JT gravity with defects and 3D gravity

Based on [2006.11317] with Joaquin Turiaci

See also [2006.13414] Witten

The gravitational path integral

How much can a semiclassical theory tell us?

Two simple case studies

The gravitational path integral

How much can a semiclassical theory tell us?

Two simple case studies:
3D pure gravity:
Construct partition function from sum over saddle points [MaloneyWitten][KellerMaloney] A problem: negative density of states near extremal BTZ [BenjaminOoguriShaoWang]

Aim 1: a solution within pure gravity

The gravitational path integral

How much can a semiclassical theory tell us?

Two simple case studies:
3D pure gravity:
Construct partition function from sum over saddle points [MaloneyWitten][KellerMaloney] A problem: negative density of states near extremal BTZ [BenjaminOoguriShaoWang] Aim 1: a solution within pure gravity

2D Jackiw-Teitelboim gravity: [SaadShenkerStanford]
Exact path integral: includes topologies with no classical solutions
A new paradigm for AdS/CFT duality: an ensemble of dual Hamiltonians
$\operatorname{Prob}(H) \propto e^{-L \operatorname{Tr} V(H)}$
Aim 2: generalise the JT - matrix integral duality

Pure 3D gravity
 \& Kaluza-Klein instantons

3D pure gravity

Near-extremal BTZ black holes

$$
\begin{aligned}
& I_{\mathrm{EH}}=-\frac{1}{16 \pi G_{N}} \int d^{3} x \sqrt{g_{3}}\left(R_{3}+\frac{2}{\ell_{3}^{2}}\right) \quad \text { Reduce on } \varphi \text { circle } \\
& I_{\mathrm{AO}}=-\frac{2 \pi}{16 \pi G_{N}} \int d^{2} x \sqrt{g_{2}}\left(\Phi R_{2}-\frac{1}{4} \Phi^{3} F^{2}+\frac{2}{\ell_{3}^{2}} \Phi\right)^{\text {Ensemble of fixed }} \begin{array}{c}
\text { Engular momentum } J,
\end{array} \\
& \text { [Achúcarro,Ortiz] } \\
& I=-\frac{2 \pi}{16 \pi G_{N}} \int d^{2} x \sqrt{g_{2}}\left(\Phi R_{2}-\frac{1}{2}\left(8 G_{N} J\right)^{2} \Phi^{-3}+\frac{2}{\ell_{3}^{2}} \Phi\right) \longrightarrow \quad \begin{array}{l}
\text { Near extremal, }
\end{array} \\
& I_{\mathrm{JT}}=-S_{0} \chi-\frac{1}{2} \int d^{2} x \sqrt{g_{2}} \phi\left(R_{2}+\frac{2}{\ell_{2}^{2}}\right) \\
& \text { near horizon, } \Phi=\Phi_{0}+4 G_{N} \phi \\
& \text { nearly } A d S_{2}
\end{aligned}
$$

Low temperature: well-described by $A d S_{2}$ physics (bootstrap!)

3D pure gravity

Boundary torus

3D geometry: "fill in" a cycle

Negative density of states?

3D pure gravity

Negative density of states?

$$
S_{0}(J)=\frac{\text { Area }}{4 G_{N}} \propto \sqrt{\frac{J}{G_{N}}}
$$

$A d S_{3}$

BTZ black hole
$E>|J|$: extremality bound for rotating BTZ

3D pure gravity

Negative density of states?

Near extremal: $\rho_{J}(E) \sim e^{S_{0}(J)} \sqrt{E-|J|}$

$A d S_{3}$

BTZ black hole

Vacuum

Reduce on φ circle:

Near horizon: $\quad A d S_{2} \times S^{1}$, JT \checkmark "fill in" a cycle

$$
S_{0}(J)=\frac{\text { Area }}{4 G_{N}} \propto \sqrt{\frac{J}{G_{N}}}
$$

3D pure gravity

Negative density of states?

Near extremal: $\rho_{J}(E) \sim e^{S_{0}(J)} \sqrt{E-|J|}+(-1)^{J} e^{\frac{S_{0}(J)}{2}} \frac{1}{\sqrt{E-|J|}} \quad S_{0}(J)=\frac{\text { Area }}{4 G_{N}} \propto \sqrt{\frac{J}{G_{N}}}$

Vacuum
Reduce on φ circle:

$$
\rho_{J}(E)<0 \text { for } E-|J| \lesssim e^{-S_{0} / 2}!
$$

[BenjaminOoguriShaoWang]
Near horizon: $\quad A d S_{2} \times S^{1}$, JT \checkmark

3D pure gravity

3D geometry: "fill in" a cycle

Negative density of states?

$S_{0}(J)=\frac{\text { Area }}{4 G_{N}} \propto \sqrt{\frac{J}{G_{N}}}$

Vacuum
Reduce on φ circle:

Near horizon: $\quad A d S_{2} \times S^{1}$, JT \checkmark
BTZ black hole
$S L(2, \mathbb{Z})$ black hole

3D pure gravity

3D geometry: "fill in" a cycle

Negative density of states?

Near extremal: $\rho_{J}(E) \sim e^{S_{0}(J)} \sqrt{E-|J|}+(-1)^{J} e^{\frac{S_{0}(J)}{2}} \frac{1}{\sqrt{E-|J|}} \quad S_{0}(J)=\frac{\text { Area }}{4 G_{N}} \propto \sqrt{\frac{J}{G_{N}}}$

Vacuum
Reduce on φ circle:

Near horizon: $\quad A d S_{2} \times S^{1}, \mathrm{JT} \boldsymbol{\checkmark}$

JT gravity with defects

Solving JT gravity

[Saad,Shenker,Stanford]

$$
I_{\mathrm{JT}}=-S_{0} \chi-\frac{1}{2} \int d^{2} x \sqrt{g_{2}} \phi\left(R_{2}+2\right)-\int_{\partial} d s \phi(\kappa-1)
$$

Asymptotic boundary circles: $L_{\partial} \rightarrow \infty, \phi_{\partial} \rightarrow \infty, \beta=\frac{L_{\partial}}{2 \phi_{\partial}}$ held fixed.

Notation:

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle=\int_{n \text { asymptotic boundaries, }} \mathscr{D} g_{2} \mathscr{D} \phi e^{-I_{\mathrm{JT}}\left[g_{2}, \phi\right]}
$$

Solving JT gravity

[Saad,Shenker,Stanford]

$$
I_{\mathrm{JT}}=-S_{0} \chi-\frac{1}{2} \int d^{2} x \sqrt{g_{2}} \phi\left(R_{2}+2\right)-\int_{\partial} d s \phi(\kappa-1)
$$

ϕ is a Lagrange multiplier, enforcing $R_{2}=-2$
Classical solution: the hyperbolic disc

Perturbative corrections: integrate over possible locations of boundary

Solving JT gravity

[Saad,Shenker,Stanford]

becomes Schwarzian action

$$
\begin{aligned}
& I_{\mathrm{JT}}=-S_{0} \chi-\frac{1}{2} \int d^{2} x \sqrt{g_{2}} \phi\left(R_{2}+2\right)-\int_{\partial} d s \phi(\kappa-1) \begin{array}{l}
{\left[\begin{array}{l}
\text { [Kitaev] [Jensen] } \\
\text { [MaldacenaStanfordYang] } \\
\text { [EngelsöyMertensVerlinde] }
\end{array}\right]}
\end{array} \\
& \phi \text { is a Lagrange multiplier, enforcing } R_{2}=-2
\end{aligned}
$$

Classical solution: the hyperbolic disc

Perturbative corrections: integrate over possible locations of boundary

Solving JT gravity

[Saad,Shenker,Stanford]

ϕ is a Lagrange multiplier, enforcing $R_{2}=-2$
Higher topologies: path integral \longrightarrow finite-dimensional integral $\int \mathscr{D} g_{2} \mathscr{D} \phi e^{-I_{\mathrm{JT}}\left[g_{2}, \phi\right]} \longrightarrow \int_{\mathscr{M}} \mu_{\mathrm{WP}} \quad \begin{aligned} & \mathscr{M} \text { is a space of hyperbolic surfaces, } \\ & \mu_{\mathrm{WP}} \text { is the Weil-Petersson measure }\end{aligned}$

Solving JT gravity

[Saad,Shenker,Stanford]

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle_{\text {conn. }}=\sum_{g=0}^{\infty} e^{-(2 g+n-2) s_{0}} Z_{g, n}\left(\beta_{1}, \cdots, \beta_{n}\right)
$$

$$
Z_{g, n}\left(\beta_{1}, \cdots, \beta_{n}\right)=\int b_{1} d b_{1} Z_{\text {trumpet }}\left(\beta_{1}, b_{1}\right) \cdots \int b_{n} d b_{n} Z_{\text {trumpet }}\left(\beta_{n}, b_{n}\right) V_{g, n}\left(b_{1}, \ldots, b_{n}\right)
$$

Solving JT gravity

[Saad,Shenker,Stanford]

$$
V_{g, n}\left(b_{1}, \ldots, b_{n}\right) \text { obey a recursion relation [Mirzakhani] }
$$

Close relation to "topological recursion": matrix integrals [EynardOrantin]

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle_{\text {Matrix }}=\int d H e^{-L \operatorname{Tr} V(H)}\left(\operatorname{Tr} e^{-\beta_{1} H}\right) \cdots\left(\operatorname{Tr} e^{-\beta_{n} H}\right)
$$

Integral has a genus expansion: ['t Hooft]

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle_{\text {conn.,Matrix }}=\sum_{g=0}^{\infty} e^{-(2 g+n-2) S_{0}} Z_{g, n}^{\text {Matrix }}\left(\beta_{1}, \cdots, \beta_{n}\right)
$$

Topological recursion: all $Z_{g, n}^{\text {Matrix }}\left(\beta_{1}, \cdots, \beta_{n}\right)$ uniquely determined by $Z_{0,1}^{\text {Matrix }}(\beta)$

The matrix integral dual of JT gravity

$$
\int d H e^{-L \operatorname{Tr} V(H)}\left(\operatorname{Tr} e^{-\beta, H}\right) \cdots\left(\operatorname{Tr} e^{-\beta_{r} H}\right) \longleftrightarrow \int_{n-\text { boundary }} \mathscr{D}_{2} \mathscr{D} \phi e^{-I_{\mathrm{JT}}\left[g_{2}, \phi\right]}
$$

Characterised by leading order partition function

$$
Z_{g=0, n=1}^{\text {Matrix }}(\beta)
$$

$$
Z_{0,1}(\beta)=\frac{e^{\frac{\pi^{\frac{2}{p}}}{\nabla}}}{\sqrt{16 \pi \beta^{3}}}
$$

All other amplitudes:

Mirzakhani's recursion Topological recursion

A correspondence to all orders in genus expansion
Matrix integral = random Hamiltonian of JT boundary theory

JT gravity with defects

Generalise JT: include dynamical defects

Defects appear with amplitude λ
Source deficit angle $2 \pi(1-\alpha)$

Integrate over hyperbolic surfaces with k cone points

Two-parameter expansion:

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle_{\text {conn. }}=\sum_{g=0}^{\infty} \sum_{k=0}^{\infty} e^{-(2 g+n-2) S_{0}} \frac{\lambda^{k}}{k!} Z_{g, n, k}\left(\beta_{1}, \cdots, \beta_{n} ; \alpha, \ldots, \alpha\right)
$$

JT gravity with defects

A new special case: $g=0, n=1, k=1$

Schwarzian integral over elliptic coadjoint orbit

JT gravity with defects

$$
\left\langle Z\left(\beta_{1}\right) \cdots Z\left(\beta_{n}\right)\right\rangle_{\mathrm{conn} .}=\sum_{g=0}^{\infty} \sum_{k=0}^{\infty} e^{-(2 g+n-2) S_{0}} \frac{\lambda^{k}}{k!} Z_{g, n, k}\left(\beta_{1}, \cdots, \beta_{n} ; \alpha, \ldots, \alpha\right)
$$

$$
Z_{g, n, k}\left(\beta_{1}, \cdots, \beta_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\int b_{1} d b_{1} Z_{\text {trumpet }}\left(\beta_{1}, b_{1}\right) \cdots \int b_{n} d b_{n} Z_{\text {trumpet }}\left(\beta_{n}, b_{n}\right) V_{g, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)
$$

Requires $\alpha \leq \frac{1}{2}$ so a splitting geodesic always exists for $k \geq 2$

JT gravity with defects

Weil-Petersson volumes with conical defects

JT gravity with defects

Weil-Petersson volumes with conical defects

$$
\begin{aligned}
V_{g=1, n=1, k=2}\left(b ; \alpha_{1}, \alpha_{2}\right)= & \text { Defect }_{\sim}^{\sim} \sim b \text { imaginary length }
\end{aligned}
$$

$$
\begin{gathered}
\text { Defect } \leadsto \begin{array}{c}
\text { geodesic of } \\
\text { imaginary length }
\end{array} \\
V_{g, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=V_{g, n+k}\left(b_{1}, \ldots, b_{n}, 2 \pi i \alpha_{1}, \ldots, 2 \pi i \alpha_{k}\right)
\end{gathered}
$$

Usual WP volumes with boundaries of imaginary length! [TanWongZhang][DoNorbury] (Proven for $\alpha \leq \frac{1}{2}$) Used recently for $d S_{2}$: [CotlerJensenMaloney]

The disc with defects

Start by only allowing topologies with classical solutions: just two!

$$
\begin{gathered}
\rho_{\text {naive }}(E)=e^{S_{0}}\left[\frac{1}{(2 \pi)^{2}} \sinh (2 \pi \sqrt{E})+\frac{\lambda}{2 \pi \sqrt{E}} \cosh (2 \pi \alpha \sqrt{E})\right] \sim \frac{e^{S_{0}}}{2 \pi}\left[\sqrt{E}+\frac{\lambda}{\sqrt{E}}\right] \\
\text { Is } \lambda<0 \text { inconsistent? } \rho<0 \text { for } 0<E<|\lambda|
\end{gathered}
$$

The disc with defects

Start by only allowing topologies with classical solutions: just two!

$$
\text { Is } \lambda<0 \text { inconsistent? } \rho<0 \text { for } 0<E<|\lambda|
$$

Include multiple defects:

$$
\rho_{\text {disc }}(E) \sim \frac{e^{S_{0}}}{2 \pi}\left[\sqrt{E}+\frac{\lambda}{\sqrt{E}}-\frac{\lambda^{2}}{2 E^{3 / 2}}+\cdots\right]
$$

Expansion in defects divergent for $E \lesssim|\lambda|$

The disc with defects

Leading order for k defects at low energy: $\quad V_{g=0, n=1, k} \sim \frac{1}{(k-2)!}\left(\frac{b^{2}}{2}\right)^{k-2} \quad(b \gg 1)$ Sum: $\quad \rho_{\text {disc }}(E) \sim \frac{e^{S_{0}}}{2 \pi}\left[\sqrt{E}+\frac{\lambda}{\sqrt{E}}-\frac{\lambda^{2}}{2 E^{3 / 2}}+\cdots\right] \sim \frac{e^{S_{0}}}{2 \pi} \sqrt{E+2 \lambda}, \quad E \sim \lambda \ll 1$

Shift of threshold: $E>E_{0}(\lambda) \sim-2 \lambda$

The disc with defects

Leading order for k defects at low energy: $\quad V_{g=0, n=1, k} \sim \frac{1}{(k-2)!}\left(\frac{b^{2}}{2}\right)^{k-2} \quad(b \gg 1)$
Sum: $\quad \rho_{\mathrm{disc}}(E) \sim \frac{e^{S_{0}}}{2 \pi}\left[\sqrt{E}+\frac{\lambda}{\sqrt{E}}-\frac{\lambda^{2}}{2 E^{3 / 2}}+\cdots\right] \sim \frac{e^{S_{0}}}{2 \pi} \sqrt{E-E_{0}(\lambda)}, \quad E \sim \lambda \ll 1$
Shift of threshold: $E>E_{0}(\lambda)=-2 \lambda-2 \pi^{2}\left(1-2 \alpha^{2}\right) \lambda^{2}-\frac{2}{3} \pi^{4}\left(5-18 \alpha^{2}+15 \alpha^{4}\right) \lambda^{3}+\mathcal{O}\left(\lambda^{4}\right)$ $\left.\begin{array}{ll}\begin{array}{l}\text { Strong constraint on } \\ \text { volume polynomials! }\end{array} \\ V_{g=0, n=1, k}= & \underbrace{\frac{1}{(k-2)!}\left(\frac{b^{2}}{2}\right)^{k-2}+\# b^{2(k-3)}+\cdots+\# b^{4}}+\# b^{2}+\#\end{array} \underbrace{\text { First } k}_{\begin{array}{l}\text { Changes "shape" } \\ \text { of } \rho_{\text {disc }}(E)\end{array}} \begin{aligned} & 3 \text { terms fixed by lower orders }\end{aligned} \right\rvert\,$

New contribution to E_{0} at order λ^{k}

The disc: all orders in λ

An alternative way to write the disc density of states:

$$
\begin{gathered}
\langle Z(\beta)\rangle_{g=0}=\frac{e^{S_{0}}}{\sqrt{4 \pi \beta}} \int_{0}^{\infty} d x e^{-\beta u(x)} \\
u(x) \Longleftrightarrow \text { genus zero } \rho(E): \text { defines a matrix integral }
\end{gathered}
$$

For JT: $u(x)$ implicitly from $\frac{1}{2 \pi} \sqrt{u_{\mathrm{JT}}(x)} I_{1}\left(2 \pi \sqrt{u_{\mathrm{JT}}(x)}\right)=x \quad$ "string equation"

$$
\begin{aligned}
& \text { Inverse Laplace, } \quad \rho_{\mathrm{disc}}(E)=\frac{e^{S_{0}}}{2 \pi} \int_{E_{0}}^{E} \frac{d u}{\sqrt{E-u}} \frac{d x}{d u} \\
& \text { change variables: }
\end{aligned}
$$

Threshold $E_{0}=u(0), \quad \rho_{\text {disc }} \sim \sqrt{E-E_{0}} \quad$ (generically)

The disc: all orders in λ

An explicit expression for genus zero WP volumes [MertensTuriaci]:

$$
V_{0, n}\left(b_{1}, \ldots, b_{n}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}
$$

The disc: all orders in λ

An explicit expression for genus zero WP volumes with defects:
$V_{0, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{k+n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) I_{0}\left(2 \pi \alpha_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots I_{0}\left(2 \pi \alpha_{k} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}$
\longrightarrow Explicit expression for $Z_{0,1, k}(\beta ; \alpha)$ for all k
Perform sum over k using "Lagrange reversion theorem"

The disc: all orders in λ

An explicit expression for genus zero WP volumes with defects:
$V_{0, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{k+n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) I_{0}\left(2 \pi \alpha_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots I_{0}\left(2 \pi \alpha_{k} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}$
\longrightarrow Explicit expression for $Z_{0,1, k}(\beta ; \alpha)$ for all k

Perform sum over k using "Lagrange reversion theorem"

Lagrange reversion theorem
From Wikipedia, the free encyclopedia
In mathematics, the Lagrange reversion theorem gives series or formal po
Let v be a function of x and y in terms of another function f such that
$v=x+y f(v)$
Then for any function g, for small enough y :

$$
g(v)=g(x)+\sum_{k=1}^{\infty} \frac{y^{k}}{k!}\left(\frac{\partial}{\partial x}\right)^{k-1}\left(f(x)^{k} g^{\prime}(x)\right)
$$

The disc: all orders in λ

An explicit expression for genus zero WP volumes with defects:
$V_{0, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{k+n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) I_{0}\left(2 \pi \alpha_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots I_{0}\left(2 \pi \alpha_{k} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}$
\longrightarrow Explicit expression for $Z_{0,1, k}(\beta ; \alpha)$ for all k

Perform sum over k using "Lagrange reversion theorem"

Lagrange reversion theorem
From Wikipedia, the free encyclopedia
In mathematics, the Lagrange reversion theorem gives series or formal po
Let v be a function of x and y in terms of another function f such that
$v=x+y f(v)$ String eouation
Then for any function g, for small enough y :

$$
g(v)=g(x)+\sum_{k=1}^{\infty} \frac{y^{k}}{k!}\left(\frac{\partial}{\partial x}\right)^{k-1}\left(f(x)^{k} g^{\prime}(x)\right) \text {.Sum over defects }
$$

The disc: all orders in λ

An explicit expression for genus zero WP volumes with defects:
$V_{0, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{k+n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) I_{0}\left(2 \pi \alpha_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots I_{0}\left(2 \pi \alpha_{k} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}$
\longrightarrow Explicit expression for $Z_{0,1, k}(\beta ; \alpha)$ for all k
Perform sum over k using "Lagrange reversion theorem"
Result: a linear deformation of the string equation!

$$
\frac{\sqrt{u(x)}}{2 \pi} I_{1}(2 \pi \sqrt{u(x)})+\lambda I_{0}(2 \pi \alpha \sqrt{u(x)})=x
$$

The disc: all orders in λ

An explicit expression for genus zero WP volumes with defects:
$V_{0, n, k}\left(b_{1}, \ldots, b_{n} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\left.\frac{1}{2}\left(-\frac{\partial}{\partial x}\right)^{k+n-3}\left[J_{0}\left(b_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots J_{0}\left(b_{n} \sqrt{u_{\mathrm{JT}}(x)}\right) I_{0}\left(2 \pi \alpha_{1} \sqrt{u_{\mathrm{JT}}(x)}\right) \cdots I_{0}\left(2 \pi \alpha_{k} \sqrt{u_{\mathrm{JT}}(x)}\right) u_{\mathrm{JT}}^{\prime}(x)\right]\right|_{x=0}$
\longrightarrow Explicit expression for $Z_{0,1, k}(\beta ; \alpha)$ for all k
Perform sum over k using "Lagrange reversion theorem"
Result: a linear deformation of the string equation!

$$
\frac{\sqrt{u(x)}}{2 \pi} I_{1}(2 \pi \sqrt{u(x)})+\sum_{i} \lambda_{i} I_{0}\left(2 \pi \alpha_{i} \sqrt{u(x)}\right)=x
$$

Exact genus zero density of states

The matrix integral dual

The double trumpet: a smoking gun

Two boundaries: double-scaled matrix integrals have a universal genus 0 answer:

$$
\left\langle Z\left(\beta_{1}\right) Z\left(\beta_{2}\right)\right\rangle_{\text {conn.,g }=0, \mathrm{Matrix}}=\frac{1}{2 \pi} \frac{\sqrt{\beta_{1} \beta_{2}}}{\beta_{1}+\beta_{2}} e^{-E_{0}\left(\beta_{1}+\beta_{2}\right)}
$$

gives precisely this answer, order by order in λ !

The matrix integral dual

The double trumpet: a smoking gun

Two boundaries: double-scaled matrix integrals have a universal genus 0 answer:

$$
\left\langle Z\left(\beta_{1}\right) Z\left(\beta_{2}\right)\right\rangle_{\text {conn. }, \mathrm{g}=0, \mathrm{Matrix}}=\frac{1}{2 \pi} \frac{\sqrt{\beta_{1} \beta_{2}}}{\beta_{1}+\beta_{2}} e^{-E_{0}\left(\beta_{1}+\beta_{2}\right)}
$$

gives precisely this answer, order by order in λ !

Explicit checks for $Z_{g=0, n, k}$, and some at higher genus: all match matrix integral! Proof that topological recursion is obeyed using deformation theorem of [Eynard, Orantin]

As a deformation of dilaton potential

The "defect gas"

Defect: insertion in path integral

$$
\int \mathscr{D} g_{2} \mathscr{D} \phi e^{-I_{\mathrm{T} T}\left[g_{2}, \phi\right]} \underbrace{\int d^{2} x \sqrt{g_{2}} e^{-2 \pi(1-\alpha) \phi(x)}}_{\text {Defect insertion }}
$$

Integrate out dilaton: imposes delta-function curvature

$$
I_{\mathrm{JT}} \longrightarrow-\frac{1}{2} \int d^{2} x \sqrt{g_{2}} \phi\left(R_{2}+2-4 \pi(1-\alpha) \delta_{\text {defect }}\right) \Longrightarrow R_{2}=-2+4 \pi(1-\alpha) \delta_{\text {defect }}
$$

Conical singularity at location of defect $\sqrt{ }$

As a deformation of dilaton potential

The "defect gas"

Sum over defect $\quad \sum_{k} \frac{\lambda^{k}}{k!} \int \mathscr{D} g_{2} \mathscr{D} \phi e^{-I_{\mathrm{T} T}\left[g_{2}, \phi\right]}\left(\int d^{2} x \sqrt{g_{2}} e^{-2 \pi(1-\alpha) \phi(x)}\right)^{k}$
insertions:

Exponentiates: extra local term in action

$$
I=-\frac{1}{2} \int d^{2} x \sqrt{g_{2}}\left(\phi R_{2}+U(\phi)\right) \quad U(\phi)=2 \phi+\sum_{i} \Lambda_{i} e^{-2 \pi\left(1-\alpha_{i}\right) \phi}
$$

A family of dilaton gravity theories with matrix integral duals

JT with defects

Summary

- Exact path integral for JT gravity generalises to models with defects
- For N_{F} "flavours" of defect, $2 N_{F}$ parameters λ_{i}, α_{i}
- Exact formula for disc density of states
- Matrix integral to all orders in the genus expansion
- Dilaton gravity with deformed potential $U(\phi)=2 \phi+\sum_{i} \Lambda_{i} e^{-2 \pi\left(1-\alpha_{j}\right) \phi}$

Back to three dimensions

Back to three dimensions

A proposal to cure negative density of states

Near-extremal density of primary states well-described by JT + KK instantons!
Negativity: $\rho_{J}(E) \sim e^{S_{0}(J)} \sqrt{E-|J|}+(-1)^{J} e^{\frac{S_{0}(J)}{2}} \frac{1}{\sqrt{E-|J|}} \longrightarrow e^{S_{0}(J)} \sqrt{E-E_{0}(J)}$
replaced by nonperturbative shift of BTZ extremality bound:

$$
E_{0}(J)-|J| \sim-(-1)^{J} e^{-\frac{S_{0}(J)}{2}}
$$

Multiple KK instantons in 2D \longrightarrow Seifert manifolds in 3D
New topologies to include in path integral, with no classical solutions
A similar perturbative shift of BTZ extremality for generic CFTs (bootstrap) [HM]

Back to three dimensions
 An ensemble dual for 3D pure gravity?

- "Spacetime wormholes": gravity joins disconnected Euclidean boundaries
- An ensemble of dual CFTs?!
[Cotler, Jensen] [Belin,de Boer]
[MaloneyWitten][Afkhami-Jeddli, Cohn,Hartman, Tajdini]
- A reason to expect continuous $\rho_{J}(E)$
- A matrix integral near extremality, but more structure from locality, correlators
- Closely related to recent discussions of Page curve... [Penington][AlmheiriEngelhardtMarolfHM][PeningtonShenkerStanfordYang][AlmheiriHartmanMaldacenaShaghoulianTajdini]
- ... and the Hilbert space of closed "baby" universes [Coleman][GiddingsStrominger][MarolfHM]
- A new paradigm: semiclassical gravity as an averaged theory?

