New Holographic CFTs: Finding the Needle in the Haystack

Alexandre Belin

Based on:

2002.07819 with N. Benjamin, A. Castro, S. Harrison, C. Keller + earlier work with A. Castro, J. Gomes, C. Keller, B. Mühlmann

Strings 2020

Alexandre Belin New Holographic CFTs: Finding the Needle in the Haystack

What is the space of consistent, UV-complete theories of quantum gravity?

What is the space of consistent, UV-complete theories of quantum gravity?

For gravity with $\Lambda <$ 0, AdS/CFT has "solved" this question.

Strongest form of the correspondence:

Space of ths of Q.G. in $AdS_{d+1} \iff Space$ of CFT_d

Strongest form of the correspondence:

The CFT \implies UV-complete and non-perturbative definition of Q.G. in AdS

Alexandre Belin

New Holographic CFTs: Finding the Needle in the Haystack

The problem is "solved", i.e. we know what to look for.

But we currently have no complete classification of all CFTs. \implies the conformal bootstrap

The problem is "solved", i.e. we know what to look for.

But we currently have no complete classification of all CFTs. \implies the conformal bootstrap

A 2-step process:

 S1: What are the conditions such that a CFT has a gravity dual described by semi-classical G.R. at low energies? CFTs that satisfy these conditions are called holographic CFTs.

[Hartman Strings '18; Zhiboedov Strings '19]

• S2: Can we construct (ideally all) such CFTs?

A 2-step process:

 S1: What are the conditions such that a CFT has a gravity dual described by semi-classical G.R. at low energies? CFTs that satisfy these conditions are called holographic CFTs.

[Hartman Strings '18; Zhiboedov Strings '19]

S2: Can we construct (ideally all) such CFTs?

Present evidence for a new infinite family of holographic CFTs!

Introduction

- Review of holographic conditions
- Symmetric Product Orbifolds
- A new infinite family of holographic CFTs

Review of holographic conditions

1. Gravity is semi-classical / large N

In this talk, I will focus on AdS_3/CFT_2 :

$$c=rac{3\ell_{\mathrm{AdS}}}{2G_N}$$

[Brown, Henneaux]

Alexandre Belin New Holographic CFTs: Finding the Needle in the Haystack

2. Bulk EFT is local / large gap

$$\Delta^{\text{S.T.}}_{s>2} \geq \Delta_{\text{gap}} \gg 1$$

[Heemskerk, Penedones, Polchinski, Sully]

2. Bulk EFT is local / large gap

$$\Delta_{s>2}^{\text{S.T.}} \geq \Delta_{\text{gap}} \gg 1$$

[Heemskerk, Penedones, Polchinski, Sully]

3. $S_{CFT} = S_{BH}$ / sparse spectrum

$$ho(\Delta) \leq e^{2\pi\Delta}, \qquad \Delta \leq rac{c}{12}$$

[Hartman, Keller, Stoica]

2. Bulk EFT is local / large gap

$$\Delta_{s>2}^{\rm S.T.} \geq \Delta_{\rm gap} \gg 1$$

[Heemskerk, Penedones, Polchinski, Sully]

3. $S_{CFT} = S_{BH}$ / sparse spectrum

$$ho(\Delta) \leq e^{2\pi\Delta}, \qquad \Delta \leq rac{c}{12}$$

[Hartman, Keller, Stoica]

4. Bulk locality v2 / very sparse spectrum

$$ho(\Delta)\sim e^{\Delta^{\gamma}}, \quad \gamma<1$$

[AB, Freivogel, Jefferson, Kabir]

If the bulk low energy EFT is local:

It is currently unknown how large gap and very sparse spectrum interplay.

Start with a "seed" CFT C, then take N copies.

$$\mathcal{C}_N \equiv \frac{\mathcal{C}^{\otimes N}}{S_N}$$

 \implies huge landscape of large c CFTs!

 \mathcal{C}_N completely determined from \mathcal{C} .

Generalization: permutation orbifolds for $G_N \subseteq S_N$.

[AB, Keller, Maloney; Haehl, Rangamani]

Symmetric Orbifolds vs Holographic Conditions

For all choices of the seed CFT, we have for C_N :

Symmetric Orbifolds vs Holographic Conditions

For all choices of the seed CFT, we have for C_N :

Large N \checkmark Very sparse spectrum \times

Sparse spectrum 🗸

 $ho(\Delta)=e^{2\pi\Delta}$ [Keller]

Large gap \times $\Delta_{gap} = \mathcal{O}(1)$

Symmetric Orbifolds vs Holographic Conditions

For all choices of the seed CFT, we have for C_N :

Large $N \checkmark$ Very sparse spectrum \times

Sparse spectrum 🗸

 $ho(\Delta)=e^{2\pi\Delta}$

[Keller]

Large gap 🗙

 $\Delta_{\mathsf{gap}} = \mathcal{O}(1)$

Game Over?

The D1D5 CFT

The canonical example of AdS_3/CFT_2 : symmetric orbifold with C = NLSM on T^4 or K3.

The D1D5 CFT

The canonical example of AdS_3/CFT_2 : symmetric orbifold with C = NLSM on T^4 or K3.

There is a conformal manifold: $S_{CFT} + \lambda \int d^2 x O(x)$ is also a CFT.

Orbifold description is the free/tensionless point

[Talk by Rajesh yesterday]

	$\lambda = 0$	$\lambda \gg 1$
$ ho(\Delta)$	$e^{2\pi\Delta}$	$e^{\Delta^{5/6}}$
Δ_{gap}	$\mathcal{O}(1)$	$\sim \lambda^{1/4} \gg 1$

Alexandre Belin New Holographic CFTs: Finding the Needle in the Haystack

Can we find new examples for other C?

 \implies Focus on CFT₂ with $\mathcal{N} = (2, 2)$ SUSY.

I will argue for a new infinite family!

First, revisit holographic conditions for symmetric orbifolds.

Diagnostics for Symmetric Orbifolds

Recall large N, sparse spectrum \checkmark

Missing large gap + sparse \rightarrow very sparse

Diagnostics for Symmetric Orbifolds

Recall large N, sparse spectrum \checkmark

Missing large gap + sparse \rightarrow very sparse

For large gap, we require \exists exactly marginal:

$$\delta S_{\mathsf{CFT}} = \mathit{N}^{1-rac{\kappa}{2}}\lambda\int d^{2}z O^{K}(z,ar{z})$$

- $(h, \bar{h})_O = (1, 1) +$ protected
- K: K-trace operator
- $O \in \mathsf{twisted} \mathsf{ sector}$

Exact marginality can be obtained thanks to SUSY.

Take chiral primary with $h = \bar{h} = \frac{1}{2}$,

$$G^-_{-1/2} ar{G}^-_{-1/2} \ket{h = ar{h} = rac{1}{2}, Q = ar{Q} = 1}$$

 \implies protected, i.e. exactly marginal.

Exact marginality can be obtained thanks to SUSY.

Take chiral primary with $h = \bar{h} = \frac{1}{2}$,

$$G^{-}_{-1/2} ar{G}^{-}_{-1/2} \ket{h = ar{h} = rac{1}{2}, Q = ar{Q} = 1}$$

 \implies protected, i.e. exactly marginal.

The lightest chiral primary in twist-L sector:

$$h_{\rm c.p.}^{\rm min} = \frac{c}{12} (L-1)$$

 $\implies c_{\text{seed}} \leq 6$

What is the growth $\rho(\Delta)$ at strong coupling?

Again use supersymmetry:

$$ho(\Delta) \ge
ho^{\mathsf{BPS}}(\Delta)$$

If $ho^{\mathsf{BPS}} \sim e^{\Delta^{\gamma}}$, good start!

We will study ρ^{BPS} through the elliptic genus: $Z_{\text{FG}}(\tau, z) = Tr_{RR}(-1)^F q^{L_0 - \frac{c}{24}} y^{J_0} \bar{q}^{\bar{L}_0 - \frac{c}{24}}$

- It is protected on the conformal manifold.
- \Longrightarrow Window into the putative strong coupling regime

[Benjamin, Cheng, Kachru, Moore, Paquette; Benjamin, Kachru, Keller, Paquette]

• $Z_{E.G.}$ is (up to unwrapping) a weak Jacobi form. \implies Finite number of possibilities to explore

Elliptic genus for the orbifolds

Let us define

$$Z_{\mathsf{E.G.}}(\tau,\kappa z) =: \phi(\tau,z) = \sum_{n,l} c(n,l)q^n y^l$$

For ϕ_m the (unwrapped) E.G. of \mathcal{C}_N we have

$$\mathcal{Z}(\tau, z, \rho) = \sum_{m} \phi_{m}(\tau, z) p^{m} = \prod_{n,l,m} \frac{1}{(1 - p^{m} q^{n} y^{l})^{c(nm,l)}}$$

[Dijkgraaf, Moore, Verlinde, Verlinde]

Information on the growth is in the c(n, I)!

We obtained a complete classification for which wJf lead to slow growth.

[AB, Castro, Keller, Mühlmann]

Two possible outcomes:

- The growth is $ho^{\mathsf{BPS}}(\Delta)\sim e^{\Delta}$
- The growth is $ho^{\mathsf{BPS}}(\Delta) \sim e^{\sqrt{\Delta}}$

 \implies Simple criterion to distinguish based on c(n, l).

Our criterion gives

$$c_{\text{seed}} \leq 6$$

Same as we found for the existence of marginal operators!

Important: very different conditions! But they seem to give the same outcome.

To sum up, the classification serves as a map

Originally, we found four new slow-growing functions. [AB, Castro, Gomes, Keller; Alejandra's talk Strings '19] Now, infinitely more! [AB, Castro, Keller, Mühlmann] Some are known examples, orbifolds of T^4 [Datta, Eberhardt, Gaberdiel]

- Look for CFTs that have these functions as their E.G.
- Study the spectrum, look for exactly marginal, twisted S.T. operators.
- If both succeed, strong evidence for new holographic CFT!
- \bullet Split the search into $1 \leq {\it c_{seed}} < 3$ and
- $3 \leq \textit{c}_{seed} \leq 6$

 $1 < c_{seed} < 3$

Full classification of CFTs with $1 \le c_{seed} < 3$:

The $\mathcal{N} = 2$ minimal models

[Boucher, Friedan, Kent; Di Vecchia, Petersen, Yu, Zheng]

They have

$$c=\frac{3k}{k+2}, \qquad k=1,\ldots$$

 \implies ADE classification: A-series, D-series, E₆, E₇, E₈.

For a seed theory given by any $\mathcal{N} = 2$ min. model:

- The E.G. exhibits slow-growth.
- There is at least one exactly marginal, single-trace, twisted sector operator.
- \implies New infinite family of holographic CFTs

The spectra are known, can be checked explicitly.

$3 \le c_{\text{seed}} \le 6$

No full classification, but we can consider some cases:

- Products of minimal models
- Kazama-Suzuki theories

$$\frac{SU(M+1)_k \times SO(2M)_1}{SU(M)_{k+1} \times U(1)_{M(M+1)(M+k+1)}} ,$$

$$c = \frac{3kM}{k+M+1}$$
[Kazama,Suzuki]

$3 \le c_{\text{seed}} \le 6$

No full classification, but we can consider some cases:

- Products of minimal models
- Kazama-Suzuki theories

$$\frac{SU(M+1)_k \times SO(2M)_1}{SU(M)_{k+1} \times U(1)_{M(M+1)(M+k+1)}}, \qquad C = \frac{3kM}{k+M+1}$$
[Kazama,Suzuki]

We find:

Slow growing E.G. \Rightarrow There is a marginal operator

The converse isn't true (one counter-example)

Interesting properties of the models

The dimension of the moduli-space grows very fast with k.

There are many exactly marginal multi-trace operators.

They are very interesting for AdS/CFT:

[Aharony, Berkooz, Silverstein]

 \implies tunable bulk couplings in the 't Hooft limit.

 \implies Interpolate between 't Hooft type bulk, and strongly coupled AdS matter

How could the models not be holographic?

Saturation + miraculous cancellations in the E.G.

If this happens, $\ell_{AdS}/\ell_s \sim \mathcal{O}(1)$. Similar to SUSY SYK in d = 2. [Murugan, Stanford, Witten]

Take a CFT with an 't Hooft limit and an exactly marginal operator which plays the role of a gauge coupling.

Define β :

 $\delta\Delta \sim_{\lambda \to \infty} \lambda^{\beta}$

Under which conditions do we have $\beta > 0$?

Conclusion and Open Questions

- Evidence for a new infinite family of holographic CFTs: Symmetric Orbifold of N = 2 min. models + deformation.
- The theories have interesting moduli spaces, richer than D1D5.
- Can we find the dual SUGRA backgrounds?
- Can we find top-down derivation with branes?
- A renormalization theorem? Integrability? Localization?

Backup Slides

Some scenarios for the light spectrum

The α criterion

The wJf is:

$$\phi_{0,t}(\tau,z) = 0 \cdot y^{-t} + \cdots y^{-b} + \cdots$$

 y^{-b} is the most polar term. We have $c = \frac{6b^2}{t}$.

For a term $q^n y^l$ in ϕ , we define

$$\alpha = \max_{j=0,\dots,b-1} \left(-\frac{t}{b^2} j \left(j - \frac{b\ell}{t} \right) - n \right)$$

If $\alpha < 0$ for all polar terms \Longrightarrow slow growth

٠

Ex. of slow-growing wJF and associated CFTs

t	Ь	$c = \frac{6b^2}{t}$	CFT Examples
1	1	6	K3 sigma model
2	1	3	T^2/\mathbb{Z}_2
3	1	2	<i>D</i> ₄
4	1	<u>3</u> 2	A ₃
4	2	6	T^4/G
6	1	1	A ₂
6	2	4	$(A_2)^4$
8	2	3	$(A_3)^2$
9	3	6	$(A_2)^6$
10	2	<u>12</u> 5	D ₆
12	2	2	A_5
12	3	<u>9</u> 2	(A ₃) ³
15	3	<u>18</u> 5	$(A_4)^2$
16	4	6	(A ₃) ⁴
18	3	3	$(A_2)^3$, $A_2\otimes A_5$

Alexandre Belin

New Holographic CFTs: Finding the Needle in the Haystack

Example of BPS spectra to compare to SUGRA

For the first minimal model, we have:

$$\chi_{\infty}^{\mathsf{NS},\mathsf{A}_{2}} = \prod_{n=1}^{\infty} \frac{(1 - q^{n - \frac{1}{12}}y^{-1})(1 - q^{n + \frac{1}{12}}y)}{(1 - q^{\frac{n}{12}}y^{n})(1 - q^{\frac{n+1}{12}}y^{n+1})(1 - q^{\frac{n}{2}}y^{-6n})^{2}}$$

To compare with K3:

$$\chi_{\infty}^{\mathsf{NS},\mathsf{K3}} = \prod_{n\geq 1} \frac{(1-q^n)^{20}(1-q^{n-1/2}y)^2(1-q^{n-1/2}y^{-1})^2}{(1-q^{n/2}y^n)^{24}(1-q^{n/2}y^{-n})^{24}} \,.$$