

Asymptotic Symmetries and Celestial CFT

2005.08990	Laura Donnay, Sabrina Pasterski, AP
1905.09799	AP
1810.05219	Laura Donnay, AP, Andy Strominger

Andrea Puhm

Holographic window into Quantum Gravity

Anti de Sitter space

onformal Field Theory

Ground-breaking tool: holographic principle ['t Hooft'93] [Susskind'94] AdS/CFT correspondence [Maldacena'97] [Witten'98] [Gubser,Klebanov,Polyakov'98]

Quantum gravity in Anti de Sitter space

Conformal Field Theory on boundary

match of symmetries and degrees of freedom

e.g. black hole entropy from CFT

[Strominger, Vafa'96; Strominger'97]

Holography in the Universe ?

• $\Lambda < 0$ Anti de Sitter: spacetime near black holes with $M \gtrsim Q$ or $M^2 \gtrsim J$

• $\Lambda > 0$ de Sitter: spacetime @ cosmological scale

• $\Lambda = 0$ Minkowski: spacetime @ scales > black hole throat and < cosmological

Flat Space Holography

What are the symmetries?

Is there a dual CFT?

What are its properties?

Is 4D spacetime physics encoded on conformal boundary?

Conformal Basis for QFT Amplitudes

4D Lorentz group $SO(1,3) \simeq SL(2,\mathbb{C})$ acts as global conformal group on celestial sphere: 4D scattering amplitudes recast as 2D correlators!

- $\scriptstyle \bullet$ Constraints on Quantum Gravity ${\cal S}\mbox{-Matrix}$
- ▶ New insights into amplitude structures

UNIFIED TREATMENT OF "SOFT" MODES IN NEW CONFORMAL BASIS FOR FLAT SPACE HOLOGRAPHY:

- \blacktriangleright spectrum of primaries in 2D celestial CFT
- ▶ symplectic pairing of conformal primary wavefunctions
- \blacktriangleright conformal soft theorems for celestial amplitudes

UNIFIED TREATMENT OF "SOFT" MODES IN NEW CONFORMAL BASIS FOR FLAT SPACE HOLOGRAPHY:

- \blacktriangleright spectrum of primaries in 2D celestial CFT
- ▶ symplectic pairing of conformal primary wavefunctions
- ▶ conformal soft theorems for celestial amplitudes

What is the asymptotic symmetry group of Einstein gravity at null infinity ?

- ▶ identification of conformally soft gravitons with generators of:
 - $\star~{\rm BMS}$ symmetry
 - $\star\,$ Celestial conformal symmetry
 - Virasoro symmetry
 - $\operatorname{Diff}(S^2)$ symmetry

Holographic screen of Minkowski spacetime

[Ashtekar et al'70s-80s]

A new basis for QFT scattering amplitudes

4D Spacetime

4D Scattering matrix $\langle out|S|in \rangle$ $p_k^{\mu} = \omega_k q^{\mu}(z_k, \bar{z}_k), \ell_k$

4D Lorentz symmetry

2D CELESTIAL SPHERE

2D correlation function $\langle \mathcal{O}_1(z_1, \bar{z}_1) \dots \mathcal{O}_n(z_n, \bar{z}_n) \rangle$ $(z_k, \bar{z}_k), \Delta_k, J_k$

2D conformal symmetry

MOMENTUM BASIS

translation symmetry momentum eigenstates

 $e^{i\omega\,q\cdot X}$

$$p^{\mu} = \omega q^{\mu}(w, \bar{w}) , \ \ell$$

basis of $\omega \ge 0$ wavefunctions

Mellin transform

[de Boer,Solodukhin'03] CONFORMAL BASIS

conformal symmetry boost eigenstates

$$\stackrel{\int_0^\infty d\omega \omega^{\Delta - 1}}{\longrightarrow}$$

$$\frac{\mathcal{N}(\Delta)}{(-q \cdot X)^{\Delta}} \equiv \Phi^{\Delta}$$
$$w = \frac{p^1 + ip^2}{p^3 + p^0}, \ \Delta, \ J = \ell$$

basis of $\Delta \in 1 + i\mathbb{R}$ wavefunctions principal continuous series of $SL(2,\mathbb{C})$ [Pasterski,Shao'17]

Momentum Basis

translation symmetry momentum eigenstates

$$e^{i\omega\,q\cdot\,X}$$

$$p^{\mu} = \omega q^{\mu}(w, \bar{w}) , \ \ell$$

basis of $\omega \ge 0$ wavefunctions

Mellin transform

 $\int_0^\infty d\omega \omega^{\Delta-1}$

[de Boer,Solodukhin'03] CONFORMAL BASIS

conformal symmetry boost eigenstates

$$\frac{\mathcal{N}(\Delta)}{(-q \cdot X)^{\Delta}} \equiv \Phi^{\Delta}$$
$$m = \frac{p^1 + ip^2}{p^2} \quad \Delta = I$$

$$w = rac{p^2 + ip^2}{p^3 + p^0}, \ \Delta, \ J = \ell$$

basis of $\Delta \in 1 + i\mathbb{R}$ wavefunctions principal continuous series of $SL(2,\mathbb{C})$ [Pasterski,Shao'17]

$$\begin{split} \Phi^{\Delta} \text{ transforms as conformal primary with } (h,\bar{h}) &= \frac{1}{2}(\Delta,\Delta): \\ \Phi^{\Delta}\Big(\Lambda^{\mu}_{\nu}X^{\nu}; \frac{aw+b}{cw+d}, \frac{\bar{a}\bar{w}+\bar{b}}{\bar{c}\bar{w}+\bar{d}}\Big) &= (cw+d)^{2h}(\bar{c}\bar{w}+\bar{d})^{2\bar{h}}\Phi^{\Delta}(X^{\mu}; w, \bar{w}) \\ ad-bc &= 1 \end{split}$$

MOMENTUM BASIS

translation symmetry momentum eigenstates

$$e^{i\omega q \cdot X}$$

$$p^{\mu} = \omega q^{\mu}(w, \bar{w}) , \ \ell$$

basis of $\omega \ge 0$ wavefunctions

 $\underbrace{Mellin \ transform}_{\longrightarrow}$

 $\int_0^\infty d\omega \omega^{\Delta-1}$

 $\begin{array}{c} \mbox{[de Boer,Solodhkin'03]}\\ Conformal Basis \end{array}$

conformal symmetry boost eigenstates

$$\frac{\mathcal{N}(\Delta)}{(-q \cdot X)^{\Delta}} \equiv \Phi^{\Delta}$$
$$w = \frac{p^1 + ip^2}{2} \quad \Delta = I$$

$$w = rac{p^2 + ip^2}{p^3 + p^0}, \ \Delta, \ J = \ell$$

basis of $\Delta \in 1 + i\mathbb{R}$ wavefunctions principal continuous series of $SL(2,\mathbb{C})$ [Pasterski,Shao'17]

$$A^{\Delta}_{\mu;J} \text{ transforms as conformal primary with } (h,\bar{h}) = \frac{1}{2}(\Delta + J, \Delta - J):$$
$$A^{\Delta}_{\mu;J}\left(\Lambda^{\mu}_{\nu}X^{\nu}; \frac{aw+b}{cw+d}, \frac{\bar{a}\bar{w}+\bar{b}}{\bar{c}\bar{w}+\bar{d}}\right) = (cw+d)^{2h}(\bar{c}\bar{w}+\bar{d})^{2\bar{h}}\Lambda^{\sigma}_{\mu}A^{\Delta}_{\sigma;J}(X^{\rho}; w, \bar{w})$$
$$ad-bc = 1$$

Momentum Basis

translation symmetry momentum eigenstates

$$e^{i\omega q \cdot X}$$

$$p^{\mu} = \omega q^{\mu}(w, \bar{w}) , \ \ell$$

basis of $\omega \geqslant 0$ wavefunctions

 $\underbrace{Mellin \ transform}_{\longrightarrow}$

 $\int_0^\infty d\omega \omega^{\Delta-1}$

 $\begin{array}{c} \mbox{[de Boer,Solodhkin'03]}\\ Conformal Basis \end{array}$

conformal symmetry boost eigenstates

boost eigenstate

$$\frac{\mathcal{N}(\Delta)}{(-q \cdot X)^{\Delta}} \equiv \Phi^{\Delta}$$
$$w = \frac{p^1 + ip^2}{p^3 + p^0}, \ \Delta, \ J = \ell$$

basis of $\Delta \in 1 + i\mathbb{R}$ wavefunctions principal continuous series of $SL(2,\mathbb{C})$ [Pasterski,Shao'17]

$$h^{\Delta}_{\mu\nu;J} \text{ transforms as conformal primary with } (h,\bar{h}) = \frac{1}{2}(\Delta + J, \Delta - J):$$
$$h^{\Delta}_{\mu\nu;J}\Big(\Lambda^{\mu}_{\ \nu}X^{\nu}; \frac{aw+b}{cw+d}, \frac{\bar{a}\bar{w}+\bar{b}}{\bar{c}\bar{w}+\bar{d}}\Big) = (cw+d)^{2h}(\bar{c}\bar{w}+\bar{d})^{2\bar{h}}\Lambda^{\ \sigma}_{\mu}\Lambda^{\ \rho}_{\nu}h^{\Delta}_{\sigma\rho;J}(X^{\mu}; w, \bar{w})$$
$$ad-bc = 1$$

MOMENTUM BASIS

translation symmetry momentum eigenstates

$$e^{i\omega q \cdot X}$$

$$p^{\mu} = \omega q^{\mu}(w, \bar{w}) , \ \ell$$

basis of $\omega \ge 0$ wavefunctions

Mellin transform

 $\int_0^\infty d\omega \omega^{\Delta-1}$

[de Boer,Solodhkin'03] CONFORMAL BASIS

conformal symmetry

boost eigenstates

$$\frac{\mathcal{N}(\Delta)}{(-q \cdot X)^{\Delta}} \equiv \Phi^{\Delta}$$
$$w = \frac{p^1 + ip^2}{p^3 + p^0}, \ \Delta, \ J = \ell$$

basis of $\Delta \in 1 + i\mathbb{R}$ wavefunctions principal continuous series of $SL(2,\mathbb{C})$ [Pasterski,Shao'17]

 $h_{\mu\nu}^{\Delta}$ transforms as conformal primary with $(h, \bar{h}) = \frac{1}{2}(\Delta + J, \Delta - J)$: $h^{\Delta}_{\mu\nu;J}\Big(\Lambda^{\mu}_{\ \nu}X^{\nu};\frac{aw+b}{cw+d},\frac{\bar{a}\bar{w}+\bar{b}}{\bar{c}\bar{w}+\bar{d}}\Big) = (cw+d)^{2h}(\bar{c}\bar{w}+\bar{d})^{2\bar{h}}\Lambda^{\ \sigma}_{\mu}\Lambda^{\ \rho}_{\nu}h^{\Delta}_{\sigma\rho;J}(X^{\mu};w,\bar{w})$ ad - bc = 1

"State-operator correspondence":

massless particles \leftrightarrow operators on celestial sphere

Celestial amplitudes

[Pasterski,Shao,Strominger'17] [Cheung,de la Fuente,Sundrum'17]

4D amplitudes

 $\underbrace{Mellin\ transform}_{\longrightarrow}$

2D CORRELATORS

$$\mathcal{A}_{\ell_1...\ell_n}(\omega_1, z_1, \bar{z}_1, ..., \omega_n, z_n, \bar{z}_n) \xrightarrow{\prod_{k=1}^n \int_0^\infty d\omega_k \omega_k^{\Delta_k - 1}} \widetilde{\mathcal{A}}_{J_1...J_n}(\Delta_1, z_1, \bar{z}_1, ..., \Delta_n, z_n, \bar{z}_n)$$

$$= \langle \mathcal{O}_{\Delta_1,J_1}(z_1,\bar{z}_1)\ldots\mathcal{O}_{\Delta_n,J_n}(z_n,\bar{z}_n) \rangle$$

Celestial amplitudes

[Pasterski,Shao,Strominger'17] [Cheung,de la Fuente,Sundrum'17]

4D AMPLITUDES

 $\stackrel{Mellin\ transform}{\longrightarrow}$

2D CORRELATORS

$$\begin{aligned} \mathcal{A}_{\ell_1\dots\ell_n}(\omega_1, z_1, \bar{z}_1, \dots, \omega_n, z_n, \bar{z}_n) & \stackrel{\prod_{k=1}^n \int_0^\infty d\omega_k \omega_k^{\Delta_k - 1}}{\longrightarrow} & \widetilde{\mathcal{A}}_{J_1\dots J_n}(\Delta_1, z_1, \bar{z}_1, \dots, \Delta_n, z_n, \bar{z}_n) \\ &= \langle \mathcal{O}_{\Delta_1, J_1}(z_1, \bar{z}_1) \dots \mathcal{O}_{\Delta_n, J_n}(z_n, \bar{z}_n) \rangle \end{aligned}$$

E.g. MHV 4 gluon amplitude

$$\begin{aligned} \mathcal{A}_{--++} &\sim \frac{z_{12}^3}{z_{23}z_{34}z_{41}} \frac{\omega_1 \omega_2}{\omega_3 \omega_4} & \prod_{k=1}^4 \int_0^\infty \frac{d\omega_k \omega_k^{i\lambda_k}}{\lambda_k} \widetilde{\mathcal{A}}_{--++} &\sim \prod_{i$$

 $\int_0^\infty d\omega \omega^{\Delta-1}$

Plane Wavefunctions

Conformal Primary Wavefunctions

 $\omega \ge 0$ finite energy

 $\underline{on}\ principal\ continuous\ series$

 $\int_0^\infty d\omega \omega^{\Delta-1}$

Plane Wavefunctions

Conformal Primary Wavefunctions

on principal continuous series

 $\omega \ge 0$ finite energy

"energetically soft": $\omega \to 0$

Plane Wavefunctions

Conformal Primary Wavefunctions

$\omega \geqslant 0$

 $\int_0^\infty \frac{d\omega\omega^{\Delta-1}}{\longrightarrow}$

finite energy

"energetically soft": $\omega \to 0$

<u>on</u> principal continuous series

 $\Delta \in 1 + i\mathbb{R}$

"conformally soft": $h \to 0$ or $\bar{h} \to 0$

[Donnay, AP, Strominger'18]

orders of ω

[Donnay, AP, Strominger'18]

poles at $\Delta \in \mathbb{Z}$

 $of\!f\ principal\ continuous\ series$

$$\mathcal{A}_{n+1} \xrightarrow{\omega \to 0} \begin{pmatrix} \omega^{-1} S^{(0)} & + & \omega^0 S^{(1)} & + & \cdots \end{pmatrix} \mathcal{A}_n$$
$$\Delta \to 1 \qquad \Delta \to 0$$

Celestial gravitons with $\Delta \in 1 + i\mathbb{R}$

Solution to linearized Einstein: $\Box h_{\mu\nu} = 0$

[Pasterski,Shao'17]

in Lorenz gauge: $\nabla^{\mu} h_{\mu\nu} = 0$

$$\varepsilon_{\mu\nu;a} = \partial_a q_\mu \partial_a q_\nu$$

outgoing/incoming

$$h_{\mu\nu;a}^{\Delta,\pm}(X^{\mu};w,\bar{w}) = \frac{\Delta-1}{\Delta+1} \frac{\epsilon_{\mu\nu;a}}{(-q\cdot X_{\pm})^{\Delta}}$$

helicity index: a = ww gives J = +2, $a = \bar{w}\bar{w}$ gives J = -2

Celestial gravitons with $\Delta \in 1 + i\mathbb{R}$

Solution to linearized Einstein: $\Box h_{\mu\nu} = 0$

[Pasterski,Shao'17]

in Lorenz gauge: $\nabla^{\mu}h_{\mu\nu} = 0$ and radial gauge $X^{\mu}h_{\mu\nu} = 0$ $\epsilon_{\mu\nu;a} = \partial_a q_{\mu}\partial_a q_{\nu}$

butgoing/incoming

$$\zeta_{\mu;a}^{\Delta} = \frac{1}{\Delta+1} \left(\frac{\epsilon_{\mu\nu;a} X_{\pm}^{\nu}}{(-q\cdot X_{\pm})^{\Delta}} + \frac{q_{\mu}\epsilon_{\nu\rho;a} X_{\pm}^{\nu} X_{\pm}^{\rho}}{(-q\cdot X_{\pm})^{\Delta+1}} \right)$$

$$h_{\mu\nu;a}^{\Delta,\pm}(X^{\mu}; w, \bar{w}) = \frac{\Delta-1}{\Delta+1} \frac{\epsilon_{\mu\nu;a}}{(-q\cdot X_{\pm})^{\Delta}} + \nabla_{(\mu} \zeta_{\nu);a}^{\Delta,\pm}$$
helicity index: $a = ww$ gives $J = +2$, $a = \bar{w}\bar{w}$ gives $J = -2$

Basis of conformal primary wavefunctions $h_{\mu\nu;a}^{\Delta,\pm}$ for $\Delta \in 1 + i\mathbb{R}$. principal continuous series

Celestial gravitons with $\Delta \in 1 + i\mathbb{R}$

Solution to linearized Einstein: $\Box h_{\mu\nu} = 0$

[Pasterski,Shao'17]

in Lorenz gauge: $\nabla^{\mu}h_{\mu\nu} = 0$ and radial gauge $X^{\mu}h_{\mu\nu} = 0$ $\epsilon_{\mu\nu;a} = \partial_a q_{\mu}\partial_a q_{\nu}$

butgoing/incoming

$$\zeta_{\mu;a}^{\Delta} = \frac{1}{\Delta+1} \left(\frac{\epsilon_{\mu\nu;a} X_{\pm}^{\nu}}{(-q\cdot X_{\pm})^{\Delta}} + \frac{q_{\mu}\epsilon_{\nu\rho;a} X_{\pm}^{\nu} X_{\pm}^{\rho}}{(-q\cdot X_{\pm})^{\Delta+1}} \right)$$

$$h_{\mu\nu;a}^{\Delta,\pm}(X^{\mu}; w, \bar{w}) = \frac{\Delta-1}{\Delta+1} \frac{\epsilon_{\mu\nu;a}}{(-q\cdot X_{\pm})^{\Delta}} + \nabla_{(\mu} \zeta_{\nu);a}^{\Delta,\pm}$$
helicity index: $a = ww$ gives $J = +2$, $a = \bar{w}\bar{w}$ gives $J = -2$

Basis of conformal primary wavefunctions $h_{\mu\nu;a}^{\Delta,\pm}$ for $\Delta \in 1 + i\mathbb{R}$. principal continuous series

Shadow transform:

$$\widetilde{h_{\mu\nu;\overline{a}}^{\Delta,\pm}} = (-X_{\pm}^2)^{1-\Delta} h_{\mu\nu;a}^{2-\Delta,\pm} \equiv \widetilde{h}_{\mu\nu;a}^{\tilde{\Delta},\pm} \quad \text{where} \quad \widetilde{\Delta} = 2-\Delta$$

Celestial gravitons with $\Delta \in \mathbb{Z}$

[Donnay,Pasterski,AP'20]

arbitrary conformal dimension
$$\Delta \in \mathbb{C}$$
 principal continuous series $s \in 1 + i\mathbb{R}$
 $\downarrow^{\Delta,\pm}_{\mu\nu;a}(X^{\mu}; w, \bar{w}) = \lim_{\nu \to 0} \int_{1-i\infty}^{1+i\infty} (-ids) \, \boldsymbol{\delta}_{\nu,\gtrless}(i(\Delta - s)) h^{s,\pm}_{\mu\nu;a}(X^{\mu}; w, \bar{w})$

Celestial gravitons with $\Delta \in \mathbb{Z}$

[Donnay, Pasterski, AP'20]

Mode expansion and charge operators

[Donnay,Pasterski,AP'20]

General metric perturbations expanded on conformal basis:

$$h_{\mu\nu}(X) = \int d^2w \sum_{a=ww,\bar{w}\bar{w}} \int_{1-i\infty}^{1+i\infty} (-id\Delta) \left[\mathcal{N}^+_{2-\Delta} h^{2-\Delta,+}_{\mu\nu;\bar{a}}(X^{\mu};w,\bar{w}) \mathfrak{a}_a(\Delta;w,\bar{w}) + \mathcal{N}^-_{\Delta} h^{\Delta,-}_{\mu\nu;a}(X^{\mu};w,\bar{w}) \mathfrak{a}_a(\Delta;w,\bar{w})^{\dagger} \right]$$

Commutation relations:

$$[\mathfrak{a}_{j,a}(\Delta, w, \bar{w}), \mathfrak{a}_{j,a'}(\Delta', w', \bar{w}')^{\dagger}] = \delta_{aa'} \delta^{(2)}(w - w') \delta(i(\Delta + \bar{\Delta}' - 2))$$

Mode expansion and charge operators

[Donnay,Pasterski,AP'20]

General metric perturbations expanded on conformal basis:

$$h_{\mu\nu}(X) = \int d^2w \sum_{a=ww,\bar{w}\bar{w}} \int_{1-i\infty}^{1+i\infty} (-id\Delta) \left[\mathcal{N}_{2-\Delta}^+ h_{\mu\nu;\bar{a}}^{2-\Delta,+}(X^{\mu};w,\bar{w})\mathfrak{a}_{a}(\Delta;w,\bar{w}) + \mathcal{N}_{\Delta}^- h_{\mu\nu;a}^{\Delta,-}(X^{\mu};w,\bar{w})\mathfrak{a}_{a}(\Delta;w,\bar{w})^{\dagger} \right]$$

Commutation relations:

$$[\mathfrak{a}_{j,a}(\Delta, w, \bar{w}), \mathfrak{a}_{j,a'}(\Delta', w', \bar{w}')^{\dagger}] = \delta_{aa'} \delta^{(2)}(w - w') \delta(i(\Delta + \bar{\Delta}' - 2))$$

Analytically continued mode operator:

$$Q_a^{\Delta} \equiv \mathit{i}(h, h_{\bar{a}}^{\bar{\Delta}, +}(w, \bar{w}))_{\Sigma} = \mathit{i}(\mathcal{N}_{\Delta}^{-})^{-1}\mathfrak{a}_a(\Delta; w, \bar{w})$$

* shifts the metric as $[Q_a^{\Delta}(w, \bar{w}), h_{\mu\nu}(X)] = ih_{\mu\nu;a}^{\Delta,-}(X^{\mu}; w, \bar{w})$

* produces single particle states with $h^{\Delta,-}_{\mu\nu;a}$ when acting on the vacuum

 $Q_a^{\Delta=0,1}$: asymptotic **soft charges** at null infinity

What is the ASG of asymptotically flat space?
 Guess: Poincaré group (Lorentz transformations + translations)

What is the ASG of asymptotically flat space?
 Guess: Poincaré group (Lorentz transformations + translations)

BMS group

Boundary conditions:

[Bondi,van der Burg,Metzner,Sachs'62]

$$g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$$

Radial metric components determined by radial gauge condition.

BMS supertranslations:

$$\zeta_f = f \partial_u + \frac{1}{2} D^2 f \partial_r - \frac{1}{r} D^A f \partial_A + \dots \qquad \text{where } A = z, \overline{z}$$

BMS group

Boundary conditions:

[Bondi,van der Burg,Metzner,Sachs'62]

$$g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$$

Radial metric components determined by radial gauge condition.

BMS supertranslations:

$$\zeta_f = f \partial_u + \frac{1}{2} D^2 f \partial_r - \frac{1}{r} D^A f \partial_A + \dots$$
 where $A = z, \overline{z}$

Action of large diffeormorphism ζ_f on the free gravitational data C_{AB} :

$$\delta_f C_{AB} = f \partial_u C_{AB} - 2D_A D_B f + \gamma_{AB} D^2 f$$

 $\delta_f^{\text{shift}} C_{zz} = -2D_z^2 f(z, \bar{z})$

 \Rightarrow energy conserved at every angle

4 global translations $\xrightarrow{\text{enhanced}}$ angle-dependent supertranslations $f(z, \overline{z})$

\Rightarrow Poincaré group enhanced to BMS group

[Bondi,van der Burg,Metzner,Sachs'62]

Conformal spin-two basis contains a pure diffeo:

[Pasterski,Shao'17]

$$h_{\mu\nu;a}^{\Delta=1} = \nabla_{(\mu} \zeta_{\nu);a}^1 \quad \rightarrow \quad C_{zz;ww}^1 = -2D_z^2 f_{ww} \text{ with } f_{ww} = -\frac{1}{4} \frac{(\bar{z}-\bar{w})}{(z-w)(1+z\bar{z})}$$

Conformal spin-two basis contains a pure diffeo:

[Pasterski,Shao'17]

 \Rightarrow Goldstone mode of spontaneously broken BMS symmetry!

[He,Lysov,Mitra,Strominger'14]

$$Q_{f}^{soft} = -\frac{1}{16\pi G} \int du d^{2}z \sqrt{\gamma} \left(D_{z}^{2} f N^{zz} + D_{\bar{z}}^{2} f N^{\bar{z}\bar{z}} \right)$$

Bondi news $N_{zz} = \partial_u C_{zz}$

Conformal spin-two basis contains a pure diffeo:

[Pasterski,Shao'17]

 \Rightarrow Goldstone mode of spontaneously broken BMS symmetry!

[He,Lysov,Mitra,Strominger'14]

$$Q_f^{soft} = -\frac{1}{16\pi G} \int du d^2 z \sqrt{\gamma} \left(D_z^2 f N^{zz} + D_{\bar{z}}^2 f N^{\bar{z}\bar{z}} \right)$$

Bondi news $N_{zz} = \partial_u C_{zz}$

Puzzle:
$$\left(h_a^{\Delta=1+i\lambda}(w,\bar{w}), h_{a'}^{\Delta'=1+i\lambda'}(w',\bar{w}')\right)_{\Sigma} \sim \delta(\lambda-\lambda')\delta_{aa'}\delta^{(2)}(w-w')$$

Conformal primary pairing between $1 + i\lambda$ and $1 - i\lambda$.

Conformal spin-two basis contains a pure diffeo:

[Pasterski,Shao'17]

$$h_{\mu\nu;a}^{\Delta=1} = \nabla_{(\mu}\zeta_{\nu);a}^{1} \quad \rightarrow \quad C_{zz;ww}^{1} = -2D_{z}^{2}f_{ww} \text{ with } f_{ww} = -\frac{1}{4}\frac{(\bar{z}-\bar{w})}{(z-w)(1+z\bar{z})}$$
[Donnay,AP,Strominger'18]

 \Rightarrow Goldstone mode of spontaneously broken BMS symmetry!

[He,Lysov,Mitra,Strominger'14]

$$Q_f^{soft} = -\frac{1}{16\pi G} \int du d^2 z \sqrt{\gamma} \left(D_z^2 f N^{zz} + D_{\bar{z}}^2 f N^{\bar{z}\bar{z}} \right)$$

Bondi news $N_{zz} = \partial_u C_{zz}$

Puzzle:
$$\left(h_a^{\Delta=1+i\lambda}(w,\bar{w}), h_{a'}^{\Delta'=1+i\lambda'}(w',\bar{w}')\right)_{\Sigma} \sim \delta(\lambda-\lambda')\delta_{aa'}\delta^{(2)}(w-w')$$

Conformal primary pairing between $1 + i\lambda$ and $1 - i\lambda$.

What is the symplectic partner for
$$h_{\mu\nu;a}^{\Delta=1} = \tilde{h}_{\mu\nu;a}^{\tilde{\Delta}=1}$$
?

In the momentum basis the partner of the BMS Goldstone mode is the soft graviton. Very subtle to see from the Mellin transform!

Symplectically paired set of zero-modes

Hidden logarithmic branch:

[Donnay, AP, Strominger'18]

$$h_{\mu\nu;a}^{\log,\pm} = \lim_{\Delta \to 1} \partial_{\Delta} (h_{\mu\nu;a}^{\Delta,\pm} + \widetilde{h}_{\mu\nu;a}^{\tilde{\Delta},\pm})$$

yields a new $\Delta = 1$ conformal primary.

 $\Delta = 1$ Conformally soft graviton

 $h_{\mu\nu;a}^{\rm CS} = [\Theta\left(X^2\right) + \log[X^2](q \cdot X)\delta(q \cdot X)]h_{\mu\nu;a}^1$

Symplectically paired set of zero-modes

Hidden logarithmic branch:

[Donnay, AP, Strominger'18]

$$h_{\mu\nu;a}^{\log,\pm} = \lim_{\Delta \to 1} \partial_{\Delta} (h_{\mu\nu;a}^{\Delta,\pm} + \widetilde{h}_{\mu\nu;a}^{\tilde{\Delta},\pm})$$

yields a new $\Delta = 1$ conformal primary.

 $\Delta = 1 \text{ Conformally soft graviton}$ $h_{\mu\nu;a}^{\text{CS}} = [\Theta(X^2) + \log[X^2](q \cdot X)\delta(q \cdot X)]h_{\mu\nu;a}^1$

$$\left(h_{ww}^{CS}(w,\bar{w}), h'_{w'w'}^{1}(w',\bar{w}')\right)_{\Sigma} \sim \gamma_{w\bar{w}}\delta^{(2)}(w-w') \checkmark$$

Symplectically paired set of zero-modes (h^{CS}, h^1) .

Symplectically paired set of zero-modes

Hidden logarithmic branch:

[Donnay, AP, Strominger'18]

$$h_{\mu\nu;a}^{\log,\pm} = \lim_{\Delta \to 1} \partial_{\Delta} (h_{\mu\nu;a}^{\Delta,\pm} + \widetilde{h}_{\mu\nu;a}^{\widetilde{\Delta},\pm})$$

yields a new $\Delta = 1$ conformal primary.

$$\begin{split} \Delta &= 1 \text{ Conformally soft graviton} \\ h^{\text{CS}}_{\mu\nu;a} &= \left[\Theta\left(X^2\right) + \log[X^2](q \cdot X)\delta(q \cdot X)\right]h^1_{\mu\nu;a} \\ &\left(h^{CS}_{ww}(w,\bar{w}), h'^1_{w'w'}(w',\bar{w}')\right)_{\Sigma} \sim \gamma_{w\bar{w}}\delta^{(2)}(w-w') \checkmark \end{split}$$

Symplectically paired set of zero-modes (h^{CS}, h^1) .

 $P_w = 4D^w Q_{a=ww}^{\Delta=1}$ is the $(h, \bar{h}) = (\frac{3}{2}, \frac{1}{2})$ BMS supertranslation current. It generates BMS supertranslation symmetry.

[Barnich, Troessaert'09-'11] [Strominger'13]

BMS supertranslation current P with $(\Delta, J) = (2, \pm 1)$ in amplitudes: MOMENTUM BASIS: $\omega \rightarrow 0$

$$P_{w}\mathcal{O}_{\omega}(z) \sim \frac{\omega}{z-w}\mathcal{O}_{\omega}(z)$$
energy $\omega \to 0$
Weinberg's soft graviton theorem
[Weinberg'
lim $\omega_n \mathcal{A}_n(\omega_1, ..., \omega_k, ..., \omega_n)$

1.1

m 651

$$\lim_{\omega_n \to 0} \omega_n \mathcal{A}_n(\omega_1, ..., \omega_k, ..., \omega_n)$$

= $S^{(0)} \mathcal{A}_{n-1}(\omega_1, ..., \omega_k, ..., \omega_{n-1})$

$$S^{(0)} = \sum_{k=1}^{n-1} \omega_k s(z_k, z_n)$$

BMS supertranslation current P with $(\Delta, J) = (2, \pm 1)$ in amplitudes: MOMENTUM BASIS: $\omega \to 0$ Conformal Basis: $\Delta \to 1$

$$P_w \mathcal{O}_\omega(z) \sim \frac{\omega}{z-w} \mathcal{O}_\omega(z)$$

$$= \text{soft pole} \times$$

1.1

Weinberg's soft graviton theorem [Weinberg'65]

$$\lim_{\omega_n \to 0} \omega_n \mathcal{A}_n(\omega_1, ..., \omega_k, ..., \omega_n)$$
$$= S^{(0)} \mathcal{A}_{n-1}(\omega_1, ..., \omega_k, ..., \omega_{n-1})$$
$$S^{(0)} = \sum_{k=1}^{n-1} \omega_k s(z_k, z_n)$$

BMS supertranslation current P with $(\Delta,J)=(2,\pm 1)$ in amplitudes:

MOMENTUM BASIS: $\omega \rightarrow 0$

$$P_w \mathcal{O}_\omega(z) \sim \frac{\omega}{z-w} \mathcal{O}_\omega(z) \longrightarrow$$

Conformal Basis: $\Delta \rightarrow 1$

$$P_w \mathcal{O}_{(\Delta,J)}(z) \sim \frac{1}{z-w} \mathcal{O}_{(\Delta+1,J)}(z)$$

[Donnay, AP, Strominger'18]

Weinberg's soft graviton theorem [Weinberg'65]

$$\lim_{\omega_n \to 0} \omega_n \mathcal{A}_n(\omega_1, ..., \omega_k, ..., \omega_n)$$
$$= S^{(0)} \mathcal{A}_{n-1}(\omega_1, ..., \omega_k, ..., \omega_{n-1})$$
$$n-1$$

$$S^{(0)} = \sum_{k=1}^{\infty} \omega_k s(z_k, z_n)$$

BMS supertranslation current P with $(\Delta, J) = (2, \pm 1)$ in amplitudes:

Momentum Basis: $\omega \rightarrow 0$

$$P_w \mathcal{O}_\omega(z) \sim \frac{\omega}{z-w} \mathcal{O}_\omega(z)$$
 —

Weinberg's soft graviton theorem [Weinberg'65]

$$\lim_{\omega_n \to 0} \omega_n \mathcal{A}_n(\omega_1, ..., \omega_k, ..., \omega_n)$$
$$= S^{(0)} \mathcal{A}_{n-1}(\omega_1, ..., \omega_k, ..., \omega_{n-1})$$

$$S^{(0)} = \sum_{k=1}^{n-1} \omega_k s(z_k, z_n)$$

Conformal Basis: $\Delta \rightarrow 1$

$$P_w \mathcal{O}_{(\Delta,J)}(z) \sim \frac{1}{z-w} \mathcal{O}_{(\Delta+1,J)}(z)$$

[[]Donnay, AP, Strominger'18]

Conformal soft graviton theorem [Adamo,Mason,Sharma'19][AP'19][Guevara'19]

$$\lim_{\Delta_n \to 1} (\Delta_n - 1) \widetilde{\mathcal{A}}_n(\Delta_1, ..., \Delta_k, ..., \Delta_n)$$
$$= \sum_{k=1}^{n-1} \widetilde{S}_k^{(0)} \widetilde{\mathcal{A}}_{n-1}(\Delta_1, ..., \Delta_k + 1, ..., \Delta_{n-1})$$
$$\widetilde{S}_k^{(0)} = s(z_k, z_n)$$

BMS group

= Lorentz and translations

$$g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$$

Extended BMS group

Boundary conditions:

[Banks'03] [Barnich, Troessaert'09-'11]

translations

 \downarrow local enhancement

$$g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$$

= Lorentz and trans

Extended BMS group

Boundary conditions:

[Banks'03] [Barnich, Troessaert'09-'11]

local enhancement

$$g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$$

= Lorentz and translations

Virasoro and $\text{Diff}(S^2)$ superrotations:

$$\begin{split} Y(z) & \text{and} \quad Y(z,\bar{z}) & \text{allowed to be singular on } S^2 \\ \xi_Y &= u\alpha\partial_u - \left(\alpha r + u\left(\frac{D^2}{2} + 2\right)\alpha\right)\partial_r + \left(Y^A + \frac{u}{2r}((D^2 + 1)Y^A - 2D^A\alpha)\right)\partial_A + \dots \\ & \text{where } \alpha = \frac{1}{2}D_CY^C \end{split}$$

Boundary conditions:

[Banks'03] [Barnich, Troessaert'09-'11]

translations

_local enhancement

 $g_{uu} = -1 + \mathcal{O}(1/r), \quad g_{uA} = \mathcal{O}(1), \quad g_{AB} = r^2 \gamma_{AB} + rC_{AB} + \mathcal{O}(1)$

= Lorentz and trans

Virasoro and $\text{Diff}(S^2)$ superrotations:

$$\begin{split} Y(z) & \text{and} \quad Y(z,\bar{z}) & \text{allowed to be singular on } S^2 \\ \xi_Y &= u\alpha\partial_u - \left(\alpha r + u\left(\frac{D^2}{2} + 2\right)\alpha\right)\partial_r + \left(Y^A + \frac{u}{2r}((D^2 + 1)Y^A - 2D^A\alpha)\right)\partial_A + \dots \\ & \text{where } \alpha = \frac{1}{2}D_CY^C \end{split}$$

Action of large diffeormorphism ξ_Y on γ_{AB} and C_{AB} :

$$\begin{split} &\delta_Y^{\text{shift}} \gamma_{\overline{z}\overline{z}} = 2\gamma_{z\overline{z}} D_{\overline{z}} Y^z(z,\overline{z}) \\ &\delta_Y^{\text{shift}} C_{zz} = -u D_z^3 Y^z(z,\overline{z}) \\ \Rightarrow \text{ angular momentum conserved } at \ every \ angle \end{split}$$

6 global rotations and boosts $\xrightarrow{\text{enhanced}}$ angle-dependent superrotations $Y^A(z, \bar{z})$

\Rightarrow BMS group enhanced to extended BMS group

[Kapec,Lysov,Pasterski,Strominger'14]

[Campiglia,Laddha'14]

[Cachazo, Strominger'14]

[Kapec,Lysov,Pasterski,Strominger'14]

[Campiglia,Laddha'14]

Subleading Soft Graviton Theorem

$$\lim_{\omega \to 0} (1 + \omega \partial_{\omega}) \langle out | \mathfrak{a}(q) \mathcal{S} | in \rangle = S^{(1)} \langle out | \mathcal{S} | in \rangle$$

[Cachazo, Strominger'14]

Virasoro and $\text{Diff}(S^2)$ asymptotic symmetry group proposals are related from celestial CFT perspective!

Celestial $\widetilde{\Delta} = 2$ and $\Delta = 0$ gravitons

$$\begin{split} \widetilde{\Delta} &= 2 - \Delta = 2 \text{ Goldstone mode} & \text{[Pasterski,Shao'17]} \\ \widetilde{h}_{\mu\nu;a}^{\widetilde{\Delta}=2} &= \nabla_{(\mu}\xi_{\nu);a}^2 \quad \rightarrow \quad \widetilde{C}_{zz;ww}^2 = -uD_z^3 Y_{ww}^z \text{ with } Y_{ww}^z(z) = \frac{1}{6(z-w)} & \text{[Donnay,AP,Strominger'18]} \end{split}$$

$\Delta=0 \ {\rm Goldstone} \ {\rm mode}$

[Pasterski,Shao'17]

$$\begin{split} \widetilde{\Delta} &= 2 - \Delta = 2 \text{ Goldstone mode} \\ \widetilde{h}_{\mu\nu;a}^{\widetilde{\Delta}=2} &= \nabla_{(\mu}\xi_{\nu);a}^2 \quad \rightarrow \quad \widetilde{C}_{zz;ww}^2 = -uD_z^3 Y_{ww}^z \text{ with } Y_{ww}^z(z) = \frac{1}{6(z-w)} \\ \text{[Donnay,AP,Strominger'18]} \end{split}$$

 T_{ww} is the $(h, \bar{h}) = (2, 0)$ 2D stress tensor for 4D gravity. It generates Virasoro superrotation symmetry.

[Kapec,Mitra,Raclariu,Strominger'16]

$\Delta = 0$ Goldstone mode

[Pasterski,Shao'17]

$$h_{\mu\nu;a}^{\Delta=0} = \nabla_{(\mu}\xi_{\nu);a}^{0} \quad \rightarrow \quad C_{zz;\bar{w}\bar{w}}^{0} = -uD_{z}^{3}Y_{\bar{w}\bar{w}}^{z} \text{ with } Y_{\bar{w}\bar{w}}^{z}(z,\bar{z}) = -\frac{(z-w)^{2}}{2(\bar{z}-\bar{w})}$$
[Donnay,Pasterski,AP'20]

$$\begin{split} \widetilde{\Delta} &= 2 - \Delta = 2 \text{ Goldstone mode} \\ \widetilde{h}_{\mu\nu;a}^{\widetilde{\Delta}=2} &= \nabla_{(\mu}\xi_{\nu);a}^2 \quad \rightarrow \quad \widetilde{C}_{zz;ww}^2 = -uD_z^3 Y_{ww}^z \text{ with } Y_{ww}^z(z) = \frac{1}{6(z-w)} \\ \text{[Donnay,AP,Strominger'18]} \end{split}$$

 T_{ww} is the $(h, \bar{h}) = (2, 0)$ 2D stress tensor for 4D gravity. It generates Virasoro superrotation symmetry.

[Kapec,Mitra,Raclariu,Strominger'16]

$\Delta = 0$ Goldstone mode

[Pasterski,Shao'17]

 $\tilde{T}_{\bar{w}\bar{w}}$ is the $(h,\bar{h}) = (-1,1)$ shadow of 2D stress tensor. It generates $\text{Diff}(S^2)$ "shadow superrotation" symmetry. [Donnav.Pasterski,AP'20]

Iyer-Wald symplectic structure

$$\Omega[\delta g, \delta_Y^{\text{shift}} g; g] = \int_{\mathcal{I}^+} \omega[\delta g, \delta_Y^{\text{shift}} g; g]$$

for variations δg and $\delta_Y^{\text{shift}} g = h^0$ or \tilde{h}^2 around fixed background g.

Iyer-Wald symplectic structure

$$\Omega[\boldsymbol{\delta g}, \boldsymbol{\delta_Y^{\mathrm{shift}}} g; g] = \int_{\mathcal{I}_z^+} \omega[\boldsymbol{\delta g}, \boldsymbol{\delta_Y^{\mathrm{shift}}} g; g]$$

for variations δg and $\delta_Y^{\text{shift}} g = h^0$ or \tilde{h}^2 around fixed background g.

* Divergence due to $\delta_Y^{\text{shift}} \gamma_{\bar{z}\bar{z}} = \begin{cases} \gamma_{z\bar{z}} \frac{(z-w)^2}{(\bar{z}-\bar{w})^2} & h_{\bar{w}\bar{w}}^0 \\ \frac{2\pi}{3}\gamma_{z\bar{z}}\delta^{(2)}(z-w) & \tilde{h}_{ww}^2 \end{cases}$ (previously dropped)

requires renormalization procedure:

[Compère,Fiorucci,Ruzziconi'18]

 $\Omega^{ren}[\underline{\delta g}, \underline{\delta g}_Y^{\text{shift}}; g] \equiv -\underline{\delta Q}_Y$

Iyer-Wald symplectic structure

$$\Omega[\delta g, \delta_Y^{\text{shift}} g; g] = \int_{\mathcal{I}_{+}^{+}} \omega[\delta g, \delta_Y^{\text{shift}} g; g]$$

for variations δg and $\delta_Y^{\text{shift}} g = h^0$ or \tilde{h}^2 around fixed background g.

* Divergence due to $\delta_Y^{\text{shift}} \gamma_{\bar{z}\bar{z}} = \begin{cases} \gamma_{z\bar{z}} \frac{(z-w)^2}{(\bar{z}-\bar{w})^2} & h_{\bar{w}\bar{w}}^0 \\ \frac{2\pi}{3}\gamma_{z\bar{z}}\delta^{(2)}(z-w) & \tilde{h}_{ww}^2 \end{cases}$ (previously dropped)

requires renormalization procedure:

[Compère,Fiorucci,Ruzziconi'18]

$$\Omega^{ren}[\boldsymbol{\delta g}, \boldsymbol{\delta g}_Y^{\text{shift}}; g] \equiv -\boldsymbol{\delta Q}_Y$$

 \star Residual ambiguity fixed by consistency w/ subleading soft theorem:

$$Q_Y^{soft} = \mathcal{Q}_Y + \int du \partial_u \Delta \mathcal{Q}_Y$$

Iyer-Wald symplectic structure

$$\Omega[\boldsymbol{\delta g}, \boldsymbol{\delta_Y^{\mathrm{shift}}} g; g] = \int_{\mathcal{I}_{\sim}^+} \omega[\boldsymbol{\delta g}, \boldsymbol{\delta_Y^{\mathrm{shift}}} g; g]$$

for variations δg and $\delta_Y^{\text{shift}} g = h^0$ or \tilde{h}^2 around fixed background g.

 $\star \text{ Divergence due to } \delta_Y^{\text{shift}} \gamma_{\bar{z}\bar{z}} = \begin{cases} \gamma_{z\bar{z}} \frac{(z-w)^2}{(\bar{z}-\bar{w})^2} & h_{\bar{w}\bar{w}}^0 \\ \frac{2\pi}{3}\gamma_{z\bar{z}}\delta^{(2)}(z-w) & \tilde{h}_{ww}^2 \end{cases} \text{ (previously dropped)}$

 $requires\ renormalization\ procedure:$

[Compère,Fiorucci,Ruzziconi'18]

$$\Omega^{ren}[\boldsymbol{\delta g}, \boldsymbol{\delta g}_Y^{\text{shift}}; g] \equiv -\boldsymbol{\delta Q}_Y$$

★ Residual ambiguity fixed by consistency w/ subleading soft theorem: $Q_Y^{soft} = Q_Y + \int du \partial_u \Delta Q_Y$

Soft charge associated with Virasoro and $\text{Diff}(S^2)$ superrotations:

$$Q_Y^{soft} = \frac{1}{16\pi G} \int du d^2 z \sqrt{\gamma} \ u D_z^3 \ Y^z N^{zz} = \begin{cases} -2\pi \delta^{(2)}(z-w) & h_{\bar{y}\bar{y}w}^0 \\ -\frac{1}{(z-w)^4} & \tilde{h}_{ww}^2 \end{cases}$$

[Donnay, Pasterski, AP'20]

Bondi news $N_{zz} = \partial_u C_{zz}$

Agrees with results in Bondi gauge for Virasoro [Kapec,Lysov,Pasterski,Strominger'14] and for $\mathrm{Diff}(S^2)$ [Campiglia,Laddha'15] [Compère,Fiorucci,Ruzziconi'18] .

[Kapec,Lysov,Pasterski,Strominger'14]

[Campiglia,Laddha'14]

 $\lim_{\omega \to 0} (1 + \omega \partial_{\omega}) \langle out | \mathfrak{a}_{-}(q) \mathcal{S} | in \rangle = S^{(1)-} \langle out | \mathcal{S} | in \rangle$

[Cachazo, Strominger'14]

[Kapec,Lysov,Pasterski,Strominger'14]

[Campiglia,Laddha'14]

[Kapec,Lysov,Pasterski,Strominger'14]

[Campiglia,Laddha'14]

Asymptotic symmetry group of Einstein gravity at null infinity should include closure of Virasoro under shadows within $\text{Diff}(S^2)$.

Celestial CFT perspective

$$\tilde{Q}_{ww}^{\tilde{\Delta}=2} \xleftarrow{\text{shadow}} Q_{\bar{w}\bar{w}}^{\Delta=0}$$

Celestial CFT perspective

$$\tilde{Q}_{ww}^{2\,ren} = Q_Y^{soft} [Y_{ww}^z = \frac{1}{6(z-w)}] \qquad Q_{\bar{w}\bar{w}}^{0\,ren} = Q_Y^{soft} [Y_{\bar{w}\bar{w}}^z = -\frac{1}{2} \frac{(z-w)^2}{(\bar{z}-\bar{w})}]$$

Virasoro superrotations

 $\operatorname{Diff}(S^2)$ shadow superrotations

Celestial CFT perspective

Virasoro superrotations and $\text{Diff}(S^2)$ shadow superrotations are on equal footing via the shadow transform

Conclusion

Unified treatment of conformally soft Goldstone modes of spontaneously broken asymptotic symmetries for flat space holography.

Massless particles described as conformal primary wavefunctions with (Δ, J) under $SL(2, \mathbb{C})$ Lorentz group in celestial CFT:

- finite energy \rightarrow principal continuous series $\Delta \in 1 + i\mathbb{R}$
- energetically soft \rightarrow conformally soft $\Delta \in \mathbb{Z}$

contour integral

- symplectically paired set of zero-modes
- ▶ conformal soft theorems for celestial amplitudes

	$\widetilde{A}^{\widetilde{\Delta}}_{\mu}$	$\widetilde{h}_{\mu u}^{\widetilde{\Delta}}$	
$\widetilde{\Delta}$	1	1	2
symmetry	large $U(1)$	supertranslation	Virasoro superrotation
soft charge	\mathcal{J}	Р	T
	A^{Δ}_{μ}	$h^{\Delta}_{\mu u}$	
Δ	1	1	0
symmetry	large $U(1)$	supertranslation	$\operatorname{Diff}(S^2)$ shadow superrotation
soft charge	\mathcal{J}	Р	\widetilde{T}

FLAT SPACE HOLOGRAPHY

a developing story

[see also talks by Raju and Strominger]

FLAT SPACE HOLOGRAPHY

a developing story

[see also talks by Raju and Strominger]

THANK YOU!