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Introduction

Previous studies of the type IIB superstring in an

AdS5 × S5 background (Metsaev and Tseytlin, 1998)

are based on the quotient space

PSU(2, 2|4)/SO(4, 1)× SO(5).

I will present an alternative approach in which the

Grassmann coordinates provide a nonlinear realization

of PSU(2, 2|4) based on the quotient space

PSU(2, 2|4)/SU(2, 2)× SU(4)

and the bosonic coordinates are described as a subman-

ifold of SU(2, 2)× SU(4).
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The bosonic truncation

The unit-radius sphere:

ẑ · ẑ = (z1)2 + (z2)2 + . . . + (z6)2 = 1

The unit-radius anti de Sitter space:

ŷ · ŷ = −(y0)2 + (y1)2 + . . . + (y4)2 − (y5)2 = −1

The unit-radius metric:

ds2 = dẑ · dẑ + dŷ · dŷ
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The induced world-sheet metric:

Gαβ = ∂αẑ · ∂βẑ + ∂αŷ · ∂βŷ

The bosonic part of the radius R superstring action:

S = − R2

4πα′

∫
d2σ

√
−hhαβGαβ

AdS/CFT implies that

R2 = α′
√
λ,

where λ = g2YMN is the ’t Hooft parameter of the dual

CFT, which is N = 4 SYM with gauge group U(N).
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Supermatrices

M =

(
a τb

τc d

)
, τ = e−iπ/4

a and d are even blocks referring to SU(4) and SU(2, 2).

b and c are odd blocks that transform as bifundamentals.

The “superadjoint” is defined by

M† =

(
a† −τc†

−τb† d†

)
.

This satisfies (M1M2)
† = M

†
2M

†
1 .
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A unitary supermatrix satisfies MM† = I and an

antihermitian supermatrix satisfies M +M† = 0.

The “supertrace” is defined (as usual) by

strM = tr a− tr d.

The main virtue of this definition is that

str(M1M2) = str(M2M1).

The psu(2, 2|4) algebra is described by su(2, 2|4) ma-

trices modded out by the equivalence relation

M ∼ M + λI.
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Nonlinear realization of the superalgebra

The θ coordinates are 16 complex Grassmann num-

bers that transform under SU(4)× SU(2, 2) as (4, 4̄).

It is natural to describe them by 4×4 matrices, rather

than by 32-component spinors as we did for the flat-space

limit. No Fierz transformations will be required!

The rule

δθ = ωθ − θω̃ + ε + θε†θ

closes precisely on the psu(2, 2|4) algebra. It is reminis-

cent of Volkov-Akulov Goldstino transformations.
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We construct supermatrices Γ(θ) ∈ PSU(2, 2|4) of

the form

Γ =

(
I τθ

τθ† I

)(
f−1 0

0 f̃−1

)
by choosing f and f̃ such that ΓΓ† = I . This is achieved

for

f =
√
I + u = I +

1

2
u + . . .

f̃ =
√
I + ũ = I +

1

2
ũ + . . . ,

where

u = iθθ† and ũ = iθ†θ

are hermitian matrices.
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It then follows that

δεΓ =

(
M(ε) 0

0 M̃(ε)

)
Γ + Γ

(
0 τε

τε† 0

)
,

where

M(ε) = (δεf − ifεθ†)f−1,

M̃(ε) = (δεf̃ − if̃ε†θ)f̃−1.

The natural interpretation is that θ and Γ describe

the coset space

PSU(2, 2|4)/SU(4)× SU(2, 2).

8



A flat connection

Now consider

A = Γ−1dΓ =

(
K τΨ

τΨ† K̃

)
.

This one-form supermatrix is constructed entirely out of

θ. It is super-antihermitian and flat (dA + A ∧ A = 0).

Under a supersymmetry transformation

δεA = −d

(
M 0

0 M̃

)
−

[
A,

(
M 0

0 M̃

)]
.
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Inclusion of bosonic coordinates

Z =


0 u v w

−u 0 −w̄ v̄

−v w̄ 0 −ū

−w −v̄ ū 0

 = Σaz
a,

where u = z1 + iz2, v = z3 + iz4, and w = z5 + iz6.

Using |u|2 + |v|2 + |w|2 = 1,

Z = −ZT , ZZ† = I, detZ = 1.
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The only purpose in displaying all the elements of the

matrix Z is to establish beyond any doubt the existence

of a matrix with all of these properties. Otherwise, ex-

plicit representations are never used in this work. There

is a very similar construction for Y .

The matrix Z defines a codimension 10 map of S5

into SU(4). Similarly, Y : AdS5 → SU(2, 2).

The supersymmetry transformations of the bosonic

coordinates are

δεZ = MZ + ZMT and δεY = M̃Y + Y M̃T .
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The antihermitian connections

Ω = ZdZ−1 −K − ZKTZ−1,

Ω̃ = Y dY −1 − K̃ − Y K̃TY −1

transform nicely under supersymmetry transformations

δεΩ = [M,Ω] and δεΩ̃ = [M̃, Ω̃].

Therefore, the PSU(2, 2|4) invariant metric with the

correct bosonic truncation is

ds2 = −1

4

(
tr(Ω2)− tr(Ω̃2)

)
.
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Majorana–Weyl matrices

We wish to split objects transforming as (4, 4̄) into

two pieces that correspond to MW spinors in the flat-

space limit while respecting the group theory.

To do this, we define an involution

Ψ → Ψ′ = ZΨ⋆Y −1.

Then

Ψ = Ψ1 + iΨ2 and Ψ′ = Ψ1 − iΨ2,

where Ψ1 and Ψ2 are MW matrices for which

Ψ′
I = ΨI I = 1, 2.
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Let us now define three supermatrix one-forms

A1 =

(
Ω 0

0 Ω̃

)
, A2 =

(
0 τΨ

τΨ† 0

)
,

A3 =

(
0 τΨ′

τΨ′† 0

)
.

In all three cases

δεAi =

[(
M 0

0 M̃

)
, Ai

]
.
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By making the unitary transformation

Ji = Γ−1AiΓ i = 1, 2, 3,

we obtain supermatrices that transform under psu(2, 2|4)
in the natural way:

δΛJi = [Λ, Ji].

The infinitesimal parameters are given by

Λ =

(
ω −τε

−τε† ω̃

)
.

We will formulate the superstring action and its equa-

tions of motion entirely in terms of these three one-forms.
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Maurer–Cartan equations

Using the explicit formulas that have been given, one

obtains the Maurer–Cartan equations

dJ1 = −J1∧J1+J2∧J2+J3∧J3−J1∧J2−J2∧J1,

dJ2 = −2J2 ∧ J2,

dJ3 = −(J1 + J2) ∧ J3 − J3 ∧ (J1 + J2).

These imply that

J± = J1 + J2 ± iJ3

and 2J2 are flat.
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The Wess–Zumino term

The closed three-form that determines the WZ term

for the fundamental string is also exact (H3 = dB2).

Therefore, we can look for a suitable two-form B2.

Consider the invariant two-forms

str(Ji ∧ Jj) = −str(Jj ∧ Ji).

The only one of these that is nonzero is

str(J2 ∧ J3).

The correct coefficient will be determined (up to a sign)

by requiring local kappa symmetry.
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The superstring world-sheet action

The induced invariant metric is

Gαβ = −1

4

(
tr(ΩαΩβ)− tr(Ω̃αΩ̃β)

)
= −1

4
str(J1αJ1β)

and the superstring world-sheet action is

S = −
√
λ

4π

∫
d2σ

√
−hhαβGαβ −

√
λ

8π

∫
str(J2 ∧ J3).

This gives the PSU(2, 2|4) Noether current

J = J1 + ⋆J3.

Its conservation encodes equations of motion:

d ⋆ J = d ⋆ J1 + dJ3 = 0.
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Theta variations

For an arbitrary variation δθ

δA = −d

(
M τρ

τρ† M̃

)
−

[
A,

(
M τρ

τρ† M̃

)]
,

where

ρ = f−1δθf̃−1

and

M = −f−1δf + iρθ†, M̃ = −f̃−1δf̃ + iρ†θ.
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To get simple formulas, we simultaneously vary the

bosonic coordinates

δZ = MZ + ZMT and δY = M̃Y + Y M̃T .

In terms of supermatrices and differential forms, these

variations give

δS1 = −
√
λ

4π

∫
str(R[A1 ∧ ⋆A2 + ⋆A2 ∧ A1]),

δS2 = −
√
λ

4π

∫
str(R[A3 ∧ A1 + A1 ∧ A3]),
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where

R =

(
0 τρ

τρ† 0

)
.

This provides additional equations of motion, which

can be brought to the form

⋆J1 ∧ J2 + J2 ∧ ⋆J1 = J1 ∧ J3 + J3 ∧ J1

or, equivalently,

⋆J1 ∧ J3 + J3 ∧ ⋆J1 = J1 ∧ J2 + J2 ∧ J1.
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Integrability

These equations, together with d ⋆ J1 + dJ3 = 0 and

the MC equations, imply that

J = c1J1 + c′1 ⋆ J1 + c2J2 + c3J3

is flat (i.e., dJ + J ∧ J = 0) for

c1 = − sinh2 λ, c′1 = ± sinhλ coshλ,

c2 = 1∓ coshλ, c3 = sinhλ.

This is how Bena, Polchinski, and Roiban proved inte-

grability in 2003.
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Kappa Symmetry

The previous variations leave the action invariant pro-

vided that δθ is suitably restricted. The restriction is

parametrized by a MW matrix κ.

Reexpressed in terms of MW matrices,

δ(ds2) = −2i
2∑

I=1

tr(Ψ
†
I [ΩρI − ρIΩ̃])

and

δstr(J2 ∧ J3) = 4i tr
(
Ψ
†
1 ∧ [Ωρ1 − ρ1Ω̃]

)
−4i tr

(
Ψ
†
2 ∧ [Ωρ2 − ρ2Ω̃]

)
.
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There exists another involution, ρ → γ(ρ) given by

γ(ρ) = −1

2

εαβ√
−G

(
ΩαΩβρ− 2Ωαρ

′Ω̃β + ρΩ̃αΩ̃β

)
.

The proof that γ ◦γ = I involves forming a determinant

in the numerator to cancel the one in the denominator.

This involution combines with the two other involu-

tions ρ → ρ′ and Ω → ⋆Ω to give the identity

Ωγ(ρ′)− γ(ρ)Ω̃ = ⋆(Ωρ′ − ρΩ̃).
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Putting these facts together,

δS = i

√
λ

π

∫
tr
(
Ψ
†
1 ∧ [Ωγ+(ρ1)− γ+(ρ1)Ω̃]

)
−tr

(
Ψ
†
2 ∧ [Ωγ−(ρ2)− γ−(ρ2)Ω̃]

)
,

where we have introduced projections

γ±(ρI) =
1

2
(ρI ± γ(ρI)) .

Thus, recalling ρ = f−1δθf̃−1, S is invariant for

δθ = f
(
γ−(κ) + iγ+(κ)

)
f̃ ,

where κ(σ) is an arbitrary MW matrix.
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Conclusion

So far, the main achievement of this work is to re-

produce well-known results. However, the formulation

described here has some attractive features that are not

shared by previous ones:

• The complete θ dependence of all quantities is de-

scribed by simple analytic expressions.

• All formulas have manifest SU(4)×SU(2, 2) symme-

try, and many have manifest PSU(2, 2|4) symmetry.
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The utility of this formalism for obtaining new results

remains to be demonstrated. There are two main direc-

tions to explore.

• deriving new facts about this theory

• formulating (or reformulating) other theories in a sim-

ilar way.

The End

Thank you for your attention.
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