Anomalies of SCFTs and Geometric Engineering in M-theory With Federico Bonetti, Ruben Minasian, Emily Nardoni, Peter Weck 1904.07250, 1910.04166, 1910.07549, 2002.10466, To Appear

Ibrahima Bah

Johns Hopkins University

Strings 2020

- Geometric Engineering of QFTs is a powerful tool for exploring Strongly Coupled Systems
- The Landscape of SCFTs can be explored by studying the low-energy dynamics of various brane systems
- Reduction of SCFTs on compact manifolds, X - Lower D SCFT defined by X
- Typical SCFT is strongly coupled and may not admit Lagrangian descriptions [Gaiotto '09; Gaiotto, Moore, Neitzke '09]
- Many of such SCFTs can admit an arbitrarily large flavor symmetry - For example: Compactification of 6D SCFTs on punctured Riemann surfaces
- Physical observables of SCFTs from the geometric definitions

Compute 't Hooft anomalies of SCFTs from geometric setup

't Hooft Anomalies

- 't Hooft Anomalies: Gauge anomalies for global symmetry G - Poincaré, flavor, discrete, higher form [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$
Z_{Q F T}\left[A^{\prime}\right]=e^{i \alpha(A, \epsilon)} Z_{Q F T}[A]
$$

$A^{\prime} \& A$ are background gauge fields of G related by gauge transformation ϵ

- There is a 't Hooft anomaly when
- $\alpha(A, \epsilon)$ cannot be removed by local counterterms
- $\alpha(A, \epsilon)$ vanish in the limit $A \rightarrow 0$
- The anomaly measures obstruction to gauging the symmetry G
- Non-renormalized under RG flows - must be reproduced by any effective description
- Constrain IR phases of quantum systems
- Yield central charges in supersymmetric theories
't Hooft anomalies provide a measure for degrees of freedom for QFTs - Defining data for non-Lagrangian theories

Anomaly Polynomials

- Anomalies for continuous global symmetries (Most of the talk)
- The anomaly for a QFT on W_{d} is given by an integral of a local density

$$
\alpha(A, \epsilon)=\delta_{\epsilon} \mathcal{W}_{Q F T}[A]=2 \pi \int_{W_{d}} I_{d}^{(1)}
$$

- Wess-Zumino consistency conditions imply descent relations for anomaly

$$
d I_{d}^{(1)}=\delta I_{d+1}^{(0)}, \quad d l_{d+1}^{(0)}=I_{d+2}
$$

- $I_{d+1}^{(0)}$ is a Chern-Simons form in W_{d+1} with boundary W_{d}
- I_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}
- I_{d+2} is a polynomial in curvatures of the background fields whose coefficients encode the 't Hooft anomaly of the global symmetry - Anomaly Polynomial
- Example in 4d: $a_{\jmath \jmath k}$ and a_{l} are anomaly coefficients from triangle diagram

$$
I_{6}=a_{I J K} F^{\prime} \wedge F^{\jmath} \wedge F^{K}+a_{l} F^{\prime} \wedge \operatorname{tr}(R \wedge R)
$$

Reducing anomalies

- Lower D CFTs emerge in the compactification of Higher D CFTs on X_{p}
- Anomaly polynomials is integrated down as anomaly matching

$$
I_{d-p}=\int_{X_{p}} I_{d}
$$

- Successful approach in the reduction of 6d CFTs to 4d CFTs [Benini, Tachikawa, Wecht '09; IB, Beem, Bobev, Wecht '12; IB, Hanany, Maruyoshi, Razamat, Tachikawa, Zafrir '17; Kim, Razamat, Vafa, Zafrir '17; Lawrie, Martelli, Schäfer-Nameki '18;••] or to 2d CFTs [Harvey, Minasian, Moore '98; Alday, Benini, Tachikawa '09; Benini, Bobev '13; Benini, Bobev, Crichigno '16; Lawrie, Schäfer-Nameki '18, Weigand '17; Morteza Hosseini, Hristov, Tachikawa, Zaffaroni '20;•••]
- However procedure can miss new symmetries that result from the compactification Leads to wrong central charges in lower D theory
- Cannot account for defects added on X_{p} such as punctures on Riemann surfaces in 6d to 4d reductions
- A complete anomaly computation requires to consider string theory setups that realize these RG flows

Outline

(1) Anomalies of SCFTs in M-theory
(2) Topological mass terms and discrete symmetry
(3) Example and outlook
(4) Anomalies of SCFTs in type IIB and F-theory

Outline

(1) Anomalies of SCFTs in M-theory
(2) Topological mass terms and discrete symmetry
(3) Example and outlook
(3) Anomalies of SCFTs in type IIB and F-theory

Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
- Flat branes: $(2,0) A_{N-1}$ SCFTs in 6D
- Probing \mathbb{C}^{2} / Γ singularity: $(1,0)$ SCFTs in 6D
- Wrapped on a surface X : SCFTs in 4D, SCFTs in 2D
- The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$
d G_{4}=N \delta w_{6}, \quad M_{11}=\mathbb{R}^{+} \times M_{10}
$$

- M_{10} is the boundary of a tubular neighborhood of the source:
$M_{10-d} \hookrightarrow M_{10} \rightarrow W_{d}, \quad M_{4} \hookrightarrow M_{10-d} \rightarrow X_{6-d}$
- M_{10-d} : defines the SCFT in M-theory, can have orbifold fixed points
- M_{4} : The angular directions that surround the branes

SCFT_{d} on W_{d} (external spacetime)
- M_{4} fibration fixed by topological twist

Symmetries and anomalies

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G
- Components of G : the isometry group of M_{10-d}, massless fluctuations of the C_{3} potential - Expanded on $H^{*}\left(M_{10-d}, \mathbb{Z}\right)_{\text {free }}$
- G induces a global symmetry G for QFT on W_{d}
- Due to the singular source of G_{4}, the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous
- Consistency of the full theory, including the M5-brane sources, must be anomaly free [Callan, Harvey '85]
- Anomaly Inflow: The quantum anomalies for the boundary degrees of freedom on the M5-branes must cancel the classical bulk anomaly

The bulk supergravity action can be used to obtain the anomalies for SCFTs from M5-branes

Flux Boundary Condition

- The anomalous variation of the M-theory action depends on the boundary condition of G_{4} corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$
G_{4}=2 \pi \rho(r) \bar{G}_{4}+\cdots \text { with } \int_{M_{4}} \bar{G}_{4}=N
$$

$\rho(r)$ is bump function that vanishes away from the boundary

- The boundary term \bar{G}_{4} is a closed and globally defined four-form on M_{10-d}
- \bar{G}_{4} can be extended to a closed, gauge invariant and globally defined four-form, E_{4}, on the space M_{10} by gauging the action of the group G

$$
\bar{G}_{4} \text { on } M_{10-d} \Rightarrow E_{4} \text { on } M_{10}
$$

On W_{d}, the gauging corresponds to turning on background fields for the global symmetry

Anomalous Variation of M-theory [IB, Bonetti, Minasian, Nardoni '18, '19]

- The variation of the M-theory action localizes on the boundary

$$
\frac{\delta S_{M}}{2 \pi}=\int_{M_{10}} \mathcal{I}_{10}^{(1)}, \quad d \mathcal{I}_{10}^{(1)}=\delta \mathcal{I}_{11}^{(0)}, \quad d \mathcal{I}_{11}^{(0)}=\mathcal{I}_{12}
$$

- The 12 -form anomaly polynomial is completely characterized by E_{4} and the M-theory action

$$
\mathcal{I}_{12}=-\frac{1}{6} E_{4} \wedge E_{4} \wedge E_{4}-E_{4} \wedge X_{8}
$$

the 8-form, $X_{8}=\frac{1}{192}\left[p_{1}\left(T M_{11}\right)^{2}-4 p_{2}\left(T M_{11}\right)\right] \sim R^{4}$, decomposed on $M_{11}=\mathbb{R}^{+} \times M_{10}$ - Gravitational anomalies

Anomaly inflow statement:

$$
I_{d+2}^{\mathrm{inf}}+I_{d+2}^{\mathrm{CFT}}+I_{d+2}^{\text {decoupled }}=0, \quad I_{d+2}^{\mathrm{inf}}=\int_{M_{10-d}} \mathcal{I}_{12}
$$

$\boldsymbol{l}_{d+2}^{\text {inf }}$ captures much more than integrating anomaly polynomials of 6d SCFTs

Anomaly for 6D $(2,0)$ Theory - Flat branes

- M_{10} and boundary condition for G_{4} are

$$
M_{10}=W_{6} \times S^{4}, \quad \bar{G}_{4}=N d \Omega_{4}
$$

M_{4} : Round 4-sphere and the induced global symmetry is $S O(5)$ - the R-symmetry of the $(2,0)$ SCFT

- The extension of \bar{G}_{4} : global angular form of the 4 -sphere

$$
\begin{aligned}
E_{4} & =\frac{N}{64 \pi^{2}} \epsilon_{a_{1} \cdots a_{5}} y^{a_{5}}\left[D y^{a_{1}} \cdots D y^{a_{4}}+2 F^{a_{1} a_{2}} D y^{a_{3}} D y^{a_{4}}+F^{a_{1} a_{2}} F^{a_{3} a_{4}}\right] \\
D y^{a} & =d y^{a}-A^{a b} y^{b}, \quad y^{a} y^{a}=1
\end{aligned}
$$

- Here $A^{a b}$ is the $S O(5)$ connection with field strength $F^{a b}$
- Integrating \mathcal{I}_{12} on S^{4} : [Freed, Harvey, Minasian, Moore '98; Harvey, Minasian, Moore '98]

$$
I_{8}^{\mathrm{inf}}+I_{8}[(2,0) \mathrm{SCFT}]+I_{8}[\text { Free }(2,0) \text { tensor }]=0
$$

General Properties of E_{4} [IB, Bonetti, Minasian, Nardoni '19]

- The extension E_{4} has different components

$$
E_{4}=\sum_{p} E_{4}^{p}
$$

- E_{4}^{p} : expansion along a basis of $H^{p}\left(M_{10-d}, \mathbb{Z}\right)_{\text {free }}$

$$
\bar{G}_{4}=N^{a} \Omega_{a}^{4} \quad \rightarrow \quad E_{4}^{4}=N^{a}\left[\Omega_{a}^{4, g}+F^{\prime} \omega_{a, l}^{g}+F^{\prime} F^{J} \sigma_{a, I J}\right]
$$

- $F^{\prime}=D A^{\prime}$: Background gauge fields for isometry group
- Closure of E_{4} :

$$
\iota, \Omega_{a}^{4}+d \omega_{a, l}=0, \quad \iota\left(\jmath \omega_{a, J)}+d \sigma_{a, I J}=0\right.
$$

- The expansion along 2-forms is

$$
E_{4}^{2}=F^{\alpha}\left[\omega_{\alpha}^{2, g}+F^{\prime} \sigma_{\alpha, l}\right], \quad \iota \omega_{\alpha}^{2}+d \sigma_{\alpha, I}=0
$$

Choices for E_{4} labeled by $G_{i s o m}$-equivariant cohomology of M_{10-d}

Compute anomaly by considering local ansatz for metric and p-forms on M_{10-d} consistent with symmetry and topology

- Impose regularity conditions on E_{4}
- Regularity conditions related to integrals of internal forms $\left(\Omega^{4}, \omega^{2}, \cdots\right)$
- The Inflow anomaly depends on background fields and on flux parameters of M_{10-d}

Consistency with SUGRA on $(d+1)$ spacetimes requires tadpole condition on background fields!

$$
\int_{M_{10-d}}\left[E_{4}^{2}+2 X_{8}\right]=0
$$

- Interesting example in 6D:

$$
E_{4} \rightarrow E_{4}+\gamma_{4}, \quad d \gamma_{4}=0
$$

γ_{4} is an external field on W_{d}

- Extra term fixed by Tadpole condition

$$
I_{8} \rightarrow I_{8}+\frac{1}{4} \gamma_{4}^{2}+\gamma_{4}(\cdots), \quad \gamma_{4}=-\frac{1}{4 N}\left[c_{2}\left(G_{\Gamma}^{N}\right)-c_{2}\left(G_{\Gamma}^{S}\right)\right]
$$

- Anomaly inflow for 6D $(1,0)$ SCFTs from M5 branes at orbifolds [Ohmori, Shimizu, Tachikawa, Yonekura, '14]
- Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.
- Tadpole constraint fixes continuous components of some background fields

Application to Holography

$$
\mathcal{I}_{12}=-\frac{1}{6} E_{4} \wedge E_{4} \wedge E_{4}-E_{4} \wedge X_{8}
$$

- Consider an $A d S_{d+1} \times \mathcal{M}_{10-d}$ solution in M-theory supported by a $G_{4}^{\text {ads }}$ flux
- We can identify $\mathcal{M}_{10-d}=M_{10-d}$ and $G_{4}^{\text {ads }}=\bar{G}_{4}$
- The 4-form E_{4} can be constructed and \mathcal{I}_{12} yields the anomaly for the dual SCFT
- The X_{8} term in \mathcal{I}_{12} yields the $\frac{1}{N^{2}}$ corrections to the anomaly polynomial
- Extremization principles [Intriligator, Wecht '03; Benini, Bobev '15]
- We expect the anomaly to be exact up to $\mathcal{O}(1)$ corrections due to decoupled center-of-mass degrees of freedom

Outline

(1) Anomalies of SCFTs in M-theory
(2) Topological mass terms and discrete symmetry
(3) Example and outlook
(3) Anomalies of SCFTs in type IIB and F-theory

Topological Mass in the Bulk [IB, Bonetti, Minasian: To Appear]

- In the reduction of M-theory on M_{10-d}, there can be topological mass terms and part of the gauge symmetry is spontaneously broken
- Example: consider an M_{6} with closed p-forms, $\left(\lambda_{\alpha}^{1}, \omega_{a}^{2}\right)$, one expects massless fluctuations for C_{3} of the form

$$
\delta C_{3}=a_{1}^{a} \wedge \omega_{a}^{2}+b_{2}^{\alpha} \wedge \lambda_{\alpha}^{1}+c_{3}+\cdots
$$

- $\left(a_{1}^{a}, b_{2}^{\alpha}, c_{3}\right)$: gauge fields in 5D spacetime for $U(1)(0,1,2)$-form gauge symmetries
- M-theory Chern-Simons can lead to topological mass terms of the 5D theory

$$
\mathcal{L}=\frac{1}{2 \pi} \Omega_{\alpha \beta} b_{2}^{\alpha} \wedge d b_{2}^{\beta}+\frac{N_{a}}{2 \pi} a_{1}^{a} \wedge d c_{3}+\cdots
$$

- Gauge symmetry is spontaneously broken - dual continuous global symmetry is not present
- The continuous components for the background fields associated to these symmetries in E_{4} are fixed by the tadpole condition

$$
\mathcal{L}=\frac{1}{2 \pi} \Omega_{\alpha \beta} b_{2}^{\alpha} \wedge d b_{2}^{\beta}+\frac{N_{a}}{2 \pi} a_{1}^{a} \wedge d c_{3}+\cdots
$$

- In suitable normalization of gauge fields, and due to flux quantization, $\left(\Omega_{\alpha \beta}, N_{a}\right)$) are integrally quantized
- The topological mass terms are BF terms that describe discrete gauge symmetries in the 5D supergravity [Banks, Seiberg '11]
- For $\Omega_{12}=\frac{M}{2 \pi}$, and $k=\operatorname{gcd}\left(N_{a}\right)$ the discrete gauge symmetries are

$$
\begin{array}{rll}
\mathbb{Z}_{k} & \text { 2-form with } & c_{3} \\
\mathbb{Z}_{k} & \text { 0-form with } & m_{a} a_{1}^{a}, \\
\mathbb{Z}_{M} \times \mathbb{Z}_{M} & \text { 1-form with } & \left(b_{a}^{1}, b_{2}^{2}\right)
\end{array}
$$

Discrete Symmetry for Field Theory

- The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]
- Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

$$
\frac{M}{2 \pi} b_{1}^{1} \wedge d b_{2}^{2}+\frac{k}{2 \pi} m_{a} a_{1}^{a} \wedge d c_{3}
$$

- Dirichlet boundary conditions for b_{1} fix a source for a \mathbb{Z}_{M} global 1-form symmetry in the dual theory, Similar for picking Dirichlet BC for $m_{a} a_{1}^{a}$ or for c_{3} [Gaiotto, Kapustin, Seiberg, Willett '14; Hofman, Iqbal, '18]
- Mixed boundary conditions between the fields lead to a larger class of possible choices of boundary discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14]
- For $M=n_{1} n_{2}$, there is the choice with $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ 1-form global symmetry
- Anomaly polynomial terms for fields with Dirchlet BC capture the 't Hooft anomalies for the discrete symmetry [Kapustin, Thorngren '14; Bergman, Tachikawa, Zafrir '20]

$$
I_{6}=M d B_{1}^{1} \wedge d B_{2}^{2}+\mathcal{A}_{\bullet \bullet}^{\alpha} d B_{\alpha} \wedge F^{\bullet} \wedge F^{\bullet}+\cdots
$$

Singletons and Decoupled modes [IB, Bonetti, Minasian: To Appear]

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

$$
\frac{M}{2 \pi} b_{p} \wedge d a_{d-p-1} \quad \rightarrow \quad(\mathrm{p}-1) \text {-form gauge field singleton }
$$

- SUSY partners from KK singletons
- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to (b_{p}, a_{d-p-1}) gauge fields
- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes

$$
I^{\text {inf }}+I^{\text {CFT }}+I^{\text {decoupled }}=0
$$

- Singletons account for all decoupling modes in SUSY compactifications of M5-branes on punctured Riemann surfaces! (not including orbifold theories)

> The symmetry and topology of M_{10-d} completely fix the anomaly of SCFTs from M5-branes and its compactifications

Outline

Anomalies of SCFTs in M-theory
Topological mass terms and discrete symmetry
(3) Example and outlook
(0) Anomalies of SCFTs in type IIB and F-theory

- Compute the anomalies for $\mathcal{N}=2$ Class \mathcal{S} of A_{N} type with arbitrary punctures [IB, Nardoni, '18; IB, Bonetti, Minasian, Nardoni '19]
- The possible choices of E_{4} from $M_{6}=S^{4} \times \Sigma_{g, n}$ is in one-to-one correspondence with the classification from Hitchin equations
- Choices come from different resolutions of punctures on $\Sigma_{g, n}$ in M_{6}
- This provides an alternate derivation of punctures and the data associated with them from bulk SUGRA
- Explore punctures for $\mathcal{N}=1$ Class \mathcal{S} [IB, Beem, Bobev, Wecht '12] and from Class \mathcal{S}_{k} [Gaiotto, Razamat, '15; Hanany, Maruyoshi '15 and \mathcal{S}_{Γ} [Heckmann, Jefferson, Rudelius, Vafa, '16]
- Study Class \mathcal{S} from the D-series (Inflow for 6D SCFT from [Yi, '00]) and E-string theories
- Example - Class \mathcal{S}_{2}

- Consider a stack of N M5-branes on Σ_{g} and probing a \mathbb{Z}_{2} orbifold fixed point
- Here $M_{6}=M_{4} \times \Sigma_{g}$ and M_{4} is S^{4} / \mathbb{Z}_{2} with resolution two cycles
- The resolution is supported by threading flux $\left(N^{N}, N^{S}\right)$ on 4-cycles made from the resolution 2-cycles combined with the Riemann surface
- There are a total of three 4-cycles with three flux parameters $\left(N, N^{N}, N^{S}\right)$, Associated to them are three closed 2-forms by Poincare duality
- The isometry group is $U(1)_{R} \times S U(2)_{F}$ and the naive symmetry from C_{3} is $U(1)^{3}$
- From the $6 \mathrm{~d}(1,0)$ theory, only $U(1)_{N} \times U(1)_{S}$ is visible, the third $U(1)_{C}$ is an accidental symmetry from the compactification!
- A combination of the three $\mathrm{U}(1) \mathrm{s}$ is broken by a topological mass - Spontaneous symmetry break of a $U(1)$ global symmetry for the field theory
- The symmetry of low-energy theory is then $U(1)_{N}^{\prime} \times U(1)_{S}^{\prime} \times U(1)_{R} \times S U(2)_{L}$
- The generators of the $2 U(1)$ s visible from the 6d SCFT are shifted as

$$
T_{N}^{\prime}=T_{N}-\frac{N^{N}}{N} T_{C}, \quad T_{S}^{\prime}=T_{S}-\frac{N^{S}}{N} T_{C}
$$

- After obtaining anomaly polynomial, compute large N central charge by a-maximization [Intriligator, Wecht '03]
- Inflow data can be matched with a family of $\operatorname{AdS}_{5} \times \mathcal{M}_{6}$ obtained in [Gauntlett, Martelli, Sparks, Waldram '04]

A look at class \mathcal{S}_{2} [IB, Bonetti, Minasian, To Appear]

- 5d SUGRA theory admits a rich discrete gauge symmetry! Thus complex network of discrete symmetry in SCFT which is acted upon by $\operatorname{Sp}(2 g, \mathbb{Z})$

multiplicity	fields	top. mass terms	bulk gauge symm.
$b^{2}\left(M_{6}\right)=3$	a_{1}^{a}	$\frac{1}{2 \pi} N_{a} a_{1}^{a} \wedge d c_{3}$	$U(1)^{2}$ 0-form symm.
			\mathbb{Z}_{k} 0-form symm.
1	c_{3}		\mathbb{Z}_{k} 2-form symm.
$b^{1}\left(M_{6}\right)=2 g$	$b_{2}^{i}, \tilde{b}_{2}^{i}$	$\frac{1}{2 \pi} M \tilde{b}_{2}^{i} \wedge d b_{2}^{i}$	$\left(\mathbb{Z}_{M} \times \mathbb{Z}_{M}\right)^{g}$ 1-form symm.
$b^{3}\left(M_{6}\right)=4 g$	$a_{0}^{i \pm}, \tilde{a}_{0}^{i \pm}$	-	5D axions

- There are $4 g$ background 1-forms in the anomaly polynomial associated to the axions - Anomaly for background dependent couplings and "(-1)-form symmetry"? [Córdova, Freed, Lam, Seiberg, '19]
- Origin of decoupled modes from M_{10-d}

$$
I^{\text {inf }}+I^{\text {QFT }}+I^{\text {decoupled }}=0
$$

- Discrete symmetries and higher form symmetries - role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators - higher form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA
- Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects

THANK YOU!

Outline

(1) Anomalies of SCFTs in M-theory

(2) Topological mass terms and discrete symmetry
(3) Example and outlook
(4) Anomalies of SCFTs in type IIB and F-theory

- One can also consider brane systems in type II string theories
- The polynomials that encode the anomalies are 11 -forms, \mathcal{I}_{11} constructed from gauge invariant boundary conditions of various flux
- The anomaly polynomial of IIA is related to the M-theory \mathcal{I}_{12} by a reduction, It is similarly characterized by IIA Chern-Simons terms
- The anomaly polynomial for IIB receives a contribution from the kinetic term of the self-dual five-form flux
- If we consider a stack of D3-branes supported by the five-form flux, F_{5}

$$
F_{5}=2 \pi(1+\star) \rho(r) \bar{F}_{5}+\cdots \quad \text { on } \quad M_{10}=\mathbb{R}^{+} \times W_{d} \times M_{9-2 d}
$$

The boundary term \bar{F}_{5} on $M_{9-2 d}$ can be extended to E_{5} on $W_{d} \times M_{9-2 d}$

- The 11 -form and the inflow anomaly polynomial are given as

$$
\mathcal{I}_{11}=\frac{1}{2} E_{5} \wedge d E_{5}-E_{5} \wedge H_{3} \wedge F_{3}, \quad \operatorname{linf}_{2 d+2}=\int_{M_{9-2 d}} \mathcal{I}_{11}
$$

- The 11-form and the inflow anomaly polynomial are given as

$$
\mathcal{I}_{11}=\frac{1}{2} E_{5} \wedge d E_{5}-E_{5} \wedge H_{3} \wedge F_{3}, \quad \operatorname{linf}_{2 d+2}=\int_{M_{9-2 d}} \mathcal{I}_{11}
$$

- For $\mathcal{N}=4$ SYM, E_{5} is the global angular form of the 5-sphere, e_{5} ! Integrating \mathcal{I}_{11} yields the anomaly for the $S O$ (6) R-symmetry group

$$
\begin{aligned}
& E_{5}=N e_{5}, \quad d E_{5}=-N \pi^{*} \chi(S O(6)), \\
& I_{6}^{\text {inf }}=\frac{1}{2} N^{2} \chi(S O(6))=\frac{1}{2} N^{2} c_{3}(S U(4))
\end{aligned}
$$

- For more general $\mathcal{N}=1, E_{5}$ is the volume of $S E_{5}$ gauged over the world volume theory! Consistent with holographic analysis by [Benvenuti, Pando Zayas, Tachikawa 06]
- Anomaly of $\mathcal{N}=4 \mathrm{SYM}$ on punctured Riemann surface
- This anomaly formula can be used to study compactifications of 4D SCFTs to 2D QFTs
- Generalize type IIB with non-trivial axio-dilaton profile
- Consider an elliptic fibration over the IIB background

$$
\mathbb{E}_{\tau} \hookrightarrow M_{12} \rightarrow M_{10}
$$

- The anomaly polynomial is

$$
\mathcal{I}_{11}=\frac{1}{2} E_{5} \wedge d E_{5}-E_{5} \wedge \pi_{*}\left[X_{8}\left(T M_{12}\right)+\frac{1}{2} \mathcal{E}_{4} \wedge \mathcal{E}_{4}\right]
$$

- F_{3} and H_{3} are encoded in \mathcal{E}_{4}, for trivial elliptic fiber

$$
\mathcal{E}_{4}=F_{3} \wedge d x+H_{3} \wedge d y
$$

- Anomalies of $\mathcal{N}=4$ with varying coupling, $\tau_{Y M}$, can be studied with this generalization [Lawrie, Martelli, Schäfer-Nameki '18]

