now define three supermatrix one-forms

(20 0 7TV
A = - Aoy =
! <OQ> : <T\1ﬁ 0)’
0 T/
Aq = .
. (T\IJIT O)

In all three cases

_ MO -
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By making the unitary transformation
J=T"TAT i=1,2,3,

we obtain supermatrices that transform under psu(2, 2|4)

in the natural way:
ondi = A, Jil.
The infinitesimal parameters are given by

A( ‘”T_T‘S).
—TE w

We will formulate the superstring action and its equa-

tions of motion entirely in terms of these three one-forms.
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Maurer—Cartan equations

Using the explicit formulas that have been given, one

obtains the Maurer—Cartan equations
dJi = =~ NS+ NI+ Jd3NJI3—J1 A Jo—Jo A Jq,
dJo = —2Jy N\ Jo,
dJ3 = —(J1 + Jo) AN J3 — J3 A (J1 + Jo).
These imply that
J+ = J1+ JoE£1J3

and 2.Jo are flat.
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The Wess—Zumino term

The closed three-form that determines the WZ term
for the fundamental string is also exact (H3 = dB»).

Therefore, we can look for a suitable two-form Bs.
Consider the invariant two-forms
str(J; A Jj) = —str(J; A J;).
The only one of these that is nonzero is
str(Jo A J3).

The correct coefficient will be determined (up to a sign)

by requiring local kappa symmetry:.
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The superstring world-sheet action

The induced mvariant metric 1s

1 ~ 1
Ga,ﬁ — —Z (tf(Qagﬁ) — tr<QaQﬁ>) — _ZStr(JlOéjlﬂ)

and the superstring world-sheet action is

- —— dQO\/ —hhaﬁG@@ — 8—\/X str(Jy A J3).
s

This gives the PSU(2,2|4) Noether current
J = J1 + *J3.
[ts conservation encodes equations of motion:
d*xJ =dxJ;+dJ3=0.
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Theta variations

For an arbitrary variation 06

SA— /\/lTia A, MTP |
mpl M i mpl M ]

where

p=ftogf 1

and

~

M=—f715f+ipT, M=—f"15Ff+ipl0.
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To get simple formulas, we simultaneously vary the

bosonic coordinates

67 = MZ + ZMT and §Y = MY + Y ML,

In terms of supermatrices and differential forms, these

variations give

A
(551 — —4£ Stl"(R[Al /\ *AQ _l_ *AQ /\ Al])a
7i

A
(SSQ = —4£ Stf(R[AS A Al + Al A ASD?
s
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where

0
R = ( P > .
Tp' 0
This provides additional equations of motion, which
can be brought to the form
*JINJo+ JoAxJ1 =Sy ANJ3+ J3 A\ Jq

or, equivalently,

*JI N J3+ J3A*J1 = J1 A Jo+ Jo A Jj.
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Integrability

These equations, together with d x J| + dJ3 = 0 and
the MC equations, imply that

J=c1J1+ )% Jy +cady 4 c3J3
is flat (i.e., dJ + J A J =0) for
c1 = — sinh? A, c’l = 4 sinh A cosh A,
co =1F cosh A, c3=sinhA.

This is how Bena, Polchinski, and Roiban proved inte-
grability in 2003.
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Kappa Symmetry

The previous variations leave the action invariant pro-
vided that 06 is suitably restricted. The restriction is

parametrized by a MW matrix .

Reexpressed in terms of MW matrices,
2

6(ds?) = =20 Y te(WiQpr — prQY)
=1
and

ostr(Jo A Jg) = 4itr (\If]i A [Qp1 — ,0152])

—4q tr (\If; A [Qpo — ,02@]) .
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There exists another involution, p — ¥(p) given by
1 P

v(p) = _ém(

The proof that vo~v = I involves forming a determinant

Q0250 — 20ap'Qg + pQalls) .

in the numerator to cancel the one in the denominator.

This involution combines with the two other involu-

tions p — p’ and Q@ — x{2 to give the identity

(o) = 1(p)2 = #(Qp" = p2).
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Putting these facts together,

55 =2 [t (W] A 024 01) = 7+00))

T

—tr (W] A (29— (p2) = - (p2)01] ).
where we have introduced projections

1

vlpr) = 5 (b1 £7(p1))-

Thus, recalling p = f~166 /=L S is invariant for
60 = f(y—(r) +iv+()) [,

where (o) is an arbitrary MW matrix.
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Conclusion

So far, the main achievement of this work is to re-
produce well-known results. However, the formulation
described here has some attractive features that are not

shared by previous ones:

e The complete 6 dependence of all quantities is de-

scribed by simple analytic expressions.

e All formulas have manifest SU(4) x SU (2, 2) symme-
try, and many have manifest PSU(2,2|4) symmetry.
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The utility of this formalism for obtaining new results
remains to be demonstrated. There are two main direc-

tions to explore.

e deriving new facts about this theory

e formulating (or reformulating) other theories in a sim-

ilar way:.

The End

Thank you for your attention.
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