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Does the bootstrap approach work?
• For conformal field theories a natural set of consistency

conditions are the crossing symmetry equations and unitarity.
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We know how to exploit these equations very effectively and in
full generality because of new insights acquired since 2008.
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Figure 1: The best current bound (1.4), obtained by the method described in Section 5.
The subscript in f6 refers to the order of derivatives used to compute this bound.

1 The problem and the result

Operator dimensions in unitary Conformal Field Theories (CFT) are subject to important con-
straints known as unitarity bounds. In the simplest case of a scalar primary operator �, the
unitarity bound states that1

d � [�] � 1, (1.1)

d = 1 �� � is free. (1.2)

This classic result invites the following question: What happens if d = 1+�? In particular, is there
any sense in which the CFT (or at least its subsector not decoupled from �) should be close to
the free scalar theory if d is close to 1? For instance, do all operator dimensions in this subsector
approach their free scalar theory values in the limit d ! 1? The standard proof of the unitarity
bound [1] does not shed light on this question.

In this paper we will show that such continuity indeed holds for the operator ‘�2’, by which
we mean the lowest dimension scalar primary which appears in the OPE of � with itself:

�(x)�(0) ⇠ (x2)�d(1 + C|x|�min�2(0) + . . .) , C �= 0 . (1.3)

In free theory �min � [�2] = 2, and we will show that �min ! 2 in any CFT as d ! 1. More
precisely, we will show that in any 4D CFT

�min  f(d), (1.4)

where f(d) is a certain continuous function such that f(1) = 2. We will evaluate this function
numerically; it is plotted in Fig. 1 for d near 1.

We stress that bound (1.4) applies to the OPE �⇥� of an arbitrary scalar primary �. However,
since the function f(d) is monotonically increasing, the bound is strongest for the scalar primary
of minimal dimension.

1

Unless explicitly noted otherwise, all statements of this paper refer to D = 4 spacetime dimensions.
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Figure 3: Shaded: the part of the (��, ��) plane allowed by the crossing symmetry constraint

(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model

operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in

Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �� in this range, we ask: What is the maximal �� allowed by (5.3)?

The result is plotted in Fig. 3: only the points (��, ��) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �� and �� error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is

drawn using the �� and �� error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4

To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  ��  1 is

also a priori allowed.

5

In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].

12

6 7 8 9 10 log cT

-5

-4

-3

-2

-1

log HD0*H•L - D0*L

Figure 2: Upper bounds on ��
0 (the smallest conformal dimension of a spin-0 long multiplet

appearing in the O35c ⇥ O35c OPE) for large values of cT . The bounds are computed with
jmax = 20 and � = 19. The long multiplets of spin j > 0 are only restricted by unitarity.
The best fit for the last ten points (shown in black) is log(��

0(1)���
0) = 4.55� 1.00 log cT .
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Figure 3: Upper bounds on ��
2, which is the smallest conformal dimension of a long multiplet

of spin-2 appearing in the O35c ⇥ O35c OPE. The long multiplets of spin j �= 2 are only
restricted by unitarity. These bounds are computed with jmax = 20 and � = 19 (orange),
� = 17 (black), and � = 15 (light brown). The plot on the right is a zoomed-in version of
the plot on the left. The dashed vertical lines correspond to the values of cT in Table 9.

of a spin-2 long multiplet. We obtain the bound on ��
2 under the assumption that

long multiplets of spin j �= 2 are only restricted by the unitarity condition. In other

words, we set ��
j = j + 1 for all j �= 2. In Figure 3, we plot the upper bound on ��

2

as a function of cT for � = 15 (in light brown), � = 17 (in black), and � = 19 (in

orange). The convergence as a function of � is poorer than in the ��
0 case, but it is

still reasonably good throughout, especially at large cT .
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Figure 4: The dots indicate the upper bound ��gap on the gap versus f(1/2), the four-point

function evaluated at the crossing symmetric point, at derivative orders ranging from 8 to

20. The solid line plots the extrapolation to infinite order using a quadratic fit. The minimal

f(1/2) and maximal gap are simultaneously saturated by an untwisted sector correlator at

the free orbifold point. The shaded region represents the gap in the OPE of twist fields at

a fixed point of T 4/Z2 with a rectangular T 4, where the minimal f(1/2) and maximal gap

are achieved by a square T 4 at radii Ri = 1 (1/
p

2 times the self-dual radius).

and up to d = 20, unless noted otherwise.

Numerical results. The first two columns of Table 2 show the numerical results for

the optimal ��gap without the information of f(1/2), for up to d = 30 derivative orders.

The conformal block is evaluated to q40 order to accommodate the high derivative orders.

Within numerical error, ��gap approaches 2 as we increase the derivative order. This bound

is saturated by a free fermion correlator at the free orbifold point, as was explained in

Section 6.1.

After incorporating the information of f(1/2) (reverting to the default setting of param-

eters), we find that f(1/2) less than a certain threshold f(1/2)min is completely ruled out

(��gap = 0). Above this threshold, ��gap starts from ��gap � 2 at f(1/2) = f(1/2)min and then

monotonically decreases. Table 2 shows the values of f(1/2)min, which seem to asymptote

to f(1/2)min � 3 at infinite derivative order. Figure 4 plots the dependence of ��gap on

f(1/2). It is observed that the limiting value ��gap as f(1/2) ! 1 is approximately equal

to another quantity ��crt � 1/4 that we will introduce in the next section. Note that for

smaller values of f(1/2), the numerical bound ��gap appears to converge exponentially with

the derivative order d, while for larger values of f(1/2) the convergence is much slower and

we extrapolate the bound to infinite d using a quadratic fit. There seems to be a crossover
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[Rattazzi, Rychkov, Tonni, Vichi (2008); many others]
• Historically speaking the conformal bootstrap is however

predated by the S-matrix bootstrap for non-conformal QFTs -
a significant research program in the 1960s and 1970s.

Flat Space 
Limit Scattering Amplitudes

Figure 1: The 2 ! 2 S-matrix element. Time runs vertically in this figure. In two dimensions
energy-momentum conservation implies there is only one independent Mandelstam variable such
that S = S(s) with

p
s the centre of mass energy.

at special points. We hope these results will constitute the first steps in a general program
aimed at extending the successful CFT bootstrap to massive QFT’s.

In a companion paper [7] we analyzed this problem from the conformal bootstrap point
of view. There we put the massive QFTs in an Anti de Sitter box. This induces conformal
theories living at the AdS boundary which we can numerically study by means of the con-
formal bootstrap. The spectrum of dimensions and structure constants of these conformal
theories can be translated back to the spectrum of masses and couplings of the quantum
field theory in the bulk. The analytic bounds described below by means of the S-matrix
bootstrap turn out to beautifully match those from the conformal bootstrap numerics. This
constitutes a non-trivial check both of the analytic results described here as well as the AdS
construction proposed in [7] and the associated numerics.

2 Amplitude Bootstrap

Our main object of study will be the 2 ! 2 S-matrix elements of a relativistic two dimensional
quantum field theory. We will further focus on the elastic scattering process involving iden-
tical chargeless particles of mass m. For the most part, we shall take the external particles
to be the lightest in the theory.2

Let us very briefly review a few important properties of this object, setting some notation
along the way. A major kinematical simplification of 2 ! 2 scattering in two dimensions is
that there is only a single independent Mandelstam invariant. In particular, for scattering
involving particles of identical masses there is zero momentum transfer as depicted in figure 1.
If all external particles are identical, crossing symmetry which flips t and s simply translates
into3

S(s) = S(4m2 � s) , (1)

2 Strictly speaking, what we shall use is that any two particle cut in the theory opens up after the two
particle cut of the external particles in this S-matrix element. The 2 ! 2 S-matrix element of the lightest
particles is also free of Coleman-Thun singularities [8] (which render the analysis more involved and which
will not be considered here). Sometimes, symmetry alone forbids such cuts or poles. In those case, the
restriction to the lightest particle can be relaxed.

3Interchanging particles 3 and 4 leads to t = 0, u = 4m

2 � s and the same amplitude S(s).

4
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Does any EFT in AdSd+1 can be UV completed into a consistent CFTd?

YES NO

CFT sum rules give new handle into this question.

Garden conjecture Swampland conjecture

Constraining EFTs in AdS
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Mellin Amplitudes are very useful for perturbative 
computations (holographic correlators, perturbative 
CFTs, O(N)-model, event shapes,…).

Are Mellin amplitudes useful nonperturbatively?

Conformal Bootstrap in Mellin Space

Can we setup a more efficient conformal bootstrap 
using Mellin amplitudes?



ED :

1. Existence and Analyticity

2. Non-perturbative CFT sum rules

• Regge boundedness

• Polyakov conditions

• Dispersion relations

3. Applications

• EFTs in AdS

•   -expansion ✏
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A(xi) =

Z
[d�]M(�ij)

nY

i<j

�(�ij)
�
x2
ij

���ij

1 Introduction

Scattering amplitudes are transition amplitudes between states that describe non-interacting

and uncorrelated particles in the infinite past (in states) and states that describe non-

interacting and uncorrelated particles in the infinite future (out states). This definition

makes sense in Minkowski spacetime, where particles become infinitely distant from each

other in the infinite past and future. Anti-de Sitter (AdS) spacetime has a timelike confor-

mal boundary and does not admit in and out states. Pictorically, one can say that particles

in AdS live in an box and interact forever. Thus, in AdS, we can not use the standard

definition of scattering amplitudes. However, we can create and anihilate particles in AdS

by changing the boundary conditions at the timelike boundary. By the AdS/CFT corre-

spondence [1, 2, 3], the transition amplitudes between this type of states are equal to the

correlation functions of the dual conformal field theory (CFT). This suggests that we should

interpret the CFT correlation functions as AdS scattering amplitudes [4, 5, 6, 7]. In this

paper, we support this view using a representation of the conformal correlation functions

that makes their scattering amplitude nature more transparent.

We shall use the Mellin representation recently proposed by Mack in [8, 9]. 1 The

Euclidean correlator of primary scalar operators

A(xi) = ⇥O1(x1) . . .On(xn)⇤ , (1)

can be written as

A(xi) =
N

(2⇥i)n(n�3)/2

⇧
d�ij M(�ij)

n⌅

i<j

�(�ij)
�
x2
ij

⇥��ij (2)

where the integration contour runs parallel to the imaginary axis with Re �ij > 0. Moreover,

the integration variables are constrained by

n⇤

j ⇥=i

�ij = ⇥i , (3)

so that the integrand is conformally covariant with scaling dimension ⇥i at the point xi.

This gives n(n � 3)/2 independent integration variables. We give the precise definition of

the integration measure in appendix A. Notice that n(n � 3)/2 is also the number of inde-

pendent conformal invariant cross-ratios that one can make using n points and the number

of independent Mandelstam invariants of a n-particle scattering process. The normalization

1The Mellin representation was used before, for example in [10, 11, 12], but its analogy with scattering
amplitudes was not emphasized.

1

[’09 Mack]

Correlation function of scalar primary operators

# integration variables = # independent cross-ratios  

M(�ij)

Constraints:
nX

j=1

�ij = 0 , �ii = ��i = �dim[Oi] , �ij = �ji
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four-point function of light operators1 admits the following representation
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where the integration contour C will be specified below. In the case of the four-point function
the Mellin amplitude (2) is a function of two independent variables M(�

12

, �
14

). Crossing
symmetry simply becomes
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12

+ �
13

+ �
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As usual we expect the cases of non-identical scalar and spinning operators to be very similar,
though we do not establish this rigorously in the present paper.

In fact, a certain version of the Mellin bootstrap approach [15–17] has already been used
to reformulate and improve perturbative calculations. The ansatz for the correlation function
that goes into this approach does not immediately follow from CFT axioms and it is not
clear to us what is the range of applicability of these methods beyond certain perturbative
examples. For that reason we follow a di↵erent path, where we develop bootstrap in Mellin
space starting from the first principles.

As we will see the existence of nonperturbative Mellin amplitudes is not a given. In
section 2 we review the conditions for the existence of the Mellin amplitude which follow
from its definition as an integral transform of the four-point function as a function of cross
ratios u and v. There are two basic properties that are needed for the existence of the Mellin
amplitude, see section 2 for details and definitions:

• analyticity in a sectorial domain (arg[u], arg[v]) 2 ⇥CFT , see section 2.3;

• polynomial boundedness, see (30) and appendix G.

As we will argue physical correlation functions have required analyticity properties but are
not polynomial bounded in a required sense. Therefore, defining Mellin amplitudes always
requires subtractions. The simplest possible subtraction involves considering the connected
part of the correlation function as in the formula above. We systematically derive subtrac-
tions needed to define the nonperturbative Mellin amplitudes based on the general properties
of the correlator. Essentially, it reduces to bounding the correlation function on the first and
the second sheet in di↵erent limits which we do using the standard OPE techniques as well
as some plausible but not fully rigorous assumptions. The main result of this analysis is
that we establish (2) for a nonperturbative four-point function of light scalar operators in a
generic CFT.

1We will be more specific about the precise meaning of that below.
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where the integration contour C will be specified below. In the case of the four-point function
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As usual we expect the cases of non-identical scalar and spinning operators to be very similar,
though we do not establish this rigorously in the present paper.

In fact, a certain version of the Mellin bootstrap approach [15–17] has already been used
to reformulate and improve perturbative calculations. The ansatz for the correlation function
that goes into this approach does not immediately follow from CFT axioms and it is not
clear to us what is the range of applicability of these methods beyond certain perturbative
examples. For that reason we follow a di↵erent path, where we develop bootstrap in Mellin
space starting from the first principles.

As we will see the existence of nonperturbative Mellin amplitudes is not a given. In
section 2 we review the conditions for the existence of the Mellin amplitude which follow
from its definition as an integral transform of the four-point function as a function of cross
ratios u and v. There are two basic properties that are needed for the existence of the Mellin
amplitude, see section 2 for details and definitions:

• analyticity in a sectorial domain (arg[u], arg[v]) 2 ⇥CFT , see section 2.3;

• polynomial boundedness, see (30) and appendix G.

As we will argue physical correlation functions have required analyticity properties but are
not polynomial bounded in a required sense. Therefore, defining Mellin amplitudes always
requires subtractions. The simplest possible subtraction involves considering the connected
part of the correlation function as in the formula above. We systematically derive subtrac-
tions needed to define the nonperturbative Mellin amplitudes based on the general properties
of the correlator. Essentially, it reduces to bounding the correlation function on the first and
the second sheet in di↵erent limits which we do using the standard OPE techniques as well
as some plausible but not fully rigorous assumptions. The main result of this analysis is
that we establish (2) for a nonperturbative four-point function of light scalar operators in a
generic CFT.

1We will be more specific about the precise meaning of that below.
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We then consider the Mellin transform of the four-point function of identical scalar pri-
mary operators in a generic CFT. We show that the Mellin transform has a physical inter-
pretation of an integral over the principal Euclidean sheet, a connected space of conformally
non-equivalent configurations for which all x2

ij are space-like.3 Equipped with this under-
standing, we use OPE to identify the sectorial domain of analyticity of the physical correlator.
We then argue (not fully rigorously) that upon appropriate subtractions the physical cor-
relator also satisfies the required polynomial boundedness and therefore admits the Mellin
representation (4).

For simplicity, we consider the four-point function hOOOOi of equal scalar primary
operators. Conformal symmetry restricts it as follows
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where � is the scaling dimension of O and the arbitrary function of cross ratios F (u, v)
satisfies crossing relations

F (u, v) = F (v, u) = v��F
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v
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◆
. (11)

Unitarity implies that � � d�2

2

.

2.1 Two-dimensional Mellin Transform

Here we review inversion theorems of the two-dimensional Mellin transform relevant for the
four-point function. The generalization to an arbitrary number of dimensions is straightfor-
ward and the corresponding theorems and proofs can be found for example in [29].

Consider a two-variable function g(u, v). Its Mellin transform is defined as
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There are two natural vector spaces of functions associated with these transforms: MU
⇥

and
W⇥

U . Let us define them.

3Considered on a Lorentzian cylinder there are multiple loci of this type labeled by an integer which
corresponds to the number of light-cone crossed starting from the Euclidean correlator. The principal
Euclidean sheet corresponds to the one which contains the ordinary Euclidean correlator and does not
involve any light-cone crossing.
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2.3 Analyticity in a Sectorial Domain

Let us study the analytic properties of F (u, v) in the (u, v) plane. Analyticity for real
and positive u, v > 0 is obvious from the discussion above. Indeed, for such cross ratios
the correlation function describes a generic configuration of space-like separated operators,
whereas non-analyticities of correlation functions can only occur when “something happens”
[31], say a pair of two points become light-like separated. A more rigorous argument relies
on the exponential convergence of the OPE in CFTs which makes analyticity manifest [32].

To discuss Mellin amplitudes however we need to understand analytic properties of cor-
relation functions in a sectorial domain, namely we would like to allow for arg[u], arg[v] 6= 0.
In other words, consider the correlation function F (|u|eiarg[u], |v|eiarg[v]) with |u|, |v| 2 (0,1).
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Figure 4: Sectorial domain ⇥CFT of analyticity of a generic CFT correlation function F (u, v).
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As usual we expect the cases of non-identical scalar and spinning operators to be very similar,
though we do not establish this rigorously in the present paper.

In fact, a certain version of the Mellin bootstrap approach [15–17] has already been used
to reformulate and improve perturbative calculations. The ansatz for the correlation function
that goes into this approach does not immediately follow from CFT axioms and it is not
clear to us what is the range of applicability of these methods beyond certain perturbative
examples. For that reason we follow a di↵erent path, where we develop bootstrap in Mellin
space starting from the first principles.

As we will see the existence of nonperturbative Mellin amplitudes is not a given. In
section 2 we review the conditions for the existence of the Mellin amplitude which follow
from its definition as an integral transform of the four-point function as a function of cross
ratios u and v. There are two basic properties that are needed for the existence of the Mellin
amplitude, see section 2 for details and definitions:

• analyticity in a sectorial domain (arg[u], arg[v]) 2 ⇥CFT , see section 2.3;

• polynomial boundedness, see (30) and appendix G.

As we will argue physical correlation functions have required analyticity properties but are
not polynomial bounded in a required sense. Therefore, defining Mellin amplitudes always
requires subtractions. The simplest possible subtraction involves considering the connected
part of the correlation function as in the formula above. We systematically derive subtrac-
tions needed to define the nonperturbative Mellin amplitudes based on the general properties
of the correlator. Essentially, it reduces to bounding the correlation function on the first and
the second sheet in di↵erent limits which we do using the standard OPE techniques as well
as some plausible but not fully rigorous assumptions. The main result of this analysis is
that we establish (2) for a nonperturbative four-point function of light scalar operators in a
generic CFT.

1We will be more specific about the precise meaning of that below.

5

with

If not for different contours

We conclude that in any CFT and for arbitrary correlation functions of scalar primaries,
we have
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where we denotedK = K
I

and �
12

+�
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14

= �. The contours run parallel to the imaginary
axis of �

12

and �
14

with real parts obeying the inequalities shown under the integral sign.

Next, we would like to bring the three integrals in (43) to the same contour. We discuss
this procedure below and it will naturally lead to the subtractions that appeared in (28).
For the moment we can rather formally define the Mellin amplitude as the sum of the three
terms analytically continued to the whole complex plane,
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3.2 Analytic Structure of the K-function

The function K(�
12

, �
14

) is analytic for Re[�
12

] > � and Re[�
14

] > �. We would like to
analytically continue this function to the rest of C2. Di↵erent regions are shown in figure 7.
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Figure 7: We want to analytically continue K(�
12

, �

14

) into C2. We break C2 according to the four
regions in the figure. For example, region [a] corresponds to Re[�

12

],Re[�
14

] > �. In region [a],
K(�

12

, �

14

) is completely analytic and is defined by the integral (38). In the other regions, it will
be defined by analytic continuation.

In appendix B, we explain how such analytic continuation is obtained for single-variable
Mellin transforms. We shall see that we can use the same trick at fixed �

14

to extend the
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Example: Mean Field Theory

By contrast, the Mellin amplitude
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decays exponentially at infinity. We proved this for the cases in which the theorem of section
(2) applies. This also happens in every example.

Since the Mellin amplitude can be written as a sum of functions that decay polynomially,
it is not obvious how come it can decay exponentially from the point of view of K functions.
Let us see that crossing symmetry implies that it does not decay polynomially. We check
this in some simple examples but not in full generality in the sense that we will see next.
Indeed consider expression (319) and expand

F (u, v) =
NX

n,m=0

an,m(1� u)n(1� v)m (321)

where N is some positive integer. Crossing relates di↵erent an,m to each other. If we plug
the function K(�
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14

) thus obtained into (320), we seem to obtain that M(�
12

, �
14

) decays
polynomially. However notice that the coe�cients an,m are not all arbitrary and they are
constrained by crossing symmetry46. For this reason many cancellations occur and one
obtains that M(�
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14

) ⇠ 1

�N

12�
N

14
. We checked this up to N = 10 and we believe that it holds

for arbitrary N .

E Examples

E.1 Examples of K-functions

E.1.1 Free fields

Consider a free scalar field � of conformal dimension �. Then, for h����i we have

F (u, v) = 1 + u�� + v��, (322)
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The corresponding Mellin amplitude is 0.

For the case O = 1p
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PN
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�i�i in free scalar theory, we have
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The corresponding Mellin amplitude is 0.

46A similar idea was pursued in [108].
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Disconnected correlator does not contribute to Mellin amplitude.
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3.2 Analytic Structure of the K-function
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Using the results from [57] we get the following numerical values for some terms in the
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where we indicated explicitly contribution of which operators we took into account. In the
first line we computed the contribution of J > 30 currents using the light-cone bootstrap
formulae from [57]. Similarly, in the second line for the higher spin tail of [✏, ✏]

0

we used
the formulae from [58] and the contribution of descendants (terms with m � 1 in (139)).
All dropped operators in the second line of (146) contribute positively. Note also that the
contribution of the heavy operators is only suppressed by a power of�. We consider therefore
a 5% di↵erence between the LHS and the RHS for the included operators to be reasonable.
It would be great to check the sum rule above in the 3d Ising model with a greater precision
by including more operators in the RHS of (145).

Similarly, we checked that the � functionals (141) that do not receive contributions from
the scalar operators lead to reasonable numbers. We also observed that the � functional sum
rules are more sensitive to higher spin operators.

6.3 Bounds on holographic CFTs

Let us now apply (139) to holographic CFTs, namely a CFT with large central charge
cT � 1 [59, 60]. As the simplest example we can consider a free massive scalar in AdS
coupled to another field dual to a single trace operator Õst (for example, another scalar field
or graviton). We restrict our consideration to external scalars which satisfy � < 3
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If we simply consider a free massive scalar in AdS the sum rule (139) is trivially satisfied.
Indeed, as we emphasized above ↵

2�+2n,J,m = 0. However, as we weakly couple our free
scalar field to another field it is not at all obvious that (139) is satisfied. As we emphasized
several times above the sum rule (139) is essentially nonperturbative in cT . For example, in
deriving it we used the nonperturbative Regge bound as well as Polyakov conditions. Neither
holds in perturbation theory in cT . This is in a stark contrast with [3] where perturbation
theory in AdS was mapped to solutions to crossing perturbative in 1/cT .

Due to the nonperturbative nature of (139) we cannot simply expand it in 1

c
T

. However,
we can isolate some parts of it which can be safely computed using the low-energy physics
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st

,JÕ
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or graviton). We restrict our consideration to external scalars which satisfy � < 3

4

⌧
˜O
st

.

If we simply consider a free massive scalar in AdS the sum rule (139) is trivially satisfied.
Indeed, as we emphasized above ↵

2�+2n,J,m = 0. However, as we weakly couple our free
scalar field to another field it is not at all obvious that (139) is satisfied. As we emphasized
several times above the sum rule (139) is essentially nonperturbative in cT . For example, in
deriving it we used the nonperturbative Regge bound as well as Polyakov conditions. Neither
holds in perturbation theory in cT . This is in a stark contrast with [3] where perturbation
theory in AdS was mapped to solutions to crossing perturbative in 1/cT .

Due to the nonperturbative nature of (139) we cannot simply expand it in 1

c
T

. However,
we can isolate some parts of it which can be safely computed using the low-energy physics
from those sensitive to the details of the UV completion. To that extent we write the sum
rule as follows

C2

˜O
st

↵⌧Õ
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st

+
X

J>0

C2

[O,O]0,J
↵⌧[O,O]0,J

,J + restUV = 0 , (147)

where the details of the UV completion are in restUV which is non-negative due to (140).

We are, thus, left with computing the contribution due to the leading twist double traces.
Note that due to a single zero of the functional at ⌧ = 2�, to leading order in C2

˜O
st

⇠ 1

c
T

we get the result ⇠ (CGFF
[O,O]0,J

)2�
[O,O]0,J

⇠ 1

c
T

with J > 0, where �
[O,O]0,J

is the anomalous

49

Using the results from [57] we get the following numerical values for some terms in the
relation above

0.0924 = 0.028968T
µ⌫

+ 0.012122J=4

+ 0.029107
6J30

+ 0.0222J>30

= 0.084569✏ + 0.0018
[�,�]0J30

1
+ 0.0016

[✏,✏]4J30
0

+ 0.0014
[✏,✏]J�32

0
+ ... (146)

where we indicated explicitly contribution of which operators we took into account. In the
first line we computed the contribution of J > 30 currents using the light-cone bootstrap
formulae from [57]. Similarly, in the second line for the higher spin tail of [✏, ✏]

0

we used
the formulae from [58] and the contribution of descendants (terms with m � 1 in (139)).
All dropped operators in the second line of (146) contribute positively. Note also that the
contribution of the heavy operators is only suppressed by a power of�. We consider therefore
a 5% di↵erence between the LHS and the RHS for the included operators to be reasonable.
It would be great to check the sum rule above in the 3d Ising model with a greater precision
by including more operators in the RHS of (145).

Similarly, we checked that the � functionals (141) that do not receive contributions from
the scalar operators lead to reasonable numbers. We also observed that the � functional sum
rules are more sensitive to higher spin operators.

6.3 Bounds on holographic CFTs

Let us now apply (139) to holographic CFTs, namely a CFT with large central charge
cT � 1 [59, 60]. As the simplest example we can consider a free massive scalar in AdS
coupled to another field dual to a single trace operator Õst (for example, another scalar field
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st

,JÕ
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EDEB B

• Prove the Maximal Mellin Analyticity conjecture and the full 

Regge bound

• Extend our results to non-identical operators, spinning 

operators, higher point functions, BCFT, etc

• Construct a basis of efficient functionals

• Implement the numerical bootstrap using these functionals 

• Find a CFT sum rule that places a seemingly healthy EFT in 

the swampland?

• Use Mellin Amplitudes in de Sitter space [see next talk by C. Sleight]

[’19 Paulos]
[’19 Mazac, Rastelli, Zhou]
[’19 Carmi, Caron-Huot]


