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The (2,0) theories in six dimensions

The (2,0) theories are six-dimensional conformal field theories with
the maximal amount of supersymmetry (16 Q’'s and 16 S’s). They are
conventionally described using string- or M-theory.

[Witten (1995)]

We do not know of a standard field-theoretic definition, which
severely limits our understanding of these theories.

Nevertheless, these theories are the “mother” of many lower
dimensional field theories and of tremendous interest for the general
study of supersymmetric field theories in d < 6.

[Witten (1995), Gaiotto (2009), . ..]



The (2,0) theories in six dimensions

Some common lore:
e They are local and unitary quantum field theories with osp(8*|4)

superconformal invariance. [Seiberg, Witten (1995)]
o The known interacting theories are classified by a simply-laced
Lie algebra g € {A,,, D,,, E,. }. [Witten (1995)]

e They are isolated: there are no marginal deformations that
preserve osp(8*[4).

e The large n theories can be described through AdS/CFT.



The (2,0) theories in six dimensions

e They are local and unitary quantum field theories with osp(8*|4)
superconformal invariance.

In this sense, they are like any other conformal field theory: we have
an infinite set of local operators O;, transforming in unitary irreducible
representations of the (super)conformal algebra. Its correlation
functions satisfy the (super)conformal Ward identities, for example

0ij
(0i(2)0;(y)) = m7
and there exists an operator product expansion or OPE
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which has finite radius of convergence.

Until last year, we did not know of any nontrivial )\ij’“ for finite n.



The (2,0) theories in six dimensions

The (quantum numbers of the) O, and the OPE coefficients Aij’“ are
subject to the constraints of crossing symmetry.
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The idea of the bootstrap is to eploit these constraints with the
aspiration that they might completely determine the theory. We have
made much progress in putting these constraints to use in
higher-dimensional field theories.

[Rattazzi, Rychkov, Tonni, Vichi (2008); many others]



The (2,0) theories in six dimensions

It is therefore natural to ask

What does crossing symmetry tell us about
six-dimensional (2,0) theories?
Would it be possible to:
e Constrain the space of all theories?
e Find the spectrum for the allowed theories?
e Find the OPE coefficients?

The remainder of this talk discusses some initial results in trying to
answer these questions.
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@® Analytical results



Classification of operators

The local operators O; transform in unitary irreducible highest-weight
representations of osp(8*|4) with maximal bosonic subalgebra
50(6,2) x s0(5)g.
They are therefore labelled by A, [d1, da, d3], [b1, ba].
Examples:

¢ The free tensor multiplet with conformal primaries

5 scalars: o2 A=2 [0,0,0] [1,0]
4 fermions: Uy A=5/2 [1,0,0] [0,1]
1 s.d. three-form: H,,,,, A=3 [2,0,0] [0,0]

e The half-BPS operators
of212+ (z) A=2k  [0,0,0]  [k.0]
They form a ring with generators that are in one-to-one

correspondence with the Casimirs of g. For example, for the A,
theories we have generators with k € {2,3,...n + 1}.



Chiral correlation functions

Consider now a correlation function
<Oll (.131) ..o (xn)>

with the following properties.
1 Consider @-chiral operators satisfying

A:d1/2—|—d2—|—2b1 bo =d3=0 b17é0

Such operators are the highest weights of a nontrivial
su(2) C so(5)g. We add the index I running over the entire su(2)
multiplet.

2 Take all n points to lie in a plane R? C RS.

3 Contract the su(2) indices with position-dependent v;(Zz).
For example, for a doublet v(z) = (1, 2).

Claim: the resulting correlation function is meromorphic.

The six-dimensional (2, 0) theories have a chiral algebra!
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Chiral correlation functions

Consider now a correlation function

% (vr, (71) - .. v1, (Z)(O" (21, 21) ... O (2, Zn))) =0

with the following properties.
1 Consider @-chiral operators satisfying

A=dy/2+dy+2b; bo=d3;=0 b #£0

Such operators are the highest weights of a nontrivial
su(2) C so(5)g. We add the index I running over the entire su(2)
multiplet.

2 Take all n points to lie in a plane R? C RS.

3 Contract the su(2) indices with position-dependent v;(Zz).
For example, for a doublet v(z) = (1, 2).

Claim: the resulting correlation function is meromorphic.

The six-dimensional (2, 0) theories have a chiral algebra!



Chiral correlation functions

Claim:
0 _
F<Ull (21)0' (21,21) ... .. vr, (Zn)O0 " (2, Zn)) =0
2k
Proof:
e There exists a particular nilpotent supercharge @ such that
[@ 0%(0)} =0.

for @-chiral operators. Roughly speaking @ = Q — S.
e Holomorphic translations are @ closed

[@P:]=0
¢ In the antiholomorphic direction we find that
9z (v1(2)01(2,2)) = v (D)[P: + R, 07 (2)]
and such twisted antiholomorphic translations are @ exact
P:+R™ ={Q...}
and are trivial in the cohomology of Q.



Consider the free tensor multiplet where the scalar ®* is @-chiral.
In this case I is a triplet index, and v;(z) = (1 + 22, 2z,i(1 — 22))/V/2.

The OPE is
; ~ q)] 0 6IJ
7 (2,2)27(0) ~ @
o) )
v1(2)v(0)®!(2,2)®7(0) ~ ... = =

which is the OPE of a dimension one current. We write
w1 (2)® (2, 2)]g ~ j(2)

The other @-chiral operators are normal ordered products and
holomorphic derivatives of this basic field.

— The complete chiral algebra of a free tensor multiplet is the (1)
AKM algebra generated from



Chiral correlation functions

For the interacting theories:
* The 1-BPS operators are part of the chiral algebra;

« Generators of the £-BPS chiral ring are also generators of the
chiral algebra;

e The character of the chiral algebra is equal to a partially refined
superconformal index computed by [Kim?, Lee (2009-2013)]. It
indicates that there is no need for further generators.

We claim that the generators of the chiral algebra are in one-to-one
correspondence with the Casimir invariants of g.
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From the twisted OPE of the stress tensor multiplet we find that
C2d = Ced

in conventions where ¢gq = 1 for a free tensor multiplet.



Chiral correlation functions

For the interacting theories:
* The 1-BPS operators are part of the chiral algebra;

« Generators of the £-BPS chiral ring are also generators of the
chiral algebra;

e The character of the chiral algebra is equal to a partially refined
superconformal index computed by [Kim?, Lee (2009-2013)]. It
indicates that there is no need for further generators.

We claim that the generators of the chiral algebra are in one-to-one
correspondence with the Casimir invariants of g.

Conijecture: the chiral algebra for the (2, 0) theories of type g is .

From the twisted OPE of the stress tensor multiplet we find that
C2d = Ced
in conventions where ¢gq = 1 for a free tensor multiplet.

Corollary: three-point functions of @-chiral operators are computable.
[Beem, Rastelli, BVR (2014)]



Three-point functions

OPE coefficients in the chiral algebra determine certain OPE
coefficients in six dimensions. Consider for example the three-point
functions of the half-BPS operators:

{ai...ak, } {b1...br,} {c1...ci, Mg (K ,kz, I{3 ¢a1---Ckg
<Ok’1a1 ag (xl)ok2 1 k ($1)0k31 Cks}(x3)> _ 9( 21k12 2k13 e
L1 "Lz " Ta3

The X\g(k1, k2, k3) are completely determined by the chiral algebra.
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Corollary: A\g(k1, k2, k3) are three-point functions of the 1, currents.



Three-point functions

OPE coefficients in the chiral algebra determine certain OPE
coefficients in six dimensions. Consider for example the three-point
functions of the half-BPS operators:

{a1...ax, } {b1...bxy} {ci...ci, } A (kl,kg,kg)cal'“c’%
<Ok1a1 " (xl)ok’2l ' (xl)oksl o (1’3)>: : 2k12x2k13x2k23

Tyo " T13 " Lo3

The X\g(k1, k2, k3) are completely determined by the chiral algebra.
Corollary: A\g(k1, k2, k3) are three-point functions of the 1, currents.

This works wonderfully at large n where (for the A,, type theories) we
know from AdS/CFT that

A (k1, ko, k3) = 222 ki3 (Zkz) F(k122+1)F(k132+1)F(k232+1)
n—oo (K1, k2, k3 n3/2 2 VI(2k1 — )T (2ky — 1)T(2k3 — 1)

with k15 = k1 + ko — k3 etc. [Corrado et al; Bastianelli et al (1999)]
This agrees with the large n limit of W,,! (note: coq ~ 4n3)

[Gaberdiel et al; Campoleoni et al (2011)]
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Numerical results

We have learned a great deal about OPE coefficients of a subset of
protected operators. What about other operators? What about the
unprotected operators? Can we for example constrain their
spectrum?

We will resort to numerical methods. | will give a snapshot of initial
results, based on the crossing symmetry constraints and the methods
of [Rattazzi, Rychkov, Tonni, Vichi (2008)].

We investigated the four point function of stress tensor multiplets.
The superconformal Ward identities and superconformal block
decomposition were essentially already solved in [Arutyunov, Sokatchev
(2002); Dolan, Gallot, Sokatchev (2004); Heslop (2004)].

[Beem, Lemos, Rastelli, BvR (to appear)]



Numerical results

Upper bound A, for the dimension of the lowest-lying unprotected
s0(5) g singlet scalar operator.
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e The bound is likely to improve with better numerics
o We recover the minimal value of ¢
e For very large c we find Ay < 8.1, in agreement with AdS/CFT.



Numerical results

Lower bound on ¢ (without higher spin currents).
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The bound appears to converge to ¢ ~ 25!



Numerical Results
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Numerical Results

i

\

;s
SS—

If the lower bound on ¢ converges to 25, then
e the A, theory has an unprotected scalar of dimension Ay ~ 6.4
o this correlator is very likely uniquely fixed by crossing symmetry

— quite possibly the A, theory can be defined as the only solution to
the crossing symmetry equations at ¢ = 25.



Conclusions

We gave a snapshot of analytic and numerical results that follow from
a study of crossing symmetry for the six-dimensional (2, 0) theories.

o We find exact OPE coefficients through a chiral algebra
o We numerically constrain unprotected data
o Numerical evidence for uniqueness of the A; theory

Can we really bootstrap the (2,0) theories? Let’s try!
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