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The (2, 0) theories in six dimensions

The (2, 0) theories are six-dimensional conformal field theories with
the maximal amount of supersymmetry (16 Q’s and 16 S ’s). They are

conventionally described using string- or M-theory.
[Witten (1995)]

We do not know of a standard field-theoretic definition, which
severely limits our understanding of these theories.

Nevertheless, these theories are the “mother” of many lower
dimensional field theories and of tremendous interest for the general

study of supersymmetric field theories in d < 6.
[Witten (1995), Gaiotto (2009), . . . ]



The (2, 0) theories in six dimensions

Some common lore:
• They are local and unitary quantum field theories with osp(8∗|4)

superconformal invariance. [Seiberg, Witten (1995)]

• The known interacting theories are classified by a simply-laced
Lie algebra g ∈ {An, Dn, En}. [Witten (1995)]

• They are isolated: there are no marginal deformations that
preserve osp(8∗|4).

• The large n theories can be described through AdS/CFT.



The (2, 0) theories in six dimensions

• They are local and unitary quantum field theories with osp(8∗|4)
superconformal invariance.

In this sense, they are like any other conformal field theory: we have
an infinite set of local operators Oi, transforming in unitary irreducible

representations of the (super)conformal algebra. Its correlation
functions satisfy the (super)conformal Ward identities, for example

〈Oi(x)Oj(y)〉 =
δij

|x− y|2∆i
,

and there exists an operator product expansion or OPE

Oi(x)Oj(y) '
∑
k

λ k
ij C[x− y, ∂y]Ok(y)

which has finite radius of convergence.

Until last year, we did not know of any nontrivial λ k
ij for finite n.



The (2, 0) theories in six dimensions

The (quantum numbers of the) Oi and the OPE coefficients λ k
ij are

subject to the constraints of crossing symmetry.
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The idea of the bootstrap is to eploit these constraints with the
aspiration that they might completely determine the theory. We have

made much progress in putting these constraints to use in
higher-dimensional field theories.
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Figure 1: The best current bound (1.4), obtained by the method described in Section 5.
The subscript in f6 refers to the order of derivatives used to compute this bound.

1 The problem and the result

Operator dimensions in unitary Conformal Field Theories (CFT) are subject to important con-
straints known as unitarity bounds. In the simplest case of a scalar primary operator �, the
unitarity bound states that1

d ⇥ [�] ⌅ 1, (1.1)

d = 1 ⌥� � is free. (1.2)

This classic result invites the following question: What happens if d = 1+⇥? In particular, is there
any sense in which the CFT (or at least its subsector not decoupled from �) should be close to
the free scalar theory if d is close to 1? For instance, do all operator dimensions in this subsector
approach their free scalar theory values in the limit d ⌃ 1? The standard proof of the unitarity
bound [1] does not shed light on this question.

In this paper we will show that such continuity indeed holds for the operator ‘�2’, by which
we mean the lowest dimension scalar primary which appears in the OPE of � with itself:

�(x)�(0) ⇧ (x2)�d(1 + C|x|�min�2(0) + . . .) , C  = 0 . (1.3)

In free theory �min ⇥ [�2] = 2, and we will show that �min ⌃ 2 in any CFT as d ⌃ 1. More
precisely, we will show that in any 4D CFT

�min ⇤ f(d), (1.4)

where f(d) is a certain continuous function such that f(1) = 2. We will evaluate this function
numerically; it is plotted in Fig. 1 for d near 1.

We stress that bound (1.4) applies to the OPE ��� of an arbitrary scalar primary �. However,
since the function f(d) is monotonically increasing, the bound is strongest for the scalar primary
of minimal dimension.

1Unless explicitly noted otherwise, all statements of this paper refer to D = 4 spacetime dimensions.
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Figure 3: Shaded: the part of the (��,�") plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �� in this range, we ask: What is the maximal �" allowed by (5.3)?

The result is plotted in Fig. 3: only the points (��,�") in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �� and �" error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the �� and �" error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  �"  1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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Figure 2: Allowed region of (∆σ,∆ϵ) in a Z2-symmetric CFT3 where ∆σ′ ≥ 3 (only one
Z2-odd scalar is relevant). This bound uses crossing symmetry and unitarity for ⟨σσσσ⟩,
⟨σσϵϵ⟩, and ⟨ϵϵϵϵ⟩, with nmax = 6 (105-dimensional functional), νmax = 8. The 3D Ising point
is indicated with black crosshairs. The gap in the Z2-odd sector is responsible for creating a
small closed region around the Ising point.

The allowed region around the Ising point shrinks further when we increase the value
of nmax. Finding the allowed region at nmax = 10 (N = 275) is computationally intensive,
so we tested only the grid of 700 points shown in figure 5. The disallowed points in the
figure were excluded by assuming both ∆σ′ ≥ 3 and ∆ϵ′ ≥ 3. On the same plot, we also
show the nmax = 14 single-correlator bound on ∆ϵ computed in [22] using a very different
optimization algorithm. The final allowed region is the intersection of the region below the
nmax = 14 curve and the region indicated by our allowed multiple correlator points.

Since the point corresponding to the 3D Ising model must lie somewhere in the allowed
region, we can think of the allowed region as a rigorous prediction of the Ising model
dimensions, giving ∆σ = 1/2 + η/2 = 0.51820(14) and ∆ϵ = 3 − 1/ν = 1.4127(11). In
figure 6 we compare our rigorous bound with the best-to-date predictions using Monte
Carlo simulations [35] and the c-minimization conjecture [22]. Although our result has un-
certainties greater than c-minimization by a factor of ∼10 and Monte-Carlo determinations
by a factor of ∼3, they still determine ∆σ and ∆ϵ with 0.03% and 0.08% relative uncertainty,
respectively. Increasing nmax further could potentially lead to even better determinations of
∆σ and ∆ϵ. Indeed, the single correlator bound at nmax = 14 passing through the allowed
region in figure 5 indicates that the nmax = 10 allowed region is not yet optimal. At this
point, it is not even clear whether continually increasing nmax might lead to a finite allowed
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Figure 2: Upper bounds on �⇤
0 (the smallest conformal dimension of a spin-0 long multiplet

appearing in the O35c ⇥ O35c OPE) for large values of cT . The bounds are computed with
jmax = 20 and ⇤ = 19. The long multiplets of spin j > 0 are only restricted by unitarity.
The best fit for the last ten points (shown in black) is log(�⇤

0(1)��⇤
0) = 4.55� 1.00 log cT .
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Figure 3: Upper bounds on �⇤
2, which is the smallest conformal dimension of a long multiplet

of spin-2 appearing in the O35c ⇥ O35c OPE. The long multiplets of spin j 6= 2 are only
restricted by unitarity. These bounds are computed with jmax = 20 and ⇤ = 19 (orange),
⇤ = 17 (black), and ⇤ = 15 (light brown). The plot on the right is a zoomed-in version of
the plot on the left. The dashed vertical lines correspond to the values of cT in Table 9.

of a spin-2 long multiplet. We obtain the bound on �⇤
2 under the assumption that

long multiplets of spin j 6= 2 are only restricted by the unitarity condition. In other

words, we set �⇤
j = j + 1 for all j 6= 2. In Figure 3, we plot the upper bound on �⇤

2

as a function of cT for ⇤ = 15 (in light brown), ⇤ = 17 (in black), and ⇤ = 19 (in

orange). The convergence as a function of ⇤ is poorer than in the �⇤
0 case, but it is

still reasonably good throughout, especially at large cT .
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[Rattazzi, Rychkov, Tonni, Vichi (2008); many others]



The (2, 0) theories in six dimensions

It is therefore natural to ask

What does crossing symmetry tell us about
six-dimensional (2, 0) theories?

Would it be possible to:
• Constrain the space of all theories?
• Find the spectrum for the allowed theories?
• Find the OPE coefficients?

The remainder of this talk discusses some initial results in trying to
answer these questions.
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Classification of operators

The local operators Oi transform in unitary irreducible highest-weight
representations of osp(8∗|4) with maximal bosonic subalgebra
so(6, 2)× so(5)R.

They are therefore labelled by ∆, [d1, d2, d3], [b1, b2].

Examples:
• The free tensor multiplet with conformal primaries

5 scalars: Φa ∆ = 2 [0, 0, 0] [1, 0]

4 fermions: ΨαA ∆ = 5/2 [1, 0, 0] [0, 1]

1 s.d. three-form: Hµνρ ∆ = 3 [2, 0, 0] [0, 0]

• The half-BPS operators

O{a1...ak}
k (x) ∆ = 2k [0, 0, 0] [k, 0]

They form a ring with generators that are in one-to-one
correspondence with the Casimirs of g. For example, for the An
theories we have generators with k ∈ {2, 3, . . . n+ 1}.



Chiral correlation functions

Consider now a correlation function

〈OI1(x1) . . .OIn(xn)〉

with the following properties.
1 Consider Q-chiral operators satisfying

∆ = d1/2 + d2 + 2b1 b2 = d3 = 0 b1 6= 0

Such operators are the highest weights of a nontrivial
su(2) ⊂ so(5)R. We add the index I running over the entire su(2)
multiplet.

2 Take all n points to lie in a plane R2 ⊂ R6.
3 Contract the su(2) indices with position-dependent vI(z̄).

For example, for a doublet v(z̄) = (1, z̄).

Claim: the resulting correlation function is meromorphic.

The six-dimensional (2, 0) theories have a chiral algebra!
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Chiral correlation functions

Consider now a correlation function

∂

∂z̄k

(
vI1(z̄1) . . . vIn(z̄n)〈OI1(z1, z̄1) . . .OIn(zn, z̄n)〉

)
= 0

with the following properties.
1 Consider Q-chiral operators satisfying

∆ = d1/2 + d2 + 2b1 b2 = d3 = 0 b1 6= 0

Such operators are the highest weights of a nontrivial
su(2) ⊂ so(5)R. We add the index I running over the entire su(2)
multiplet.

2 Take all n points to lie in a plane R2 ⊂ R6.
3 Contract the su(2) indices with position-dependent vI(z̄).

For example, for a doublet v(z̄) = (1, z̄).

Claim: the resulting correlation function is meromorphic.

The six-dimensional (2, 0) theories have a chiral algebra!



Chiral correlation functions
Claim:

∂

∂z̄k
〈vI1(z̄1)OI1(z1, z̄1) . . . . . . vIn(z̄n)OIn(zn, z̄n)〉 = 0

Proof:
• There exists a particular nilpotent supercharge Q such that

[Q,O1(0)} = 0 .

for Q-chiral operators. Roughly speaking Q = Q− S.
• Holomorphic translations are Q closed

[Q, Pz] = 0

• In the antiholomorphic direction we find that

∂z̄
(
vI(z̄)OI(z, z̄)

)
= vI(z̄)[Pz̄ +R−,OI(z̄)]

and such twisted antiholomorphic translations are Q exact

Pz̄ +R− = {Q, . . .}
and are trivial in the cohomology of Q.



Example
Consider the free tensor multiplet where the scalar Φ+ is Q-chiral.

In this case I is a triplet index, and vI(z̄) = (1 + z̄2, 2z̄, i(1− z̄2))/
√

2.

The OPE is

ΦI(z, z̄)ΦJ(0) ∼ δIJ

(zz̄)2

so
vI(z̄)vJ(0)ΦI(z, z̄)ΦJ(0) ∼ . . . =

1

z2

which is the OPE of a dimension one current. We write

[vI(z̄)Φ
I(z, z̄)]Q  j(z)

The other Q-chiral operators are normal ordered products and
holomorphic derivatives of this basic field.

→ The complete chiral algebra of a free tensor multiplet is the u(1)
AKM algebra generated from

j(z)j(0) ∼ 1

z2



Chiral correlation functions

For the interacting theories:
• The 1

2 -BPS operators are part of the chiral algebra;
• Generators of the 1

2 -BPS chiral ring are also generators of the
chiral algebra;

• The character of the chiral algebra is equal to a partially refined
superconformal index computed by [Kim3, Lee (2009-2013)]. It
indicates that there is no need for further generators.

We claim that the generators of the chiral algebra are in one-to-one
correspondence with the Casimir invariants of g.

Conjecture: the chiral algebra for the (2, 0) theories of type g is Wg.

From the twisted OPE of the stress tensor multiplet we find that

c2d = c6d

in conventions where c6d = 1 for a free tensor multiplet.

Corollary: three-point functions of Q-chiral operators are computable.

[Beem, Rastelli, BvR (2014)]
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Three-point functions

OPE coefficients in the chiral algebra determine certain OPE
coefficients in six dimensions. Consider for example the three-point
functions of the half-BPS operators:

〈O{a1...ak1
}

k1
(x1)O{b1...bk2

}
k2

(x1)O{c1...ck3
}

k3
(x3)〉 =

λg(k1, k2, k3)Ca1...ck3

x2k12
12 x2k13

13 x2k23
23

The λg(k1, k2, k3) are completely determined by the chiral algebra.

Corollary: λg(k1, k2, k3) are three-point functions of the Wg currents.

This works wonderfully at large n where (for the An type theories) we
know from AdS/CFT that

λn→∞(k1, k2, k3) =
22

∑
ki−2

πn3/2
Γ

(∑
ki

2

)
Γ(k12+1

2 )Γ(k13+1
2 )Γ(k23+1

2 )√
Γ(2k1 − 1)Γ(2k2 − 1)Γ(2k3 − 1)

with k12 = k1 + k2 − k3 etc. [Corrado et al; Bastianelli et al (1999)]

This agrees with the large n limit of Wn! (note: c2d ∼ 4n3)

[Gaberdiel et al; Campoleoni et al (2011)]
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Numerical results

We have learned a great deal about OPE coefficients of a subset of
protected operators. What about other operators? What about the

unprotected operators? Can we for example constrain their
spectrum?

We will resort to numerical methods. I will give a snapshot of initial
results, based on the crossing symmetry constraints and the methods

of [Rattazzi, Rychkov, Tonni, Vichi (2008)].

We investigated the four point function of stress tensor multiplets.
The superconformal Ward identities and superconformal block

decomposition were essentially already solved in [Arutyunov, Sokatchev
(2002); Dolan, Gallot, Sokatchev (2004); Heslop (2004)].

[Beem, Lemos, Rastelli, BvR (to appear)]



Numerical results
Upper bound ∆0 for the dimension of the lowest-lying unprotected
so(5)R singlet scalar operator.
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• The bound is likely to improve with better numerics
• We recover the minimal value of c
• For very large c we find ∆0 . 8.1, in agreement with AdS/CFT.



Numerical results

Lower bound on c (without higher spin currents).
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The bound appears to converge to c ' 25!
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If the lower bound on c converges to 25, then
• the A1 theory has an unprotected scalar of dimension ∆0 ∼ 6.4

• this correlator is very likely uniquely fixed by crossing symmetry

→ quite possibly the A1 theory can be defined as the only solution to
the crossing symmetry equations at c = 25.
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Conclusions

We gave a snapshot of analytic and numerical results that follow from
a study of crossing symmetry for the six-dimensional (2, 0) theories.

• We find exact OPE coefficients through a chiral algebra
• We numerically constrain unprotected data
• Numerical evidence for uniqueness of the A1 theory

Can we really bootstrap the (2, 0) theories? Let’s try!
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