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The gravitational path integral

How much can a semiclassical theory tell us?

TIwo simple case studies:

3D pure gravity:

Construct partition function from sum over saddle points [MaloneyWitten][KellerMaloney]

A problem: negative density of states near extremal BTZ [BenjaminOoguriShaoWang]
Aim 1: a solution within pure gravity

2D Jackiw-Teitelboim gravity: [SaadShenkerStanford]
Exact path integral: includes topologies with no classical solutions
A new paradigm for AdS/CFT duality: an ensemble of dual Hamiltonians

Prob (H) o e L1 VH) Aim 2: generalise the JT — matrix integral duality



gravity
eln Instantons

Pure 3D
& Kaluza-K




3D pu e gra\[ity [Ghosh, HM, Turiaci]

Near-extremal BTZ black holes

1
_ 3 2 .
Igy = 162G Jd X+/85 (R3+ Lﬂ%> Reduce on zqo circle :
) 83 = 8, + P (dp + A)
2 .
Lo = ~ szx g, (q)Rz_%q)3F2_|_{%q)> Ensemble of fixed

167Gy angular momentum J,
[Achucarro,Ortiz] integrate out A
27 0 1 2 4 —3 2
[ = e Jd x\@ (@RZ—E(SGNJ) (> +732d>)v§ Near extr_emal,
N near horizon, ® = ®, + 4Gy¢
nearly AdS,

1 2
Iyr = = Sox — EJd2X@¢ (R2+722)

Low temperature: well-described by AdS, physics (bootstrap!)



3D geometry:
“fill In” a cycle
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Negative density of states?



e @
£9
c O ;
© S|,z
B - 2|3
o.&
N = n
@ F S
S

>
N
.mw
S
5 S
M

BTZ black hole

Negative density of states?

3D pure gravi

Near extremal: p(E) ~ e*)\/E — |

extremality bound for rotating BTZ

E>|J]|:
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BTZ black hole

Negative density of states?

3D pure gravi

Reduce on

@ circle:

AdS, x SL, TV

Near horizon:
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Near extremal: pE) ~ e*Y\/E—|J| + (=1)e 2
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BTZ black hole

Negative density of states?

3D pure gravi

Reduce on

@ circle:

[BenjaminOoguriShaoWang|
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Near horizon:
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BTZ black hole

Negative density of states?

3D pure gravi

7t conical defect!
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Holonomy JA =7

Reduce on

@ circle:

AdS, x SL,JTV

Smooth in 3D, singular in 2D

Near horizon:
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BTZ black hole

Negative density of states?

3D pure gravi

7t conical defect!

/

Holonomy fA =7

Reduce on

@ circle:

AdS, x SL,JTV

Smooth in 3D, singular in 2D
Include defects in near-horizon JT theory!

Near horizon:
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Solving JT gravity

[Saad,Shenker,Stanford]

1
0

L
Asymptotic boundary circles: La — 00, gba — 00, f = L held fixed.

29

Notation:

(205)-28)) = | Des9p st

n asymptotic boundaries,
renormalised lengths f,, ..., f,



Solving JT gravity

[Saad,Shenker,Stanford]

1
0

¢ is a Lagrange multiplier, enforcing R, = — 2

Classical solution: the hyperbolic disc

Perturbative corrections: 0
Integrate over possible
locations of boundary



Solving JT gravity

[Saad,Shenker,Stanford] becomes Schwarzian action
1 " [Kitaev] [Jensen]
Ly =—Syy—— Jd x\@¢ (Rz + 2) — J ds ¢(k — 1) |[MaldacenaStanfordYang]
2 3 [EngelséyMertensVerlinde]
¢ is a Lagrange multiplier, enforcing R, = — 2

Classical solution: the hyperbolic disc

Perturbative corrections: 0 Zg () =e>
integrate over possible \/ 16733
locations of boundary s,

€ :
Paisc(E) = (27)? sinh (271-\/1_2)



Solving JT gravity

[Saad,Shenker,Stanford]

¢ is a Lagrange multiplier, enforcing R, = — 2

Higher topologies: path integral — finite-dimensional integral

{ @) g2@¢ e~ hrlgd]l J Uwp A is a space of hyperbolic surfaces,

W Uwp IS the Weill-Petersson measure

Locally AdS,

metric Schwarzian mode



Solving JT gravity

[Saad,Shenker,Stanford]
(ZPBy)-Z(B))

o0

Z e~ CEDNZ, Py s )

m ,5 Ztrumpet(ﬁ b )
Lo n= 1(P) <
b = V,_1 e1(b)

Well-Petersson
volume

COINI.

Zg,n(ﬁlﬂ ’:Bn) — [bldblztrumpet(ﬂl9b1)" [b db Zrumpet(ﬂn )Vg,n(bl’ ’bn)



Solving JT gravity

[Saad,Shenker,Stanford]

Vg,n(b19 ..., b ) obey a recursion relation [Mirzakhani]

Close relation to “topological recursion”: matrix integrals /[EynardOrantin]

<Z(,51)'"Z(ﬁn)> — JdHe—LTr V(H) (Tr e_ﬂ1H> (Tr e—ﬁnH)

Matrix

Integral has a genus expansion: [t Hooft/
_ —(2g+n-2)S, 7Matrix
(ZBO 2B o i = 2 € ZYN B )
§=0

Topological recursion: all Zynatrix(ﬁl, .++, ) uniquely determined by Z(l)\j[latﬁx(ﬁ)



The matrix integral dual of JT gravity

[dHe_LTrV(H) (Tr e_ﬂlH) (Tr e‘ﬁnH> — J @g2@¢ g_IJT[82a¢]

n—boundary

Characterised by leading =
order partition function «— Disc: Zo () = :
0 V16

Mirzakhani’s recursion

All other amplitudes:  7Mauix 5)
Topological recursion 4"

A correspondence to all orders in genus expansion

Matrix integral = random Hamiltonian of JT boundary theory



JT gravity with defects

Generalise JT: include dynamical defects

Defects appear with amplitude A

Source deficit angle 2z(1 — a)

Integrate over hyperbolic
surfaces with £ cone points

Two-parameter expansion

<Z('Bl)mz(ﬂ”)>conn Z Z ~(2g+n— 2)SO_Z k(B



JT gravity with defects

Anew specialcase: g =0, n=1, k=1

p
o — Ztrumpet(ﬁ, b =2rxiar) [Mertensliuriaci

Schwarzian integral over elliptic coadjoint orbit

. geodesic of
b= lma o Defect A/ imaginary

Note: b ength!




JT gravity with defects

(Z(P))-+Z(B,) )

COInM.

= Vo1 n=14=2(0; 01, @)
WP volume with
cone points

Zg,n,k(ﬂla "t ﬁn; 2SERERY ak) — J'bldblztrumpet(ﬁla bl) Ibndbnztrumpet(ﬁn’ bn) Vg,n,k(bl’ L bn; Xys oees ak)

Requires a < % so a splitting geodesic always exists for k > 2



JT gravity with defects

Well-Petersson volumes with conical defects

Vemtn=14=20; a1, @) = b



JT gravity with defects

Well-Petersson volumes with conical defects

Vemtn=14=2(b5 a1, ) = &. b

geodesic of
Detect M~ imaginary length

Vg,n,k(bl’ . b . 0(1, ceoq ak) —_ Vg,n+k(b1’ . b Zﬂial, .o ,Zﬂlak)

°* o0 n, **9 n,

Usual WP volumes with boundaries of imaginary length! [lan\Wongzhang][DoNorbury]

1
(Proven for a < 3) Used recently for dS,: [CotlerJensenMaloney]



The disc with defects

Start by only allowing topologies with classical solutions: just two!

O

sinh (27/E ) + cosh (27:05\/5)] L l\ﬁ@

A
el ) = € [(2@2 2v/E 2 \/E]

Is A < Oinconsistent? p < OforO < E < |1



The disc with defects

Start by only allowing topologies with classical solutions: just two!

O

sinh (27v/E ) +

50

cosh (27:05\/3)] ~

(27)? 2

s

Phaiv (E) — eSO
o l Zﬂ\/E

Is A < Oinconsistent? p < OforO < E < |1

: _ /12
Include multiple defects: Paisc(E) ~ — l\/f + = " op + ]

Expansion in defects divergent for £ < [ 4| %



The disc with defects

k—2
. 1 b2
Leading order for k defects at low energy: V,_o,—1x ~ (—) (6> 1)

(k—=2)I'\ 2

A A

VE 3R

Shift of threshold: E > Ey(1) ~ — 24

S S
eo e-o

Sum: Pisc(E) ~ 2— \/E + + ] ~ 2—\/E+ 20, E~i<k]
T T



The disc with defects

k—2
. 1 b2
Leading order for k defects at low energy: V,_g,—ix ~ T (7> (0> 1)

/12
\E 2E3/2

Shift of threshold: E > E (1) = — 21 — 27%(1 — 2a*)A*— —7r4(5 — 18a” + 15aH1° + O(1%

€S0
Sum: pdlSC(E)N— \FE+ I .. ~2—\/E—EO(/1), E~1<1
T

k—2
2
Strong constraint on Vioomets = : ' (b ) L #p20=3) 4 #pt L 2 4
volume polynomials! (k—2)! T~ ) )
5 Changes “shape
First k — 3 terms fixed by lower orders of Paisc(£)

New contribution to £,
at order A



[BanksDouglasSeibergShenker],. ..

The disc: a" Orders in A« [Okuyama, Sakaill[Johnson|

An alternative way to write the disc density of states:

dx e=P)

e [
=0 R \/471',6 J()

u(x) < genus zero p(E): defines a matrix integral

For JT: u(x) implicitly from ziﬂ\/un(x) I (2n\/uJT(x)) =x  “string equation”

5, (E
Inverse Laplace, 4 OJ du  dx

pdisc(E) — A
E, \/E — u du

change variables: 2r
Threshold Ey=u(0),  pgs. ~+/E—Ey (generically)




The disc: all orders In /1

An explicit expression for genus zero WP volumes [Mertens Turiaci:

1 P n—3
Vonu(bis ... by) = 5 (—a) []o (bl\/ Uyr(X) ) ++Jo (bn\/ “JT(X)) ”fT(X)]




The disc: all orders In /1

An explicit expression for genus zero WP volumes with defects:

ox

2

e ) = l ( 0 )k+”_3 _Jo <b1\/ Uyp(X) ) -++Jy <bn\/ ”JT(X)> Iy (2”0‘1\/”JT(X) > =1y (27mk\/”JT(X)> ”fT(X)-

Explicit expression for Z | ((f; @) for all k

Perform sum over k using “Lagrange reversion theorem”

x=0



The disc: all orders In /1

An explicit expression for genus zero WP volumes with defects:

1

2

Vouibys - bsay, .oap) = = (__)k+”_3 _Jo <b1\/ Uy(X) ) -++Jo <bn\/ ”JT(X)> Iy (2”051\/ Uyr(x) > e+ (27?0%\/ ”JT(X)> ”;fT(X)_

Explicit expression for Z | ((f; @) for all k

Perform sum over k using “Lagrange reversion theorem”

Lagrange reversion theorem

From Wikipedia, the free encyclopedia

In mathematics, the Lagrange reversion theorem gives series or formal po

Let vbe a function of x and y in terms of another function fsuch that

v=2z+yf(v)

Then for any function g, for small enough y:

— al(x ooyk 0 - :Ek'm
o) =)+~ 37 (35) (9 @)

x=0



The disc: all orders In /1

An explicit expression for genus zero WP volumes with defects:

1

o bt — ! (__) k+n—3 J, < b/ uyr(x) ) e Jy <bn\/ uJT(x)> I <27m1\/ yr(x) > A (27tak\/ uJT(x)> ujT(x):

Explicit expression for Z | ((f; @) for all k

Perform sum over k using “Lagrange reversion theorem”

Lagrange reversion theorem

From Wikipedia, the free encyclopedia

In mathematics, the Lagrange reversion theorem gives series or formal po

Let vbe a function of x and y in terms of another function fsuch that

v=z+yf(v) String equation

Then for any function g, for small enough y:

oo .k k—1
9(v) = 9(a) + Y = ( 8‘1) (f@)*d @)-Sum over defects
k=1 "

x=0



The disc: all orders In /1

An explicit expression for genus zero WP volumes with defects:

Vourbps s bps0q, ) = % ( 0 )k+n_3 _JO <b1\/ y7(X) ) e Jy <bn\/ uJT(x)> I (271'611\/ yr(x) > A (27tak\/ uJT(x)> ujT(x)-

ox

Explicit expression for Z | ((f; @) for all k

Perform sum over k using “Lagrange reversion theorem”

Result: a linear deformation of the string equation!

V u(x)
2

JU

I (271'\/14()6)) + A I (Zﬂa\/u(x)) = X

x=0



The disc: all orders In /1

An explicit expression for genus zero WP volumes with defects:

vy O) = % ( 0 )k+”‘3 :JO <b1\/ Uyr(x) ) - Jy <bn\/ ”JT(X)> Iy (2”0‘1\/ Uyr(x) > =1y (2”0‘k\/ ”JT(X)> ”;fT(X):

ox

Explicit expression for Z | ((f; @) for all k

Perform sum over k using “Lagrange reversion theorem”

Result: a linear deformation of the string equation!

Exact genus zero density of states

x=0



The matrix integral dual

The double trumpet: a smoking gun

Two boundaries: double-scaled matrix integrals have a universal genus 0 answer:
1 \/ﬁlﬁz _Eo(ﬂ1+ﬂz)

conn.,g:O,Matrlx 20T ﬁl + ﬁZ

(ZPBNZB) )

7 B,) = gives precisely this answer,
s=on=241oP) order by order in A!



The matrix integral dual

The double trumpet: a smoking gun

Two boundaries: double-scaled matrix integrals have a universal genus 0 answer:
1 \/ﬁlﬁz _Eo(ﬂ1+ﬁz)

conn.,g:O,Matrlx 20T ﬁl + ﬁZ

(ZPBNZB) )

7 B,) = gives precisely this answer,
s=on=241oP) order by order in A!

Explicit checks for Z —0.nk » @nd some at higher genus: all match matrix integral!

Proof that topological recursion is obeyed using deformation theorem of /Eynard, Orantin/



As a deformation of dilaton potential
The “defect gas”

!Defect: Insertion J@ 2, D ¢~ Inls¢) J d2x @e—2n<1—a>¢<x>
In path integral

Defect insertion

Integrate out dilaton: imposes delta-function curvature

1 2
Iy — = d°x\ /8 (R, + 2 = 41(1 = 0)gegeet) = Ry = =2+ 4a(1 = @) efecr

Conical singularity at location of defect v/



As a deformation of dilaton potential
The “defect gas”

2k X
Sum over defect Z A J D, D ¢ ~Inls:#) ( J 2y \/g; e—2ﬂ(l—a)gb(x))

INnsertions: - k!

Exponentiates: extra local term In action
1
— 2 _ L, 2n(1—a)¢p
I = > [d X7/ 8> (¢R2 + U(¢)) Ul =2¢ + Ei A e

A family of dilaton gravity theories with matrix integral duals



JT with defects

Summary

» Exact path integral for JT gravity generalises to models with defects

» For N “flavours” of defect, 2N parameters 4.,

» Exact formula for disc density of states

* Matrix integral to all orders in the genus expansion

. Dilaton gravity with deformed potential U(¢) = 2¢+ Zi/\ie‘z’f(l‘“i)qb



Back to three dimensions




Back to three dimensions

A proposal to cure negative density of states

Near-extremal density of primary states well-described by JT + KK instantons!

So) 1

Negativity: p(E) ~ eX\/E—1J| +(=1)e = > >0\ JE — Ey(J)

VE—T7]

replaced by nonperturbative shift of BTZ extremality bound:

SoW)

EJ) = [J| ~ = (=1)e™>

Multiple KK instantons in 2D — Seifert manifolds in 3D

New topologies to include in path integral, with no classical solutions

A similar perturbative shift of BTZ extremality for generic CFTs (bootstrap) /H\/]



Back to three dimensions

An ensemble dual for 3D pure gravity?

“Spacetime wormholes”: gravity joins disconnected Euclidean boundaries

An ensemble of dual CFTs?! [Cotler,Jensen]  [Belin,de Boer]
[MaloneyWitten||Afkhami-Jeddi, Cohn, Hartman, Tajdinil

A reason to expect continuous p (E)

A matrix integral near extremality, but more structure from locality, correlators

Closely related to recent discussions of Page curve...
[Penington]/|/AimheinEngelhardtMarolfHM]|PeningtonShenkerStantordYang/|AlmheinHartmanMaldacenaShaghoulian Tajdini

... and the Hilbert Space of closed “baby” universes [Coleman][GiddingsStrominger][MarolfHM]

A new paradigm: semiclassical gravity as an averaged theory?



