Anomalies of SCFTs and Geometric Engineering in M-theory With Federico Bonetti, Ruben Minasian, Emily Nardoni, Peter Weck 1904.07250, 1910.04166, 1910.07549, 2002.10466, To Appear

Ibrahima Bah

Johns Hopkins University

Strings 2020

- Geometric Engineering of QFTs is a powerful tool for exploring Strongly Coupled Systems
- The Landscape of SCFTs can be explored by studying the low-energy dynamics of various brane systems
- Reduction of SCFTs on compact manifolds, X Lower D SCFT defined by X
- Typical SCFT is strongly coupled and may not admit Lagrangian descriptions [Gaiotto '09; Gaiotto, Moore, Neitzke '09]
- Many of such SCFTs can admit an arbitrarily large flavor symmetry For example: Compactification of 6D SCFTs on punctured Riemann surfaces
- Physical observables of SCFTs from the geometric definitions

Compute 't Hooft anomalies of SCFTs from geometric setup

- 't Hooft Anomalies: Gauge anomalies for global symmetry G Poincaré, flavor, discrete, higher form [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

A' & A are background gauge fields of G related by gauge transformation ϵ

- There is a 't Hooft anomaly when
 - $\alpha(A,\epsilon)$ cannot be removed by local counterterms
 - $\alpha(A,\epsilon)$ vanish in the limit $A \rightarrow 0$
- The anomaly measures obstruction to gauging the symmetry G
 - Non-renormalized under RG flows must be reproduced by any effective description
 - Constrain IR phases of quantum systems
 - Yield central charges in supersymmetric theories

't Hooft anomalies provide a measure for degrees of freedom for QFTs – Defining data for non-Lagrangian theories

- Anomalies for continuous global symmetries (Most of the talk)
- The anomaly for a QFT on W_d is given by an integral of a local density

$$\alpha(\mathbf{A},\epsilon) = \delta_{\epsilon} \mathcal{W}_{QFT}[\mathbf{A}] = 2\pi \int_{W_d} I_d^{(1)}$$

• Wess-Zumino consistency conditions imply descent relations for anomaly

 $dI_d^{(1)} = \delta I_{d+1}^{(0)}, \qquad dI_{d+1}^{(0)} = I_{d+2}$

- $I_{d+1}^{(0)}$ is a Chern-Simons form in W_{d+1} with boundary W_d
- I_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}
- I_{d+2} is a polynomial in curvatures of the background fields whose coefficients encode the 't Hooft anomaly of the global symmetry Anomaly Polynomial
- Example in 4d: *a*_{IJK} and *a*_I are anomaly coefficients from triangle diagram

$$I_6 = a_{IJK}F^I \wedge F^J \wedge F^K + a_IF^I \wedge tr(R \wedge R),$$

- Lower D CFTs emerge in the compactification of Higher D CFTs on X_p
- Anomaly polynomials is integrated down as anomaly matching

$$I_{d-p} = \int_{X_p} I_d$$

- Successful approach in the reduction of 6d CFTs to 4d CFTs [Benini, Tachikawa, Wecht '09; IB, Beem, Bobev, Wecht '12; IB, Hanany, Maruyoshi, Razamat, Tachikawa, Zafrir '17; Kim, Razamat, Vafa, Zafrir '17; Lawrie, Martelli, Schäfer-Nameki '18;----] or to 2d CFTs [Harvey, Minasian, Moore '98; Alday, Benini, Tachikawa '09; Benini, Bobev '13; Benini, Bobev, Crichigno '16; Lawrie, Schäfer-Nameki '18, Weigand '17; Morteza Hosseini, Hristov, Tachikawa, Zaffaroni '20;---]
- However procedure can miss new symmetries that result from the compactification Leads to wrong central charges in lower D theory
- Cannot account for defects added on X_p such as punctures on Riemann surfaces in 6d to 4d reductions
- A complete anomaly computation requires to consider string theory setups that realize these RG flows

Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry

Example and outlook

Anomalies of SCFTs in type IIB and F-theory

Anomalies of SCFTs in M-theory

Dispological mass terms and discrete symmetry

Example and outlook

Anomalies of SCFTs in type IIB and F-theory

Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: (2,0) A_{N-1} SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: (1,0) SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D

• • • •

• The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$dG_4 = N\delta_{W_6}, \qquad M_{11} = \mathbb{R}^+ \times M_{10}$$

• M_{10} is the boundary of a tubular neighborhood of the source:

 $M_{10-d} \hookrightarrow M_{10} \to W_d, \quad M_4 \hookrightarrow M_{10-d} \to X_{6-d}$

- *M*_{10-d}: defines the SCFT in M-theory, can have orbifold fixed points
- *M*₄: The angular directions that surround the branes
- M_4 fibration fixed by topological twist

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G
- Components of G: the isometry group of M_{10-d} , massless fluctuations of the C_3 potential Expanded on $H^*(M_{10-d}, \mathbb{Z})_{free}$
- G induces a global symmetry G for QFT on W_d
- Due to the singular source of G_4 , the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous
- Consistency of the full theory, including the M5-brane sources, must be anomaly free [Callan, Harvey '85]
- Anomaly Inflow: The quantum anomalies for the boundary degrees of freedom on the M5-branes must cancel the classical bulk anomaly

The bulk supergravity action can be used to obtain the anomalies for SCFTs from M5-branes

• The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4=2\pi
ho(r)ar{G_4}+\cdots$$
 with $\int_{M_4}ar{G_4}=N$

 $\rho(r)$ is bump function that vanishes away from the boundary

- The boundary term \overline{G}_4 is a closed and globally defined four-form on M_{10-d}
- \overline{G}_4 can be extended to a closed, gauge invariant and globally defined four-form, E_4 , on the space M_{10} by gauging the action of the group G

$$ar{G}_4$$
 on M_{10-d} \Rightarrow E_4 on M_{10}

On W_d , the gauging corresponds to turning on background fields for the global symmetry

• The variation of the M-theory action localizes on the boundary

$$\frac{\delta S_M}{2\pi} = \int_{M_{10}} \mathcal{I}_{10}^{(1)}, \qquad d\mathcal{I}_{10}^{(1)} = \delta \mathcal{I}_{11}^{(0)}, \quad d\mathcal{I}_{11}^{(0)} = \mathcal{I}_{12}$$

• The 12-form anomaly polynomial is completely characterized by E_4 and the M-theory action

$$\mathcal{I}_{12}=-rac{1}{6} \textit{E}_4 \wedge \textit{E}_4 \wedge \textit{E}_4 - \textit{E}_4 \wedge \textit{X}_8$$

the 8-form, $X_8 = \frac{1}{192} \left[p_1 (TM_{11})^2 - 4p_2 (TM_{11}) \right] \sim R^4$, decomposed on $M_{11} = \mathbb{R}^+ \times M_{10}$ – Gravitational anomalies

Anomaly inflow statement:

$$I_{d+2}^{\text{inf}} + I_{d+2}^{\text{CFT}} + I_{d+2}^{\text{decoupled}} = 0, \qquad I_{d+2}^{\text{inf}} = \int_{M_{10-d}} \mathcal{I}_{12}$$

 I_{d+2}^{inf} captures much more than integrating anomaly polynomials of 6d SCFTs

• M_{10} and boundary condition for G_4 are

$$M_{10} = W_6 \times S^4, \qquad \bar{G}_4 = N \, d\Omega_4$$

 M_4 : Round 4-sphere and the induced global symmetry is SO(5) – the R-symmetry of the (2,0) SCFT

• The extension of \overline{G}_4 : global angular form of the 4-sphere

$$E_{4} = \frac{N}{64\pi^{2}} \epsilon_{a_{1}\cdots a_{5}} y^{a_{5}} \left[Dy^{a_{1}} \cdots Dy^{a_{4}} + 2F^{a_{1}a_{2}} Dy^{a_{3}} Dy^{a_{4}} + F^{a_{1}a_{2}} F^{a_{3}a_{4}} \right]$$
$$Dy^{a} = dy^{a} - A^{ab}y^{b}, \qquad y^{a}y^{a} = 1$$

- Here A^{ab} is the SO(5) connection with field strength F^{ab}
- Integrating \mathcal{I}_{12} on S^4 : [Freed, Harvey, Minasian, Moore '98; Harvey, Minasian, Moore '98]

 $I_8^{inf} + I_8[(2,0) \text{ SCFT}] + I_8[\text{Free } (2,0) \text{ tensor}] = 0$

• The extension E_4 has different components

$$E_4 = \sum_p E_4^p$$

• E_4^p : expansion along a basis of $H^p(M_{10-d},\mathbb{Z})_{free}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^{4,g}_a + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

F' = DA': Background gauge fields for isometry group
Closure of E₄:

$$\iota_I \Omega_a^4 + d\omega_{a,I} = 0, \quad \iota_{(I} \omega_{a,J)} + d\sigma_{a,IJ} = 0$$

• The expansion along 2-forms is

$$E_4^2 = F^{\alpha} \left[\omega_{\alpha}^{2,g} + F^{I} \sigma_{\alpha,I} \right], \qquad \iota_I \omega_{\alpha}^2 + d\sigma_{\alpha,I} = 0$$

Choices for E_4 labeled by G_{isom} -equivariant cohomology of M_{10-d}

Compute anomaly by considering local ansatz for metric and p-forms on M_{10-d} consistent with symmetry and topology

- Impose regularity conditions on E_4
- Regularity conditions related to integrals of internal forms $(\Omega^4, \omega^2, \cdots)$
- The Inflow anomaly depends on background fields and on flux parameters of M_{10-d}

Consistency with SUGRA on (d + 1) spacetimes requires tadpole condition on background fields!

$$\int_{M_{10-d}} \left[E_4^2 + 2X_8 \right] = 0$$

• Interesting example in 6D:

$$E_4 \rightarrow E_4 + \gamma_4, \quad d\gamma_4 = 0$$

 γ_4 is an external field on W_d

• Extra term fixed by Tadpole condition

$$I_8 \hspace{0.2cm}
ightarrow \hspace{0.2cm} I_8 + rac{1}{4}\gamma_4^2 + \gamma_4(\cdots), \hspace{0.2cm} \gamma_4 = -rac{1}{4N}\left[c_2(G_{\Gamma}^N)-c_2(G_{\Gamma}^S)
ight]$$

- Anomaly inflow for 6D (1,0) SCFTs from *M*5 branes at orbifolds [Ohmori, Shimizu, Tachikawa, Yonekura, '14]
- Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.
- Tadpole constraint fixes continuous components of some background fields

$$\mathcal{I}_{12}=-rac{1}{6}E_4\wedge E_4\wedge E_4-E_4\wedge X_8$$

- Consider an $AdS_{d+1} \times \mathcal{M}_{10-d}$ solution in M-theory supported by a G_4^{ads} flux
- We can identify $\mathcal{M}_{10-d} = \mathcal{M}_{10-d}$ and $\mathcal{G}_4^{ads} = ar{\mathcal{G}}_4$
- The 4-form E_4 can be constructed and \mathcal{I}_{12} yields the anomaly for the dual SCFT
- The X_8 term in \mathcal{I}_{12} yields the $\frac{1}{M^2}$ corrections to the anomaly polynomial
- Extremization principles [Intriligator, Wecht '03; Benini, Bobev '15]
- We expect the anomaly to be exact up to O(1) corrections due to decoupled center-of-mass degrees of freedom

Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry

Example and outlook

Anomalies of SCFTs in type IIB and F-theory

- In the reduction of M-theory on M_{10-d} , there can be topological mass terms and part of the gauge symmetry is spontaneously broken
- Example: consider an M_6 with closed p-forms, $(\lambda_{\alpha}^1, \omega_a^2)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a_1^a \wedge \omega_a^2 + b_2^\alpha \wedge \lambda_\alpha^1 + c_3 + \cdots$$

(a^a₁, b^α₂, c₃): gauge fields in 5D spacetime for U(1) (0, 1, 2)-form gauge symmetries
 M-theory Chern-Simons can lead to topological mass terms of the 5D theory

$$\mathcal{L} = rac{1}{2\pi} \Omega_{lphaeta} \; b_2^{lpha} \wedge db_2^{eta} + rac{N_a}{2\pi} \; a_1^a \wedge dc_3 + \cdots$$

- Gauge symmetry is spontaneously broken dual continuous global symmetry is not present
- The continuous components for the background fields associated to these symmetries in *E*₄ are fixed by the tadpole condition

$$\mathcal{L} = rac{1}{2\pi} \Omega_{lphaeta} \; b_2^lpha \wedge db_2^eta + rac{N_a}{2\pi} \; a_1^a \wedge dc_3 + \cdots$$

- In suitable normalization of gauge fields, and due to flux quantization, $(\Omega_{\alpha\beta}, N_a))$ are integrally quantized
- The topological mass terms are BF terms that describe discrete gauge symmetries in the 5D supergravity [Banks, Seiberg '11]
- For $\Omega_{12} = \frac{M}{2\pi}$, and $k = gcd(N_a)$ the discrete gauge symmetries are

\mathbb{Z}_k	2-form with	C 3	
\mathbb{Z}_k	0-form with	$m_a a_1^a$,	$N_a = k m_a$
$\mathbb{Z}_M imes \mathbb{Z}_M$	1-form with	(b_2^1, b_2^2)	

- The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]
- Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

$$rac{M}{2\pi}b_1^1\wedge db_2^2+rac{k}{2\pi}\,\,m_aa_1^a\wedge dc_3$$

- Dirichlet boundary conditions for b_1 fix a source for a \mathbb{Z}_M global 1-form symmetry in the dual theory, Similar for picking Dirichlet BC for $m_a a_1^a$ or for c_3 [Gaiotto, Kapustin, Seiberg, Willett '14; Hofman, Iqbal, '18]
- Mixed boundary conditions between the fields lead to a larger class of possible choices of boundary discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14]
- For $M = n_1 n_2$, there is the choice with $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ 1-form global symmetry
- Anomaly polynomial terms for fields with Dirchlet BC capture the 't Hooft anomalies for the discrete symmetry [Kapustin, Thorngren '14; Bergman, Tachikawa, Zafrir '20]

 $I_6 = M \ dB_1^1 \wedge dB_2^2 + \mathcal{A}_{\bullet\bullet}^{\alpha} dB_{\alpha} \wedge F^{\bullet} \wedge F^{\bullet} + \cdots$

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

 $\frac{M}{2\pi}b_p \wedge da_{d-p-1} \longrightarrow \qquad (p-1)\text{-form gauge field singleton}$

- SUSY partners from KK singletons
- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to (b_p, a_{d-p-1}) gauge fields
- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes

 $I^{inf} + I^{CFT} + I^{decoupled} = 0$

 Singletons account for all decoupling modes in SUSY compactifications of M5-branes on punctured Riemann surfaces! (not including orbifold theories)

The symmetry and topology of M_{10-d} completely fix the anomaly of SCFTs from M5-branes and its compactifications

Ibrahima Bah (JHU)

University of Cape Town, South Africa

Anomalies of SCFTs in M-theory

Dispological mass terms and discrete symmetry

Example and outlook

Anomalies of SCFTs in type IIB and F-theory

- Compute the anomalies for $\mathcal{N} = 2$ Class S of A_N type with arbitrary punctures [IB, Nardoni, '18; IB, Bonetti, Minasian, Nardoni '19]
- The possible choices of E_4 from $M_6 = S^4 \times \Sigma_{g,n}$ is in one-to-one correspondence with the classification from Hitchin equations
- Choices come from different resolutions of punctures on $\sum_{g,n}$ in M_6
- This provides an alternate derivation of punctures and the data associated with them from bulk SUGRA
- Explore punctures for $\mathcal{N} = 1$ Class S [IB, Beem, Bobev, Wecht '12] and from Class S_k [Gaiotto, Razamat, '15; Hanany, Maruyoshi '15 and S_{Γ} [Heckmann, Jefferson, Rudelius, Vafa, '16]
- Study Class ${\cal S}$ from the $D\mbox{-series}$ (Inflow for 6D SCFT from [Yi, '00]) and E-string theories
- Example Class S_2

- Consider a stack of N M5-branes on Σ_g and probing a \mathbb{Z}_2 orbifold fixed point
- Here $M_6 = M_4 \times \Sigma_g$ and M_4 is S^4/\mathbb{Z}_2 with resolution two cycles
- The resolution is supported by threading flux (N^N, N^S) on 4-cycles made from the resolution 2-cycles combined with the Riemann surface
- There are a total of three 4-cycles with three flux parameters (N, N^N, N^S) , Associated to them are three closed 2-forms by Poincare duality
- The isometry group is $U(1)_R \times SU(2)_F$ and the naive symmetry from C_3 is $U(1)^3$
- From the 6d (1,0) theory, only $U(1)_N \times U(1)_S$ is visible, the third $U(1)_C$ is an accidental symmetry from the compactification!

- A combination of the three U(1)s is broken by a topological mass Spontaneous symmetry break of a U(1) global symmetry for the field theory
- The symmetry of low-energy theory is then $U(1)'_N \times U(1)'_S \times U(1)_R \times SU(2)_L$
- The generators of the 2 U(1)s visible from the 6d SCFT are shifted as

$$T'_N = T_N - \frac{N^N}{N}T_C, \qquad T'_S = T_S - \frac{N^S}{N}T_C$$

- After obtaining anomaly polynomial, compute large N central charge by a-maximization [Intriligator, Wecht '03]
- Inflow data can be matched with a family of $AdS_5 \times M_6$ obtained in [Gauntlett, Martelli, Sparks, Waldram '04]

 5d SUGRA theory admits a rich discrete gauge symmetry! Thus complex network of discrete symmetry in SCFT which is acted upon by Sp(2g, Z)

multiplicity	fields	top. mass terms	bulk gauge symm.
$b^2(M_6)=3$	a_1^a		$U(1)^2$ 0-form symm.
		$rac{1}{2\pi}$ N_a $a_1^a \wedge dc_3$	\mathbb{Z}_k 0-form symm.
1	C 3		\mathbb{Z}_k 2-form symm.
$b^1(M_6)=2g$	$b_2^i,\; ilde{b}_2^i$	$rac{1}{2\pi}M ilde{b}_2^i\wedge db_2^i$	$(\mathbb{Z}_M imes \mathbb{Z}_M)^g$ 1-form symm.
$b^3(M_6)=4g$	$a_0^{i\pm}$, ${ ilde a}_0^{i\pm}$		5D axions

• There are 4g background 1-forms in the anomaly polynomial associated to the axions – Anomaly for background dependent couplings and "(-1)-form symmetry"? [Córdova, Freed, Lam, Seiberg, '19]

• Origin of decoupled modes from M_{10-d}

```
I^{inf} + I^{QFT} + I^{decoupled} = 0
```

- Discrete symmetries and higher form symmetries role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA
- Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects

THANK YOU!

Anomalies of SCFTs in M-theory

Dispological mass terms and discrete symmetry

Example and outlook

Anomalies of SCFTs in type IIB and F-theory

- One can also consider brane systems in type II string theories
- The polynomials that encode the anomalies are 11-forms, \mathcal{I}_{11} constructed from gauge invariant boundary conditions of various flux
- The anomaly polynomial of IIA is related to the M-theory \mathcal{I}_{12} by a reduction, It is similarly characterized by IIA Chern-Simons terms
- The anomaly polynomial for IIB receives a contribution from the kinetic term of the self-dual five-form flux
- If we consider a stack of D3-branes supported by the five-form flux, F_5

 $F_5 = 2\pi (1+\star)\rho(r)\overline{F}_5 + \cdots$ on $M_{10} = \mathbb{R}^+ \times W_d \times M_{9-2d}$

The boundary term \overline{F}_5 on M_{9-2d} can be extended to E_5 on $W_d \times M_{9-2d}$

• The 11-form and the inflow anomaly polynomial are given as

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \qquad l_{2d+2}^{inf} = \int_{M_{9-2d}} \mathcal{I}_{11}$$

• The 11-form and the inflow anomaly polynomial are given as

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \qquad l_{2d+2}^{inf} = \int_{M_{9-2d}} \mathcal{I}_{11}$$

• For $\mathcal{N} = 4$ SYM, E_5 is the global angular form of the 5-sphere, e_5 ! Integrating \mathcal{I}_{11} yields the anomaly for the SO(6) R-symmetry group

$$E_5 = N e_5, \qquad dE_5 = -N \pi^* \chi \left(SO(6) \right),$$
$$I_6^{inf} = \frac{1}{2} N^2 \chi \left(SO(6) \right) = \frac{1}{2} N^2 c_3 \left(SU(4) \right)$$

- For more general $\mathcal{N} = 1$, E_5 is the volume of SE_5 gauged over the world volume theory! Consistent with holographic analysis by [Benvenuti, Pando Zayas, Tachikawa 06]
- Anomaly of $\mathcal{N} = 4$ SYM on punctured Riemann surface
- $\bullet\,$ This anomaly formula can be used to study compactifications of 4D SCFTs to 2D $_{\mbox{QFTs}}$

- Generalize type IIB with non-trivial axio-dilaton profile
- Consider an elliptic fibration over the IIB background

 $\mathbb{E}_{ au} \hookrightarrow M_{12} \to M_{10}$

• The anomaly polynomial is

$$\mathcal{I}_{11} = \frac{1}{2} \mathcal{E}_5 \wedge d\mathcal{E}_5 - \mathcal{E}_5 \wedge \pi_* \left[X_8(\mathcal{T}\mathcal{M}_{12}) + \frac{1}{2} \mathcal{E}_4 \wedge \mathcal{E}_4 \right]$$

• F_3 and H_3 are encoded in \mathcal{E}_4 , for trivial elliptic fiber

 $\mathcal{E}_4 = F_3 \wedge dx + H_3 \wedge dy$

• Anomalies of $\mathcal{N} = 4$ with varying coupling, τ_{YM} , can be studied with this generalization [Lawrie, Martelli, Schäfer-Nameki '18]