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abstract

Supersymmetric quantum field theories in four spacetime dimensions with N = 2 super-

symmetry will be introduced in a pseudo-mathematical language. Topics covered include

the idea of categories of quantum field theories, general properties of N = 2 supersymmet-

ric theories and their relation to W-algebras and to elliptic generalizations of Macdonald

functions. This is a combined write-up of the lectures given by the author at IPMU and at

RIMS in 2012 and at Komaba in 2013.
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0 Introduction

0.1 Useless forewords

The study of supersymmetric quantum field theory (QFT) by physicists has led to a few

mathematical conjectures, such as mirror symmetry and the relation of instantons and

vertex operator algebras. This clearly shows that the QFT itself should be a rich subject for

mathematicians. Indeed, there have been many mathematical formulations of QFTs. But

none of them really explains how physicists sometimes come up with new mathematical

results, because the formulations so far available were based on QFTs as understood by

physicists a few decades ago. It seems to the author, therefore, that it would not be

completely useless if someone tries to formulate the concept of QFTs mathematically once

again, so that it captures what physicists do with them in this 21st century. The author likes

to compare mathematicians with civilized city-dwellers and physicists with barbaric tribes in

the rain forests. Civilized city-dwellers are puzzled how those barbarians, speaking a strange

tongue, can sometimes dig out precious stones from their soil. However, these should not

stop civilized city-dwellers to try to make contact with them. Every language has a grammar,

even the one spoken by unseemly barbarians. With the general method of linguistics at hand,

civilized city-dwellers can start deciphering their language, and communicating with them.

It might even happen that some of the barbarians have already learnt to speak English,

albeit with a very strong accent, and that s/he can help explain barbarians’ cultures to

the city-dwellers. Once the city-dwellers are somewhat acquainted with the barbaric way of

life, they can directly come to the rain forests, introduce the civilization to the barbarians,

and effectively excavate all the precious materials from their land. As a barbarian who has

a partial knowledge of English, the author thinks that he might be able to help the city-

dwellers understand how barbarians speak to each other. This lecture note contains the

author’s first attempt in this direction. It does not contain a fully developed grammar of

the barbarians’ language, because it is clearly beyond the author’s ability. The real grammar

of the barbarians’ language needs to be written by civilized city-dwellers themselves in the

future. Hopefully that will not induce civilized city-dwellers coming to the rain forests en

masse, burning down all the beautiful trees here without caring the rights of the barbaric

inhabitants here.

Let us now turn to a more practical side. There are many mathematical papers where

QFTs are analyzed using the language of (higher) categories. The prototypical example is

the Atiyah-Segal formulation of the topological QFT, where the topological QFT is formu-

lated as a functor between two categories.

The author’s opinion is that we need to push this view point one step further, by re-

garding QFTs themselves as objects in something like a category. The important point is

that a QFT (although not usually rigorously constructed mathematically) is a mathematical

object, much like a group, a space or an algebra. Then, similarly to those more familiar

mathematical objects, we can consider morphisms between two QFTs and various opera-

tions on QFTs. In this review a central role is played by the concept of a G-symmetric QFT,
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for a group G. This is not a QFT with a G-action in a naive sense. But it has almost all

the familiar properties of “something with G-action”. For example, given a G-symmetric

Q and a subgroup H ⊂ G, one can be forgetful and think Q as an H-symmetric QFT.

One can construct from Gi-symmetric QFTs Qi a G1 × G2-symmetric Q1 × Q2, and from

G × F -symmetric QFT Q we can construct F -symmetric QFT Q/−G, once the operations

× and /− are defined with care. One can also extract various invariants from Q. One is

the vacuum manifold Mvac(Q), which gives a Riemanninan manifold with G-action from

a G-symmetric QFT Q. Then Mvac can be thought of as a functor from the category of

QFTs to the category of Riemanninan manifolds.

Another point is that the difficulty of QFTs is often associated to the difficulty of making

sense of the concept of the path integrals, i.e. an infinite-dimensional integral over the space

of maps. There is definitely a lot of truths in this statement, but physicists have learned a lot

from experience when the path integrals make sense to which extent, and these properties

can be stated quite precisely. Then mathematicians might be able to work on them as a

kind of a set of axioms from which one can be inspired, rather as in the situation when

Weil supposed the existence of a certain good cohomology theory yet to be constructed,

but with a good properties, to deduce many interesting conjectures. Also, not all QFTs

can be defined as a path integral, and there are many QFTs which can be at present

only defined as something which satisfies the basic axioms of QFTs with a certain number

of additional known properties. Therefore, there seem to be many parts of the QFTs

which even mathematicians can learn, formalize and work on without completely ironing

out the details of what a path integral is. Once this exercise is developed to a certain

extent, mathematicians will hopefully be able to understand how physicists come up with

mathematical conjectures in their own terms.

A final point the author wants to make is the following. There have been many attempts

to axiomatize quantum field theories in the past. Every time, when one great mathemati-

cian and/or mathematical physicist axiomatizes the quantum field theories as practised by

physicists in his/her days, a mathematical community forms around that work, deepening

the understanding. This is not necessarily a bad thing. However, the quantum field theories

as practised by physicists have been a moving target, and mathematicians who are already

working on a formulation of quantum field theories should look, once in a while, at what

physicists do in practice with regard to quantum field theories. They can then hopefully

try to incorporate what physicists developed or found important in the meantime into their

already great axiomatizations. The authors hope that this lecture note would serve a rough

guide for mathematicians to have a glimpse of what theoretical physicists at the first third

of 2010s are doing with quantum field theories.

0.2 Organization of the contents

In Sec. 1 we develop a pseudo-mathematical language describing quantum field theories

(QFTs) in general. We basically follow the formulation of Atiyah and Segal, adopted to

QFTs in the presence of the Riemannian metric. A d-dimensional G-symmetric QFT Q, very
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naively, gives a complex number ZQ(X) given a d-dimensional manifold X with Riemannian

metric, together with a G-bundle with connection on it. We call ZQ(X) the partition

function of Q on X. We introduce three central concepts:

• The product of two QFTsQ1 andQ2. It is simply given by ZQ1×Q2(X) = ZQ1(X)ZQ2(X).

• The operation which we call gauging by a group G. Given a G×F -symmetric QFT Q,

this operation produces Q/−G, which is an F -symmetric QFT. The symbol /− is chosen

to suggest to the reader that its formal property is somewhat akin to the quotient

operation of a space X with a group action G. Just as X/G does not have a G action,

the result of the gauging Q/−G no longer has the G symmetry.

• The functors called free bosonsBd and free fermions Fd. They map a finite-dimensional

representation V of G to d-dimensional G-symmetric QFTs. Moreover, Bd(V ⊕W ) =

Bd(V )×Bd(W ), and similarly for Fd.

In Sec. 1 we state the properties of QFTs matter-of-factly, and the reader is not expected

to understand this section. The formalism which will be presented is a certain mixture of

standard formalisms:

• As in the standard functorial formulations, for a manifold X with boundary ∂X =

Y1 t −Y2, we have vector spaces HQ(Y1,2) and a linear map

ZQ(X) : HQ(Y1)→ HQ(Y2) (0.2.1)

• As in the standard Osterwalder-Schroeder or Wightman axioms, for a manifold X

without boundary with n points p1, . . . , pn ∈ X marked by labels v1, . . . , vn, we have

a complex number

〈v1(p1) · · · vn(pn)〉X ≡ ZQ(X; (p1, v1), . . . , (pn, vn)) ∈ C. (0.2.2)

• In general, a QFT Q associates linear maps as in (0.2.1) to a manifold with boundary

with points marked by labels. More generally, a manifold with boundary can have

various submanifolds with various dimensions marked by various labels.

The section concludes with the discussion of the Standard Model of the particle physics

phrased in the language of this review.

In Sec. 2, we develop the concept of four-dimensional N = 2 supersymmetric QFTs.

Correspondingly to the three operations in Sec. 1, we will discuss

• The product of two N = 2 supersymmetric QFTs. This is just the same as the

non-supersymmetric version.

• N = 2 supersymmetric version of the gauging. Given a G × F -symmetric N = 2

supersymmetric QFT Q, this operation creates Q/−/−/−G which is an F -symmetric N =

2 supersymmetric QFT.
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• The functor called Hyp. Given a pseudoreal representation V of G, Hyp(V ) is a

G-symmetric N = 2 supersymmetric QFT.

For each such QFTQ, we discuss the Donagi-Witten integrable systemDW (Q)→MCoulomb(Q)

and the Higgs branchMHiggs(Q) which is a hyperkähler manifold, and various other invari-

ants associated to Q.

An N = 2 supersymmetric QFT of the form Hyp(V ) /−/−/−G is called an N = 2 supersym-

metric gauge theory. To determine its Donagi-Witten integrable system is what is usually

referred to as the Seiberg-Witten theory in the physics literature. This is related but dis-

tinct from what is called the theory of the Seiberg-Witten invariants of four-dimensional

manifolds, about which we do not have the space to discuss in this review. We discuss many

examples of the Donagi-Witten integrable system for the theories of the form Hyp(V ) /−/−/−G,

and discuss the relation to the Hitchin system on an auxiliary Riemann surface with punc-

tures.

In Sec. 3, we first introduce the concept of the dimensional reduction. Very roughly, the

idea is the following. We start from a d-dimensional QFT Q and a d′-dimensional manifold

Y . Then we define the d− d′-dimensional QFT Q[Y ] by declaring ZQ[Y ](X) = ZQ(X × Y ).

We introduce a class of six-dimensional theory SΓ, where Γ is a simply-laced Dynkin diagram.

Let G be a simple group of type Γ. Given a Riemann surface C with punctures pi labeled

by nilpotent elements ei, the dimensional reduction SΓ[C, {ei}] is a four-dimensional N = 2

supersymmetric
∏

iG
ei-symmetric theory. These are the class S theories. In particular,

when e = 0 the symmetry is Ge = G itself. One of the most important features is Gaiotto’s

gluing operation, which maps the gluing of two Riemann surfaces to the gauging of the

product of N = 2 QFTs:[
SΓ[

e=0
]× SΓ[

e=0
]

]
/−/−/−Gdiag

∣∣
τ
= SΓ[ ]. (0.2.3)

We also explain various cases when SΓ[C, {ei}] is an N = 2 gauge theory. Together with the

general fact that the Donagi-Witten system of SΓ[C, {ei}] is the G-Hitchin system on C with

singularities given by the dual orbit of ei, it explains the form of many of the Donagi-Witten

system of N = 2 gauge theories.

After these preparations, we discuss in Sec. 4 and in Sec. 5 two applications. In Sec. 4 we

study Nekrasov’s partition function of the class S theories. Nekrasov’s partition function of

an N = 2 gauge theory is a certain equivariant integral over the moduli space of instantons.

When the N = 2 gauge theory is a class S theory, we will argue, based on the general

properties developed in the preceding sections, that Nekrasov’s partition function of it has

another interpretation as the conformal block of the W-algebra. In Sec. 5, we consider the

partition function of class S theories on S3 × S1. We explain that this is governed by an

elliptic generalization of Macdonald functions. In a certain limit, this provides an explicit

formula of the Hilbert series of various hyperkähler cones, including instanton moduli spaces

of exceptional groups.
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N=2 supersymmetric QFT

pseudoreal vector space

C

Hyp(V)

marked Riemann surface

V

SΓ(C)
/�/�/�Hyp(V) G

Q

ZNek(Q)DW(Q)

MCoulomb(Q) MHiggs(Q)

ch C[MCoulomb(Q)] ch C[MHiggs(Q)]

ZSCIp=0,q,t(Q)

ZSCIp,q,t(Q)

Figure 1: Interrelation of the objects we discuss concerning N = 2 supersymmetric theories.

Black arrows show that the object at the head follows from the object at the tail. Red arrows

show easily computable structures; ZNek(Q) for Q = Hyp(V ) /−/−/−G is practically computable

only when V is zero dimensional or G is a product of type A groups, thus the dotted red

arrow. The ones in the dotted box, DW (Q) and ZNek(Q), do depend on the continuous

deformation of Q. But the other objects derived from Q are independent of the continous

deformation of Q.
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0.3 Properties of four-dimensional N = 2 theories that we discuss

During the course of this lecture note, we visit various structures associated to N = 2 su-

persymmetric theories, which are summarized in Fig. 1. We learn two methods to construct

N = 2 theories:

• Starting from a pseudoreal representation V of G, we have Hyp(V ) /−/−/−G, see Sec. 2.5

and 2.6.

• Starting from Γ a simply-laced Dynkin diagram, a Riemann surface C with points

pi marked by nilpotent orbits ei of gC where g is a Lie algebra of type Γ , we have

SΓ(C; (pi, ei)). See Sec. 3.6.

Given an N = 2 supersymmetric QFT Q, we discuss the following objects associated to it:

• a hyperkähler manifold MHiggs(Q), which will be introduced in Sec. 2.4.

• a holomorphic integral system DW (Q), whose base is MCoulomb(Q). MCoulomb(Q) is

introduced in Sec. 2.4, and DW (Q) is presented in Sec. 2.9.

• Nekrasov partition function ZNek(Q), discussed in Sec. 4. This is essentially ZQ(R4)

with an extra equivariant twist. By taking a limit, DW (Q) can be reconstructed, as

discussed in Sec. 4.1.

• the superconformal index ZSCI
p,q,t(Q), discussed in Sec. 5. This is essentially ZQ(S3×S1).

Most of these objects, except DW (Q) and ZNek(Q), do not change under a continuous

deformation of Q.

When Q = Hyp(V ) /−/−/−G, MHiggs(Q), MCoulomb(Q) are both easily computable, as dis-

cussed in Sec. 2.6. ZSCI(Q) also has an explicit formula given in Sec. 5.2. When G is a

product of SU gauge groups, we have an explicit formula for ZNek(Q), since we can evaluate

the definition given in Sec. 4.1 by localization. To determine the Donagi-Witten integrable

system DW (Q) is the main content of the Seiberg-Witten theory as known in the physics

literature. But there is no known uniform way to do this.

When Q = SΓ(C), its Donagi-Witten integrable system DW (Q) is essentially the G-

Hitchin system on C, as will be discussed in detail in Sec. 3.8. We have a good control on

its superconformal index when p = 0, as we review in Sec. 5.3.

Therefore, the objects which are easy to compute are complementary between the two

cases when Q = Hyp(V ) /−/−/−G and when Q = SΓ(C). If we somehow know that SΓ(C) =

Hyp(V ) /−/−/−G′ , we can learn about DW (Hyp(V ) /−/−/−G′) which is in general hard to compute;

conversely, we can learn about MHiggs(SΓ(C)) which is in general hard to compute. The

operation /−/−/− on the side of SΓ(C) can be performed via (0.2.3), so it is basic to understand

the case when SΓ(C) = Hyp(V ). This is explored in Sec. 3.11.

We discuss the partial results known in the physics literature obtained in these indirect

methods on DW (Hyp(V ) /−/−/−G) in Sec. 2.11, and on MHiggs(SΓ(C)) in Sec. 3.10.
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Finally, the Hilbert series, denoted by ch in Fig. 1, of the function rings ofMCoulomb(Q)

and MHiggs(Q) are closely related to a specialization of ZSCI(Q). These relations will be

discussed in Sec. 5.4 and 5.5.

0.4 Disclaimer

Admittedly the formulations presented in this review are not quite finished, but hopefully

are not completely in the wrong direction and will be completed by a collaboration between

mathematicians and physicists. The author would welcome constructive comments from

readers.

One immediate problem would be that the notations which will be introduced in the

review is not at all standard in the literature either on the physics side or on the mathemat-

ical side. We will cite various works in the later sections, but those works use the standard

notations in the physics literature and will not be understandable unless the reader is more

or less acquainted with them. Therefore, once a mathematician is sufficiently motivated,

s/he is encouraged to pick up standard textbooks on non-supersymmetric QFTs and super-

symmetric QFTs and to learn from those books.

Up until the latter part of Sec. 2, references to previous works will not be systematically

given, because many of the statements in the physics terminology can be found scattered in

physics textbooks, mathematical formulations are already given in related terms in various

articles, and the original papers in which the particular points are discussed are hard to pin

down. Again, the author would welcome comments from readers.

Another obvious defect of this review is that distinct compact groups with the same Lie

algebra are not carefully distinguished. When one finds a compact group G in the review,

it needs to be understood as a compact group whose Lie algebra is g.

Before proceeding, we list standard books and articles on mathematical formulations of

QFTs. For the operator approaches, see [SW00, Haa96]. For the functorial approaches,

see [Seg04, Ati88]. For a modern approach to perturbative renormalization, see [Cos11] and

references therein. A collection of lectures for mathematicians can be found in [DEF+99]. A

very nice concise summary and insightful comments on various mathematical formulations

of QFTs can be found in a review article [Dou12].
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1 QFTs

Pick an integer d, and an additional structure S one can put on a compact manifold of

dimension d. Here, S can be a Riemannian metric, or a G-bundle together with a connection,

or just a smooth structure, etc. A d-dimensional S-structured QFT Q is a mathematical

object, consisting of its partition function ZQ, its space of states HQ, and its submanifold

operators VQ, satisfying various axioms.

1.1 Partition function

First, we have the partition function

ZQ ∈ Γ(M, LQ) (1.1.1)

where M is the moduli space of the d-dimensional compact manifold with structure S

without boundary and L is a line bundle with connection on M. When L is a trivial line

bundle with trivial connection, Q is called S-anomaly-free, and ZQ is really a function

ZQ :M→ C, X 7→ ZQ(X). (1.1.2)

We will consider extensions to noncompact X in Sec. 1.25.

11



1.2 Space of states

Second, choose another structure S ′ which we can put on a compact (d − 1)-dimensional

manifold. When S is the Riemannian structure, S ′ can also be the Riemannian structure.

When S is the complex structure, S ′ will be the CR structure. In general, we need to specify

a QFT with respect to both S and S ′. Usually there is a conventional choice of S ′ given S,

and we often just refer to a QFT to be S-structured.

Then HQ assigns to a compact (d−1)-dimensional manifold Y with structure S ′ a vector

space

Y 7→ HQ(Y ) (1.2.1)

such that

HQ(Y1 t Y2) = HQ(Y1)⊗HQ(Y2), HQ(∅) = C, HQ(−Y ) = HQ(Y )∗. (1.2.2)

Given S-structured Y1 and Y2, consider an S-structured manifold X such that ∂X =

Y1 t −Y2. Here −Y denotes Y with reversed orientation. We call components of Y1, Y2

the incoming and the outgoing boundaries, respectively. LetMY1,Y2 be the moduli space of

S-structured compact d-dimensional manifold with incoming boundaries Y1 and outgoing

boundaries Y2. Then we have

ZQ,Y1,Y2 ∈ Γ(MY1,Y2 , V ) (1.2.3)

where V is a Hom(HQ(Y1),HQ(Y2)) = HQ(Y1 t −Y2) bundle with a connection.

This ZQ,Y1,Y2 should behave naturally with respect to reassignment of boundary compo-

nents from incoming to outgoing, and the gluing of d-dimensional manifolds with boundary.

In expressions, we require a natural identification

ZQ,Y1,Y2 ' ZQ,Y1t−Y2,∅ (1.2.4)

and

ZQ,Y1,Y2ZQ,Y2,Y3 ' ι∗ZQ,Y1,Y3 (1.2.5)

where ι :MY1,Y2 ×MY2,Y3 →MY1,Y3 comes from the gluing of two d-dimensional manifolds

at a common subset of boundary Y2.

When Q is anomaly-free, for ∂X = Y1 t −Y2 we have

ZQ(X) ∈ Hom(HQ(Y1),HQ(Y2)) (1.2.6)

satisfying the gluing axiom. This will make the QFT Q a functor from the category of

cobordisms with structure S to the category of vector spaces. The non-triviality of the

bundle L over M when Q is not anomaly-free will play a crucial role in our discussion in

this review.

1.3 Trivial QFT

Let us introduce the trivial QFT which we denote by triv here. It has Htriv(Y ) = C for all

Y , L→M is a trivial line bundle, and Ztriv is just a constant section.
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1.4 Submanifold operators

Third, a QFT Q comes with a ‘space’ of labels which we can assign on submanifolds

V0
Q, V1

Q, . . . , Vd−2
Q , Vd−1

Q,Q′ (1.4.1)

so that the whole structures described so far can be generalized to the moduli space of d-

dimensional compact manifold X with a submanifold W = tiWi with markings vi ∈ VdimWi
Q

for each of the connected component Wi. As will be explained soon, the Vd−1 is somewhat

special in that it is defined with respect to two QFTs Q and Q′.

We allow W to intersect transversally with the boundary of X. Therefore, for Y of

dimension (d− 1) with submanifolds W = tiWi, we have a vector space

HQ(Y, (Wi, vi)) (1.4.2)

where vi ∈ V1+dimWi
Q , and we have the section

ZQ;Y,(Wi,vi);Y ′,(W ′i ,v
′
i)
∈ Γ(MY,(Wi,vi);Y ′,(W ′i ,v

′
i)
, V ) (1.4.3)

where V is an Hom(HQ(Y, (Wi, vi)),HQ(Y ′, (W ′
i , v
′
i)))-bundle over the moduli space, etc.

The author does not understand yet how to precisely formulate the mathematical nature

of VdQ in general. The axioms of V0
Q, when the structure S is the complex structure for real

two-dimensional surfaces, are those of the vertex operator algebras. We discuss in Sec. 1.10

a possible formulation of V0
Q when S is the Riemannian structure with metric. We will

abbreviate V0
Q by VQ. For i ≥ 1, the space of labels V iQ is some version of (higher) categories.

By abuse of terminology, we call elements of V i for any i submanifold operators. It is not

clear to the author how singular submanifolds with labels are allowed to be.

The (d − 1)-dimensional submanifold operators in Vd−1 is defined with respect to two

QFTs, as a (d − 1)-dimensional submanifold cuts the original manifold X into two: X =

X1 tY X2 where Y ⊂ ∂X1 and −Y ⊂ ∂X2. Then we can consider putting the QFT Q1 on

X1, and Q2 on X2. Then for v ∈ Vd−1
Q1,Q2

we have

ZQ1,v,Q2 ∈ Γ(M, LQ1,v,Q2) (1.4.4)

whereM is now the moduli space of X with a splitting X = X1tY X2. This Vd−1
Q,Q′ associated

to (d−1)-dimensional manifolds needs to be distinguished from HQ which are associated to

(d− 1)-dimensional boundaries, as the (d− 1)-dimensional submanifold of which v ∈ Vd−1
Q,Q′

is a mark can intersect transversally with the boundary of X. So, for a (d− 1) dimensional

manifold with a splitting, Y = Y1 tZ Y2, we have a vector space

HQ1,v,Q2(Y1 tZ Y2). (1.4.5)

The point is that Vd−1
Q1,Q2

is the space of morphisms between Q1 and Q2 in the category of

QFTs, and the category of d-dimensional QFTs themselves is in some sense the space Vd of

d-dimensional operators.
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When Q2 = triv, such a morphism v is called a brane of Q1. In this case, HQ1,v,triv does

not depend on Y2, and we have a well-defined

HQ1,vi(Y ) when ∂Y = tiZi (1.4.6)

where each component Zi has a label vi.

1.5 Generalized QFTs

We can also consider generalized QFTs with S structure, where we associate

ZQ ∈ Γ(M, EQ) (1.5.1)

where the vector bundle E has rank more than one even for the moduli space M of the

d-dimensional compact space without boundary. Typical examples are

• the holomorphic part of a two dimensional conformal field theory, where EQ is the

bundle of the conformal blocks over the moduli space of Riemann surfaces, and

• six-dimensionalN = (2, 0) supersymmetric theories, which will be discussed in Sec. 3.2.

The formulation of the gluing law is beyond the author’s comprehension.

1.6 Products of QFTs

Given two d-dimensional S-structured QFTs Q1 and Q2, its product Q1 ×Q2 is defined by

an obvious formula

ZQ1×Q2 = ZQ1ZQ2 , HQ1×Q2 = HQ1 ⊗HQ2 . (1.6.1)

The trivial QFT triv introduced in Sec 1.3 is a unit of the multiplication of the QFTs.

1.7 Topological QFTs

Consider a d-dimensional topological QFTs (TQFTs), in the sense that the structure S

imposed on the d-dimensional space is just the smooth structure. An extremely nice ex-

position for mathematicians is [Fre93]. A TQFT Q, if we only talk about ZQ and HQ, is

then a functor assigning Y 7→ HQ(Y ) to (d − 1)-dimensional manifolds, and a linear map

ZQ(X) : HQ(Y1)→ HQ(Y2) when a d-dimensional manifold X is a cobordism from Y1 to Y2.

When d = 2, the information contained in HQ and VQ can be summarized as the structure

of a commutative Frobenius algebra on HQ(S1), as detailed e.g. in [Koc04].

Consider two d-dimensional TQFTs Q1 and Q2. Then, a morphism between the two

v ∈ Hom(Q1, Q2) = Vd−1
Q1,Q2

(1.7.1)
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Q1 Q2 Q1
Q2

=

Figure 2: Q1 and Q2 sharing a boundary is equivalent to Q1 ×Q2 with a boundary.

gives an assignment as in (1.4.5). Note that this is not a natural transformation from Q1

to Q2 as functors from the cobordism category to the category of vector spaces. In other

words, the category of TQFTs has the same objects as the category of functors from the

category of cobordisms to the category of vector spaces, but the morphisms are different.

Consider a two-dimensional TQFT Q. Let Y be a one-dimensional segment with two

boundary points. Then, for two branes v1, v2 ∈ Hom(Q, triv), we have a linear space

H(v1, v2) := Hv1,Q,v2(Y ). (1.7.2)

One can define a composition of elements between H(v1, v2) and H(v2, v3) as is familiar.

Then it makes Hom(Q, triv) itself a category.

This should be familiar to people who study mirror symmetry. Here, we have a ‘functor’

B which maps a complex variety M to a 2d TQFT B(M), called the B-model on M , and

another ‘functor’ A which maps a symplectic variety W to a 2d TQFT A(W ), called the

A-model on W .

The category of branes of B(M) is

Hom(B(M), triv) = D(M), (1.7.3)

the derived category of coherent sheaves on M , and the category of branes of A(W ) is

Hom(A(W ), triv) = Fuk(W ), (1.7.4)

the Fukaya category of W . The homological mirror symmetry is then that there is a natural

association between M and W such that the two categories of branes are equivalent

D(M) ' Fuk(W ). (1.7.5)

In a two-dimensional case we have Hom(Q1, Q2) = Hom(Q1 × Q2, triv). This is called

the folding trick, and can be roughly understood by referring to Fig. 2. This implies that

Hom(B(M), B(M ′)) = D(M ×M ′) (1.7.6)

and also

Hom(A(W ), A(W ′)) = Fuk(W ×W ′). (1.7.7)

The general consideration so far means that an object in D(M×M ′) and another in D(M ′×
M ′′) can be composed to give an object in D(M ×M ′′). This should be a derived version of

the convolution product. Similarly, we should be able to compose an object in Fuk(W×W ′)

and another in Fuk(W ′ ×W ′′) to give an object in Fuk(W ×W ′′).

Therefore, homological mirror symmetry assigning W to M should not only be an equiv-

alence between category D(M) and A(W ), but should also be an equivalence of categories

whose objects are D(M) and A(W ), respectively.
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1.8 2d Yang-Mills theory

1.8.1 2d Yang-Mills for finite group G

A nice example of 2d TQFT is the 2d Yang-Mills theory Q = YM2(G) for a finite group G.

This QFT is defined as follows. A more detailed exposition can be found in [Fre93].

First, we let

H := HQ(S1) = {f : G→ C | f(ghg−1) = f(h)}. (1.8.1)

We define the inner product on H to be defined by

(f, f ′) =
∑
g

f(g)f ′(g−1), (1.8.2)

and identify H ' H∗. With this we can freely replace incoming boundaries and outgoing

boundaries on a 2d surface. We then assume all boundaries to be outgoing unless otherwise

specified.

Let X be a genus γ surface with n boundaries. Then ZQ(X) is an element f ∈ H⊗n,

which we define as

f(g1, . . . , gn) = |G|1−γ−n
∑
P

∏
i |C(gi)|
|AutP | . (1.8.3)

where the sum is over isomorphism classes of G-bundles P over X such that the restriction

of P to the i-th boundary S1 has a holonomy conjugate to gi, C(g) is the centralizer of

g and AutP is the bundle automorphism group of P . This is an easily mathematically

well-defined case of path integrals of gauge theories, to which we come back at Sec. 1.22. It

is straightforward to check that ZQ defined via the formula above behaves correctly under

the gluing of boundaries, and when X has no boundary, the definition (1.8.3) translates to

ZQ(X) = |G|−γ|Hom(π1(X), G)|. (1.8.4)

Let us see some examples: the map

ZQ( ) : H⊗H → C (1.8.5)

agrees with the inner product (1.8.2). A pair of pants defines a map

ZQ( ) : H⊗H → H (1.8.6)

given by

f ⊗ f ′ 7→ (f ◦ f ′)(h) =
∑
h

f(gh)f ′(g−1). (1.8.7)

Similarly, we have

ZQ( ) : H → C (1.8.8)
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is given by

f 7→ f(e). (1.8.9)

Let us denote by IrrG the set of irreducible representations Then H has a natural basis

given by the character χρ for ρ ∈ IrrG. The inner product (1.8.2), (1.8.5) is now given by

(χρ, χρ′) = δρρ′|G| (1.8.10)

and a pair of pants (1.8.6) is

χρ ⊗ χ′ρ 7→ δρρ′χρ|G|/ dim ρ. (1.8.11)

Then we have another formula for the ZQ of a surface X of genus γ without boundary:

ZQ(X) = |G|γ−1
∑
ρ∈IrrG

1

(dim ρ)2γ−2
. (1.8.12)

The equality of this and (1.8.4) is a classic identify of finite group theory.

1.8.2 V1
Q for 2d Yang-Mills

Now let us discuss the labels we can put on the submanifolds, for Q = YM2(G). V0
Q is

trivial, and V0
Q ' C. V1

Q = Hom(Q,Q) contains the category of representations of G. The

trivial representation of G gives a trivial label for a one-dimensional submanifold, which is

equivalent to having no one-dimensional submanifold to start with.

Let X be a genus γ surface with n boundaries. Pick k embedded S1’s, L1,...,k, of X,

which we assume not to intersect with the boundaries, for simplicity. Put the labels R1,...,k

which are representations of G. Then ZQ(X, (L1, R1), . . . , (Lk, Rk) is an element f ∈ H⊗n,

which we define as

f(g1, . . . , gn) = |G|1−γ−n
∑
P

∏
i |C(gi)|
|AutP |

k∏
i=1

trRi Hol(P,Li) (1.8.13)

where most of the symbols are as in (1.8.3), and Hol(P,Li) is the holonomy of the G-bundle

P around Li.

For example, when we have a line labeled by a representation R around the cylinder, we

have a map

ZQ(
R

) : H → H

f 7→ χRf, (χRf)(g) = χR(g)f(g)

χρ 7→
∑
ρ′

nR
ρ′

ρ χρ′ .

(1.8.14)

Here, ρ and ρ′ are in IrrG and R⊗ ρ = ρ′⊕nR
ρ′
ρ . When R is trivial this operator is just the

identity.
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When we have a line labeled by R intersecting transversally with a boundary S1, we

have

HQ( R) = {f : G→ R | f(g−1hg) = g(f(h))} (1.8.15)

When R is trivial this reduces to HQ(S1), see (1.8.1).

Then we can compute ZQ of a torus with a line labeled by R in two ways:

trZQ(
R

) = trZQ(
R

) (1.8.16)

which is

trH χR = dimHQ( R) =
∑
ρ∈IrrG

nR
ρ
ρ. (1.8.17)

Properties of V1
Q for general 2d TQFTs have been formulated and explored in [DKR11,

CR12].

1.8.3 2d Yang-Mills for compact continuous G

Now let us try to extend our discussions so far on YM2(G) from just finite group G to general

compact group G. Many formulas can be modified slightly to make sense. For example, we

can keep (1.8.1) except we demand the smoothness of f . The inner product (1.8.2) can be

replaced by

(f, f ′) =

∫
G

f(g)f ′(g−1)dg (1.8.18)

where dg stands for the Harr measure with total volume 1. The path integral definition

of ZQ, (1.8.3) does not make sense as it is. So, let us try to directly define ZQ( ),

ZQ( ) etc. This can be most easily done in the representation basis, as in (1.8.10),

(1.8.11), (1.8.12). We pick a constant c to replace |G| and we just demand

(χρ, χρ′) = cδρρ′ (1.8.19)

and for a pair of pants we have

ZQ( ) : H⊗H → H

χρ ⊗ χ′ρ 7→ δρρ′χρc/ dim ρ.

(1.8.20)

Then we have

ZQ(X) = cγ−1
∑
ρ∈IrrG

1

(dim ρ)2γ−2
(1.8.21)
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a surface X of genus γ without boundary, but the crucial point is that this converges only

for large enough γ. For example, when γ = 1, we formally have

ZQ(X) = trH 1 (1.8.22)

which does not naively make sense.

There are a few ways out. One way is to declare that we only allow X such that ZQ(X)

converges. Another way is to consider not just TQFTs defined over C but also TQFTs

defined over C ∪ {∞}. What physicists usually do is to give up having a topological QFT.

Instead, 2d Yang-Mills Q = YM2(G) for a compact group G can be defined without any

problem as an area-ed QFT, i.e. as the structure S in the definition of a QFT, we require

that there is a real positive number A which we call the area assigned to the 2d surface

X. On the boundary one-dimensional manifold, we do not put additional structure, so the

structure S ′ we introduced in Sec. 1.2 is trivial. When we glue two area-ed surface, the

areas are added together.

Then, for a surface X of genus γ without boundary, we define for example

ZQ( ) : H → H,
χρ 7→ e−Ac2(ρ)χρ.

(1.8.23)

Here, A is the area of the tube, and c2(ρ) is the quadratic Casimir of the irreducible repre-

sentation ρ. In other words, we have

ZQ( ) = e−A4G (1.8.24)

where 4G is the standard Laplacian on the group manifold G. Similarly, we define

ZQ( ) : H⊗H → H

χρ ⊗ χ′ρ 7→ δρρ′χρce
−Ac2(ρ)/ dim ρ.

(1.8.25)

Then, for a genus γ surface X without boundary, we have

ZQ(X) = cγ−1
∑
ρ∈IrrG

e−Ac2(ρ)

(dim ρ)2γ−2
. (1.8.26)

The path integral definition for the finite group, (1.8.3), can be generalized to the area-

ed case, as an integral over the space of connections on G-bundles over a given 2d surface.

This is a special case of what we discuss in Sec. 1.22. In the limit A→ 0, which corresponds

to the not-quite-existent TQFT discussed above, the path integral becomes an integral over

the moduli space of flat G-bundles over a given surface, which was discussed at length in

[Wit91, Wit92]. A thorough discussion of 2d Yang-Mills for compact G can be found in the

review article [CMR95].
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1.9 Physical unitary QFTs

Mathematicians are already familiar with the topological QFTs where the structure S above

is the smooth structure, or the two-dimensional conformal QFTs where the structure S on

a two-dimensional manifold is the complex structure. In these cases, the axioms in the

previous section, once precisely formulated, should reduce to the Atiyah’s axioms of TQFT

and the Segal’s axioms of conformal field theory, respectively. We discussed TQFTs briefly

above.

In the high energy physics theory community, people mostly care about the case when

the structure S consists of a spin structure, a Riemannian structure with metric, and a

G-bundle with a connection.1 Let us call a d-dimensional QFT with this structure S a d-

dimensional G-symmetric QFT. It is easy to see that if H ⊂ G there is a forgetful map which

makes a G-symmetric QFT a H-symmetric QFT. Also, the product of a G1-symmetric Q1

and G2-symmetric Q2 is G1×G2-symmetric. When G1 = G2 = G, we can take the diagonal

subgroup Gdiag ⊂ G×G and consider Q1 ×Q2 as G-symmetric.

Physicists also usually impose the unitarity condition, which says that

• HQ(Y ) has the Hilbert space structure (i.e. a positive definite sesquilinear form on it)

and therefore there is a canonical conjugate-linear identification HQ(Y ) ' HQ(−Y ).2

• This conjugate linear identification is compatible with the sections

ZQ,Y ∈ Γ(MY , V ), ZQ,−Y ∈ Γ(M−Y , V̄ ). (1.9.1)

This is called the reflection positivity.

In the following, we only deal with unitary QFTs.

1.10 Point operators

Let us discuss the properties of the space of operators VQ = V0
Q for a G-symmetric QFT Q.

This is a C-linear space with the following properties

• V is a representation of G× Spin(d), and is filtered by D ∈ R≥0

VD ⊂ VD′ ⊂ V , (D < D′) (1.10.1)

such that VD is a finite-dimensional representation of G× Spin(d). When v ∈ VD it is

said that v has mass dimension less than or equal to D.

1Comparison against experiments require a QFT when S consists of a four-dimensional Lorentzian metric

of signature (− + ++), instead of a Euclidean Riemannian metric. As there is a one-to-one map between

unitary Lorentizan QFTs and unitary Euclidean QFTs, we formulate everything in terms of Euclidean

QFTs in this review.
2It is often the case in physics literature that the Hilbert space is defined as a cohomology, HQ(Y ) =

H(HQ(Y ), δ) where HQ(Y ) does not necessarily have a Hilbert space structure. In this case δ is usually

called the BRST operator.
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• There is a linear map ∇
v ∈ V 7→ ∇v ∈ Rd ⊗ V . (1.10.2)

This satisfies

∇VD ⊂ Rd ⊗ VD+1. (1.10.3)

• V has a family of non-commutative products ◦x parameterized by x ∈ Rd \ {0}:

(v, w, x) ∈ V × V × (Rd \ {0}) 7→ v ◦x w ∈ V (1.10.4)

called the operator product expansion. This is continuous in x, compatible with the

Spin(d) action on V and Rd, and when v ∈ VD and v′ ∈ VD′ the limit

lim
x→0
|x|D+D′v ◦x v′ (1.10.5)

exists.

• The family of products ◦x are associative in the following sense:

(v ◦x v′) ◦x′ v′′ = v ◦x+x′ (v
′ ◦x′ v′′). (1.10.6)

• The product ◦x and the derivative ∇ is compatible, in the sense that

∂(v ◦x w) = (∇v) ◦x w (1.10.7)

where ∂ on the left hand side is the partial derivative with respect to x.

We note that the concept of the algebra of point operators of a 2d conformal field theory

is already axiomatized as vertex operator algebras, see e.g. [Bor86].

1.11 Multipoint functions

Let X be a d-dimensional compact spin manifold with a metric with distinct marked points

p1, . . . , pn, with a G-bundle P with connection. Let

FG×Spin(d)X = P ×X FSpin(d)X → X (1.11.1)

where FSpin(d)X is the frame bundle of the spin structure, together with the connection

determined by the metric. For a vector space V with an action of G × Spin(d), we denote

by V the associated line bundle over X:

V = FG×Spin(d)X ×G×Spin(d) V. (1.11.2)

Then the markings for the marked points pi are given by v∗i ∈ V∗|pi for each i. We then

have

ZQ((p1, v
∗
1), (p2, v

∗
2), . . . , (pn, v

∗
n)) ∈ Γ(M, LQ). (1.11.3)
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The left hand side determines a section of a bundle

V � V � · · ·� V︸ ︷︷ ︸
n times

→ Xn (1.11.4)

which we denote by

〈v1(p1)v2(p2) · · · vn(pn)〉X . (1.11.5)

This is called the n-point function. Note that for vector bundles Ei → Xi, i = 1, 2 and

pi : X1 ×X2 → Xi, we define E1 � E2 = p∗1(E1)⊗ p∗2(E2).

The n-point function is compatible with the product structure on V in the following

sense:

• The derivative ∇ satisfies

〈(∇v)(p1) · · · vn(pn)〉X = ∇〈v(p1) · · · vn(pn)〉X (1.11.6)

where ∂ on the right hand side is the covariant derivative with respect to p1.

• Pick v ∈ VD and v′ ∈ VD′ . Pick a patch of X by taking {0} ⊂ U ⊂ Rd and ι : U → X.

Then we have

|x|D+D′〈v(ι(x))v′(ι(0)) · · · vn(pn)〉X (1.11.7)

and

|x|D+D′〈(v ◦x v′)(ι(0)) · · · vn(pn)〉X (1.11.8)

become the same in the limit x→ 0.

We note that the concept of multipoint functions of 2d conformal field theories is already

axiomatized in [GG00].

1.12 Energy-momentum tensor and currents

Given a d-dimensional QFT Q, let us consider the behavior of ZQ((X, gX)) under an in-

finitesimal change of the metric

gX → gX + εδg (1.12.1)

where δg is a section of Sym2 TX. The dependence of ZQ with respect to δg is given by an

element T ∈ VQ,d−2, transforming as Sym2 Rd under the Spin(d) action, as follows:

ZQ((X, gX + εδg)) = 〈1〉X,gX + ε

∫
p∈X

(〈T (p)〉X,gX , δg(p))d volX

+
ε2

2

∫
(p,q)∈X×X

(〈T (p)T (q)〉X,gX , δg(p)δg(q))d volX×X

+
ε3

6

∫
(p,q,r)∈X×X×X

(〈T (p)T (q)T (r)〉X,gX , δg(p)δg(q)δg(r))d volX×X + · · · . (1.12.2)
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This point operator T is called the energy momentum tensor. The leading divergence of

T ◦x T when x→ 0 has the form

lim
x→0
|x|2(d−2)T ◦x T → c(Q)X (1.12.3)

where c(Q) is a positive real number called the c central charge of Q, and X is a certain

Spin(d)-invariant element in Sym2(Sym2 Rd) fixed by convention. This c is additive: c(Q1×
Q2) = c(Q1) + c(Q2).

For some choice of δg, (X, gX) and (X, gX + εδg) can correspond to isometric manifolds

related by a certain diffeomorphism on X. This implies that f(∇T ) = 0, where f is given

by the composition

f : Rd ⊗ Sym2 Rd → Rd ⊗ Rd ⊗ Rd (,)⊗1−→ Rd. (1.12.4)

Similarly, given a d-dimensional G-symmetric QFT Q and a manifold X with G-bundle

P → X with connection D, we consider an infinitesimal change

D → D + εA (1.12.5)

where A is a g-valued one-form. We have an element J ∈ VQ,d−1, transforming as g ⊗ Rd

under the G× Spin(d) action, such that

ZQ((P,D + εA)) = 〈1〉P,D + ε

∫
p∈X

(〈J(p)〉P,D, A(p))d volX

+
ε2

2

∫
(p,q)∈X×X

(〈J(p)J(q)〉P,D, A(p)A(q))d volX×X

+
ε3

6

∫
(p,q,r)∈X×X×X

(〈J(p)J(q)J(r)〉P,D, A(p)A(q)A(r))d volX×X + · · · . (1.12.6)

This operator J is called the G-current. The leading divergence of J ◦x J when x→ 0 has

the form

lim
x→0
|x|2d−2J ◦x J = 〈, 〉 ⊗ id ∈ (Sym2 g)⊗ (Sym2 Rd) (1.12.7)

where 〈, 〉 is a positive bilinear form on g, and id is the standard bilinear form on Rd. When

g is simple, the form 〈, 〉 is determined by a positive number kG(Q) times the Killing form.

This kG is additive: kG(Q1 ×Q2) = kG(Q1) + kG(Q2).

For some choice of A, (P,D) and (P,D+ δA) corresponds to a G-connection equivalent

to the original one D related by a gauge transformation on P . This implies that f(∇J) = 0,

where f is given by the inner product Rd ⊗ Rd → R.

1.13 1d QFTs

Now let us consider a rather simple case of 1d QFTs Q with Riemannian structure. A

boundary of one-dimensional manifolds is just a disjoint union of points. Let HQ(pt) = H.

A segment of length s gives a linear map

Z(s) : H → H (1.13.1)
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satisfying

Z(s+ t) = Z(s)Z(t). (1.13.2)

We write

Z(s) = e−sH (1.13.3)

and call H the Hamiltonian. This is the energy-momentum tensor introduced above. We

can also identify the zero-dimensional operators V0
Q as a subset of Hom(H,H). Then the

multi-point function on S1 with circumference s is given by

ZQ(S1, (p1, v1), . . . , (pn, vn)) = trH v1(p1)v2(p2) · · · vn(pn)e−sH (1.13.4)

where

v(p) = e−pH v epH , v ∈ V0
Q ⊂ Hom(H,H). (1.13.5)

When Q is unitary and H is a Hilbert space, then H is Hermitean.

1.14 CPT conjugation

When the theory is unitary, the Spin(d) C-representation on V is extended to Pin(d) R-

representation such that elements in Pin(d) connected to the identity is represented C-

linearly and those not connected to the identity is represented conjugate-linearly, i.e. an

element g ∈ Pin(d) \ Spin(d) determines a conjugate linear map

V 3 v 7→ v̄ ∈ V . (1.14.1)

This map is called the CPT conjugation. This Pin(d) action is compatible with the filtration

by the mass dimension, the derivative, and the product. Most importantly, this is compatible

with the reflection positivity of the n-point function, i.e.

〈v1(p1)v2(p2) · · · vn(pn)〉X = 〈v̄1(p1)v̄2(p2) · · · v̄n(pn)〉−X (1.14.2)

where −X is X with the reverse orientation, and the conjugate linear map vi 7→ v̄i are

chosen according to the orientation reversal at pi. Note that the boundary of X can be non

empty.

On Spin(d)-invariant part of V , the part of the Pin(d) action disconnected to the identity

gives a unique real structure

·̄ : VSpin(d) → VSpin(d). (1.14.3)

The subspace ReVSpin(d) fixed by ·̄ plays an important role in Sec. 1.20.

1.15 Renormalization Group

We have an action of the multiplicative group R>0 on the space of Riemannian QFTs.

Namely, given a QFT Q, we define RGtQ via the formula

ZRGtQ((X, g)) = ZQ((X, tg)). (1.15.1)
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If Q ' RGtQ the theory Q is called scale-invariant. In this case the space of operators

become not just filtered but graded, and we have

VQ = ⊕dVQ,d. (1.15.2)

Then RGt acts on VQ,d by the multiplication by t−d. When Q is believed to be unitary, a

scale-invariant Q is automatically conformally invariant, in the sense that ZQ((X, e−fg)) for

a function f : X → R can be written in terms of ZQ((X, g)). Furthermore V has an action

of the conformal group Spin(d, 1). For more on this topic, consult [Nak13] and references

therein.

1.16 Free Bosons

1.16.1 Massless and massive free bosons

After all these abstract discussions, it would be appropriate to discuss a few examples. First

is the free boson theory. Let V be a real representation of a group G. For any d > 2, there is

a d-dimensional G-symmetric QFT Bd(V ), called a real boson valued in V . For a compact

Riemannian manifold X with a G-bundle with connection P → X, we define the partition

function of Bd(V ) there via

ZBd(V )(X) =
1

det−4V

. (1.16.1)

Here, 4V is the natural Laplacian on the real vector bundle V on X associated to V , recall

the definition given in (1.11.2). det is a regularized determinant. We have

Bd(V ⊕W ) = Bd(V )×Bd(W ). (1.16.2)

More generally, given a positive real number ω2, we have Q = Bd(V, ω
2) for any d; Bd(V )

above is the limit when ω2 → 0. The definition (1.16.1) is modified to

ZQ(X) =
1

detω2 −4V

. (1.16.3)

1.16.2 Space of states and the vacuum energy

The space of states is given by

HQ(P → Y ) = C⊕A⊕ Sym2A⊕ Sym3A⊕ · · · (1.16.4)

where

A = Γ(Y, P ×G VC). (1.16.5)

In physics literature we call an element |0〉 = C ⊂ HQ as the vacuum, and denote

A =
⊕
i

a†i |0〉 (1.16.6)

where a†i corresponds to an eigenfunction of ω2 − 4V on Y with eigenvalue ω2
i . Then

the space of states (1.16.4) can be identified with the polynomial algebra of a†i . We also

introduce ai so that [ai, a
†
j] = δij.
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1.16.3 Examples: d = 1 and d = 2

ZQ(Y × [0, β]) then defines an operator e−βH on HQ(Y ), given by

H = EQ(Y ) +
∑
|ωi|a†iai. (1.16.7)

EQ(Y ) is a number called the vacuum energy or the Casimir energy, determined by demand-

ing that Q = Bd(V, ω
2) satisfies the axioms of unitary QFTs. We demonstrate how this is

done below when d = 2.

Let us first examine the case d = 1, G is a trivial group, and V = R. Consider

Q = B1(V, ω2). We have

HQ(pt) = C[a†] (1.16.8)

and

H = EQ(pt) + ωa†a. (1.16.9)

We then have, for a circle S1 of circumference β,

ZQ(S1
β) = trHQ(pt) e

−βH =
e−βEQ(pt)

1− e−βω =
1

e+βω/2 − e−βω/2 . (1.16.10)

Here, in the last inequality, we used the conventional choice EQ(pt) = ω/2. This is called

the zero-point energy. This is the quantum harmonic oscillator.

With the direct definition of ZQ (1.16.3), we instead have

ZQ(S1
β) = “

1

ω

∏
n≥1

1

ω2 + (2πn
β

)2
” (1.16.11)

by examining the spectrum of 4V . We can make a further manipulation so that we have

= “
1

ω

∏
n≥1

1

1 + ( βω
2πn

)2
” =

1

sinh βω/2
, (1.16.12)

which equals with (1.16.10). These are made into rigorous mathematics, by carefully defining

the regularized determinant without this formal manipulation.

Generalizing EQ(pt) = ω/2 for d = 1 free boson, it is often written in the physics

literature that for Q = Bd(V, ω
2)

EQ(Y ) =
∑
i

1

2
|ωi| (1.16.13)

where ω2
i run over the eigenvalues of the operator ω2−4V over Y . However, the expression

above does not make much sense without properly defining the divergent sum. It is often

then said that we should use the zeta-function regularization, which is again not quite well-

motivated. Rather, the principle to determine EQ(Y ) is to make Bd(V, ω
2) to satisfy the

axioms.
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Let us take for simplicity d = 2, G is trivial, and V = R. Consider Q = Bd(V, ω
2). We

can then evaluate

ZQ(S1
β1
× S1

β2
) = trHQ(S1

β1
) e
−β2H = e−β2E(β1) 1

e−β2ω

[
∞∏
n≥1

1

1− e−β2

√
ω2(2πn/β1)2

]2

(1.16.14)

where E(β1) = EQ(S1
β1

).

The right hand side of (1.16.14) is not manifestly symmetric under the exchange of β1

and β2; we need to choose E(β) so that it becomes symmetric. It is not very obvious that

there is such a function E(β); its existence is guaranteed once the regularized determinants

of Laplacians are defined with care.

Here, let us content ourselves by studying the ω → 0 limit. We see that

lim
ω→0

ωZQ(S1
β1
× S1

β2
) = e−β2E(β1) 1

β2

[∏
n≥1

1

1− qn

]2

(1.16.15)

where q = e2πiτ , τ = iβ2/β1. Then, by the modular property of the Dedekind eta function

η(τ) = q1/24
∏∞

n=1(1− qn) which is

η(−1/τ) =
√
−iτη(τ), (1.16.16)

we see that (1.16.15) is symmetric under β1 ↔ β2 when

E(β) = −2π

12

1

β
+ cβ (1.16.17)

for an undetermined constant c. Compared with (1.16.13), it is often written suggestively

as
2π

β
(1 + 2 + 3 + 4 + · · · ) = − 2π

12β
. (1.16.18)

1.16.4 Point operators

The space of operators VBd(V,ω2) is, as a vector space, equal to

VBd(V,ω2) = C⊗ Sym•[Sym•[Rd]⊗R V ], (1.16.19)

i.e. a polynomial algebra on V together with an action of a formal differential operator ∇
in the vector representation of SO(d). Here V is in Vd/2−1; recall the subscript refers to

the filtration, (1.10.1). The CPT conjugation fixes V . For vi ∈ V ∗, we can consider a

multi-point function

ZBd(V,ω2)(P → X; (x1, v1), (x2, v2), · · · , (x2n, v2n))

= 〈v1(x1) · · · v2n(x2n)〉X =
1

det4V

∑
S

∏
(i,j)⊂S

〈vi, K(xi, xj)vj〉 (1.16.20)
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where K is the Green function of ω2 −4V , and S runs over sets of n pairs (i, j) such that

∪S = {1, . . . , 2n}. For example, when 2n = 4, S is either {(1, 2), (3, 4)}, {(1, 3), (2, 4)} or

{(1, 4), (2, 3)}. This is called Wick’s theorem in physics literature.

When V is a complex representation of a group G, we define Bd(V ) mostly similarly.

This is called a complex boson. For a real representation V and its complexification VC we

have

Bd(VC) = Bd(V )×Bd(V ). (1.16.21)

When G is simple, kG(V ) for a complex representation V is given as follows. We decom-

pose

V = ⊕iRi (1.16.22)

into irreducible G representations Ri, and then

kG(B(V )) =
2

3

∑
c2(Ri) (1.16.23)

where c2(R) is the eigenvalue of the quadratic Casimir operator normalized so that c2(gC) =

h∨(G).

1.17 Free Fermions

Another fundamental example is the free-fermion theory. As its property is intrinsically

linked to that of spinors, its precise definition depends on d mod 8. Here we just discuss

so-called Weyl fermions in even dimensions.

1.17.1 Dirac operator and the partition function

Recall that Spin(d) for even d has two spinor representations S± such that{
S+∗ = S+, S−∗ = S− if d = 0 mod 4,

S+∗ = S−, S−∗ = S+ if d = 2 mod 4.
(1.17.1)

Given a spin d-manifold X with G connection, let FG×Spin(d)X be its frame bundle. Given

a complex representation V of G, we can consider the associated vector bundle V ⊗ S± =

FG×Spin(d)X ×G×Spin(d) V ⊗ S±. Consider the Dirac operator D
/± which is a linear operator

D
/

+ :Γ(X, V ⊗ S+)→ Γ(X, V ⊗ S−),

D
/− :Γ(X, V ⊗ S−)→ Γ(X, V ⊗ S+).

(1.17.2)

Using this we define the free fermion theory F±d (V ) by

ZF±d (V ) ∈ Γ(M,DetD
/±) (1.17.3)

where DetD
/± is the determinant line bundle of the Dirac operator D

/± and ZF±d (V ) is its

natural section. We have the property

F+
d (V ⊕W ) = F+

d (V )× F+
d (W ), F−d (V ⊕W ) = F−d (V )× F−d (W ). (1.17.4)

28



The point operators are given by

VF+
d (V ) = Λ•[Sym•[Rd]⊗C (V ⊗ S+ ⊕ V̄ ⊗ (S−)∗)] (1.17.5)

and similarly for F−d (V ). The CPT conjugation maps V ⊗ S+ to V̄ ⊗ (S−)∗.

The combination V ⊗S+⊕ V̄ ⊗ (S−)∗ is made because the the Green function K+(x, y)

of the Dirac operator D
/

+ is a section of

(V̄ ⊗ (S−)∗)∗ � (V ⊗ S+)∗ (1.17.6)

on X ×X. We can then define

ZF+
d (V )(X; (x1, v1), (y1, w1), · · · , (xn, vn), (yn, wn))

= ZF+
d (V )(X)

∑
σ

∏
(−1)σ〈wi, K+(yi, xσ(i))vσ(i)〉 (1.17.7)

where vi ∈ V ⊗ S+ and wi ∈ V̄ ⊗ (S−)∗. The sum is taken over all permutations σ of

{1, . . . , n}, and (−1)σ denotes the sign of the permutation. We define ZF−d (V ) in a similar

manner.

Comparing with (1.17.1), we see that{
F+
d (V ) = F−d (V̄ ), F−d (V ) = F+

d (V̄ ) if d = 0 mod 4,

F+
d (V ) = F+

d (V̄ ), F−d (V ) = F−d (V̄ ) if d = 2 mod 4.
(1.17.8)

Because of this, we use a shorthand notation Fd(V ) = F+
d (V ) when d = 0 mod 4. When

G is simple, kG(F4(V )) is given as in the free boson case. We have

kG(F4(V )) = 2kG(B4(V )). (1.17.9)

1.17.2 Space of states

Let Q = F+
d (V ). Let Y be a spin (d − 1) dimensional manifold Y with G-bundle P → Y

with connection, and let us discuss HQ(Y ). Consider

B = Γ(Y, V ⊗ S ⊕ V̄ ⊗ S) (1.17.10)

where S is the irreducible spinor representation of Spin(d− 1)

For simplicity we assume that there is no zero eigenvalue of the Dirac operator D
/

on B.

Then we can split

B = B+ ⊕ B− (1.17.11)

where B+ is the subspace where the eigenvalue of D
/

is positive. Then we have

HQ(Y ) = C⊕ B+ ⊕ Λ2B+ ⊕ Λ3B+ ⊕ · · · . (1.17.12)
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As in the case of free bosons, we call an element |0〉 ∈ C ⊂ HQ(Y ) the vacuum, and

write

B+ =
⊕
i

b+
i |0〉 (1.17.13)

for each positive eigenvalue ωi of the Dirac operator on B+. Then HQ(Y ) as a vector space

can be identified with the exterior algebra generated by b†i . We introduce operators bi so

that

[bi, b
†
j]+ = bib

†
j + b†jbi = δij. (1.17.14)

Then ZQ(Y × [0, β]) is an operator e−βH on HQ(Y ) given by

H = EQ(Y ) +
∑
i

ωib
†
ibi. (1.17.15)

We introduce an operator usually denoted by (−1)F which is (−1)n on ΛnB+ ⊂ HQ(Y ).

Then we have

trHQ(Y )(−1)F e−βH = e−βEQ(Y )

∞∏
i=1

(1− e−βωi). (1.17.16)

Conventionally, EQ(Y ) is written as

EQ(Y ) = “−
∑
i

ωi
2

” (1.17.17)

but is needed to be determined so that F+
d (Q) satisfies the axioms of the unitary quantum

field theory.

1.18 Anomaly polynomial

For a G-symmetric d-dimensional QFT Q, recall

ZQ(X) ∈ Γ(M, LQ) (1.18.1)

where M is the moduli space of compact spin d-manifolds with Riemannian metric and G

bundle with connection, and LQ is a line bundle determined by Q. The anomaly polynomial

A(Q) encodes c1(LQ) in the following way. We have the universal G-bundle P over the

universal family X of d-dimensional spin manifold over M,

P → X →M. (1.18.2)

Then A(Q) is a degree (d + 2) characteristic class on X of TX and P such that c1(L) is

given by its integral along the fiber of X →M.

Bd(V ) is an anomaly-free theory, so AB(V ) = 0. F±d (V ) is not in general anomaly-free.

The anomaly polynomial is given by the family index theorem,

A(F±d (V )) = ±(Â(X ) ch(V))d+2 (1.18.3)
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where V = P ×G V .

The topology of LQ captured by the anomaly polynomial is called a local anomaly, as it

can be written in terms of curvatures of the connections of TX and P via the Chern-Weil

homomorphism. Other anomalies are called global. For example, take d = 4, G = Sp(n)

and V = C2n, the defining vector representation. Then A(F4(V )) = 0 but is anomalous in

the following way. One can consider a family of G-connections on S4 parameterized by S1,

corresponding to the nontrivial generator KSp(S5) ' Z/Z2. In this case the determinant

line bundle DetD
/
→ S1 has a nontrivial holonomy −1 around it. For a through discussion

on these issues, see [Wit85].

1.19 Path integrals and QFTs

The free boson theory B(V ) has a path-integral definition. Namely, we consider the space

of maps

B(V ) = Γ(X, V ) (1.19.1)

and the action functional S on it

S(φ) =
1

2

∫
X

〈Dφ,Dφ〉d volX (1.19.2)

Then we have

〈v1(x1) · · · v2n(x2n)〉X =

∫
B(V )

v1(φ(x1)) · · · v2n(φ(x2n))e−S(φ)d volB . (1.19.3)

The integration measure needs to be defined that a formal Gaussian integral can be then

applied.

The free fermion theory F4(V ) has a path integral definition too. Namely, we take

F(V ) = Γ(X, V ⊗ S+) (1.19.4)

and

F̄(V̄ ) = Γ(X, V̄ ⊗ S−). (1.19.5)

Then for ψ ⊕ ψ̄ ∈ F(V )⊕ F̄(V̄ ) we define the action functional

S(ψ, ψ̄) =

∫
X

〈ψ̄, D
/
ψ〉d volX . (1.19.6)

Then the Berezin integration over F(V ) and F̄(V̄ ) gives

ZF4(V )(P → X;x1, v1; y1, w1; · · · ;xn, vn; yn, wn)

=

∫
F(V )⊕F̄(V̄ )

v1(ψ(x1))w1(ψ̄(y1)) · · · vn(ψ(xn))wn(ψ̄(yn))e−S(ψ,ψ̄)d volF d volF̄ . (1.19.7)
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In view of the path integral definitions of the free fields above, it is tempting to pick V ,

W , consider a more general functional S(φ, ψ, ψ̄) on

B(V )⊕F(W )⊕ F̄(W ) (1.19.8)

and try to define a QFT Q(S) via

ZQ(S)(X) =

∫
B(V )⊕F(W )⊕F̄(W )

e−S(φ,ψ,ψ̄)d volB(V ) d volF(W ) d volF̄(W ) . (1.19.9)

Physicists have accumulated knowledge when and to what degree and in which sense this

is possible, for which class of functionals S. A rather literal pseudo-mathematical trans-

lation of what physicists usually say is the following. We pick an element L(φ, ψ, ψ̄) ∈
ReVB(V )×F (W )

Spin(d), and consider S(φ, ψ, ψ̄) =
∫
X
L(φ, ψ, ψ̄)d volX . We also pick something

called a renormalization-regularization scheme RRS which encapsulates various algorith-

mic procedure which removes infinities appearing in the intermediate computations. The

famous ones are the “naive momentum cutoff”, MS, MS, DR, DR, etc. Then we say

• (Perturbative renormalizability) Q(L,RRS) can be defined as an effective QFT:

ZQ(L,RRS)(P → X) =

∫
B(V )⊕F(W )⊕F̄(W )

RRS[e−S(φ,ψ,ψ̄)d volB(V ) d volF(W ) d volF̄(W )].

(1.19.10)

Here the effectiveness is used in the technical sense that things make sense only as

an asymptotic series of various parameters. QFTs, when emphasized against effective

QFTs, are often called ultraviolet-complete QFTs.

• (Regularization independence) If L ∈ ReVB(V )×F (W )
Spin(d)

,d, then for any other regu-

larization scheme RRS ′ we have another L′ ∈ VB(V )×F (W )
Spin(d)

,d such that

Q(L,RRS) = Q(L′,RRS ′). (1.19.11)

Recall that the subscript d is the degree in the filtration, introduced in (1.10.1).

These properties are well-established mathematically, in the sense that at least there should

not be any serious obstacles to make the physics statements into a rigorous mathematics.

Usually experimental results are reported by specifying L and RRS.

1.20 Deformations of QFTs

An equivalent but more invariant statement, perhaps preferable to mathematicians, is as

follows. Given a QFT Q (not necessary defined via path integrals as above), there is a

family of effective QFTs Q
∣∣
u∈U such that Q = Q0 at 0 ∈ U and moreover

TU|u=0 ' Re(VQ,d/ Image∇)Spin(d). (1.20.1)
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The statements in the previous sections are what we would get when Q is a free theory,

Q = B(V )× F (W ).

For a G-symmetric QFT Q, there is a natural action of G on U which is compatible with

the identification (1.20.1), so that there is an equivalence

Q
∣∣
u
' Q

∣∣
gu

(1.20.2)

for g ∈ G. Also, there is a subfamily of effective G-symmetric QFTs Q
∣∣
u∈UG where

TUG|u=0 ' Re(VQ,d/ Image∇)Spin(d)×G. (1.20.3)

1.21 Non-linear sigma model

So far, the integration region used in the previous sections are the linear spaces B(V ) and

F(V ). A natural generalization is to pick a Riemannian manifold Σ to consider the space

of maps

Map(X,Σ) = {f : X → Σ} (1.21.1)

from d-dimensional Riemannian manifold X. Then we consider the action functional on

this space of maps given by

S(f) =
1

2

∫
X

|df |2 volX . (1.21.2)

Here |df |2 is defined by using the metric of both X and Σ.

We can try to define a d-dimensional QFT Q = σd(Σ) by

ZQ(X) =

∫
Map(X,Σ)

e−S(f)d volMap(X,Σ) . (1.21.3)

This is called a non-linear sigma model with the target space Σ. When Σ is flat, this is a

UV complete QFT for any d. It is a UV complete QFT when d = 2. Otherwise, σd(Σ) only

exists as an effective QFT in general.

1.22 Gauging of QFTs

Another important operation we need to discuss is the coupling to the gauge field, or gauging

in short. This is an operation which, given a G × H-symmetric QFT Q, creates a family

of H-symmetric effective QFT Q/−G. H is called the flavor symmetry and G is called the

gauge symmetry in the physics literature.

The symbol /− is chosen to suggest that its formal property is similar to the quotient

of a G-space X by the G-action: X/G no longer has the action by G. Similarly, Q is G-

symmetric but Q/−G is not G-symmetric. The reader will surely find a slightly misguided

but historical terminology in the physics literature, referring to G as ‘the gauge symmetry

of the theory Q/−G’. In this review we avoid this terminology ‘gauge symmetry’ in the hope

of reducing the confusion.
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By Q × Q′ /−G we mean (Q × Q′) /−G. In general the symbol /− is assumed to have the

same precedence as the symbols + or − within equations.

This QFT Q/−G is defined via a path integral. Denote by F the curvature of a G-bundle

with connection P → X. For simplicity assume G is simple or U(1). Then we try to define

a one-parameter family Q/−G
∣∣
u∈R>0

Z
Q/−G

∣∣
u

(X) =

∫
MG,X

RRS[ZQ(P → X)e
− 1
g2

∫
X〈F,∧∗F 〉d volMG

] (1.22.1)

where MG,X is the moduli space of G-bundles with connections on X, and u and 1/g2

are related by RRS. For this to make sense, first of all we need to require that Q is

G-anomaly-free so that ZQ(P → X) is really a function.3 We then have

• (Perturbative renormalizability) The left hand side exists as an effective theory when

d ≤ 4. This is proved.

• (Existence as UV complete theory, d < 4) The left hand side exists as a UV-complete

theory when d < 4. It should not be hard to prove this.

• (Existence as UV complete theory, d = 4) The left hand side exists as a UV-complete

theory when d = 4 and

kG(Q) ≤ 22

3
h∨(G). (1.22.2)

The last item implies that triv4 /−G for any simple G should exist since kG(triv4) = 0. Any

reader is encouraged to prove this statement and receive the Clay prize. The RG acts within

the family triv /−G
∣∣
u∈R>0

by changing u.

The space of operators is given by

VQ/−G = (Sym•[g⊗ ∧2Rd]⊗ VQ)G. (1.22.3)

The elements in g⊗ ∧2Rd correspond to the curvature of the G-connection.

When d = 4, we can slightly generalize the construction so that we consider the family

Q/−G
∣∣
u,θ

where

Z
Q/−G

∣∣
u,θ

(X) =

∫
MG,X

RRS[ZQ(P → X)e−
∫
X u〈F,∧∗F 〉+iθ

∫
X〈F∧F 〉d volMG

]. (1.22.4)

Here θ takes values in R/Z, by appropriately normalizing the invariant inner product on g.

When d = 3 we can instead consider the family Q/−G
∣∣
u,k

Z
Q/−G

∣∣
u,k

(X) =

∫
MG,X

RRS[ZQ(P → X)e−
∫
X u〈F,∧∗F 〉+ikCS(P )d volMG

] (1.22.5)

3It is often suggested by the audience that one might be able to choose d volMG
to be a section of a

compensating bundle to allow for non-anomaly-free Q. We consider such nontrivial d volMG
to be another

QFT Q′ by definition. Then it is a gauging of Q×Q′ which is anomaly free.
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where CS(P ) is the Chern-Simons invariant of P , and k takes values in Z. The usual

Chern-Simons theory with group G of level k is in this notation triv3 /−G
∣∣
0,k

.

The discussions above can be generalized to the case when G is reductive and Q itself

comes in a G-symmetric family Q
∣∣
u∈U . Then there is a family Q/−G

∣∣
x∈X where there is a

non-canonical identification

X ' U × (space of invariant positive bilinear form on g). (1.22.6)

The 2d Yang-Mills theory YM2(G) discussed in Sec. 1.8.3 is, in the notation in this

section,

YM2(G) ' (triv2 /−G)u∗ . (1.22.7)

For general u, we need to replace the factors e−Ac2(ρ) there by e−A(u/u∗)c2(ρ).

1.23 Gauging and submanifold operators

In a d-dimensional gauge theory Q = Q′ /−G, we have natural elements in V1
Q labeled by

representations of G. Namely, given X and a closed one-dimensional curve C ⊂ X, we

define ZQ(X,C,R) by inserting trR Hol(C) in the path integral (1.22.1). Here Hol(C) is the

holonomy of the G-connection and trR is its trace in the representation R. These are called

Wilson lines in physics literature. We can consider the same thing in (1.22.5), which is used

in giving a path integral expression to Jones’ polynomial by Witten [Wit89].

We also naturally have elements in Vd−3
Q , labeled by elements ϕ of the coroot lattice of

G, modulo the action of the Weyl group. Equivalently, we have a homomorphism

ϕ : U(1)→ G (1.23.1)

up to conjugation. Given X and a d−3-dimensional submanifold D, we define ZQ(X,D,ϕ)

as follows. We let X ′ = X \ D. Very close to D, the manifold can be approximated by

an S2 bundle over D times R>0. By regarding the U(1) bundle with c1 = 1 over this S2

as a G-bundle via ϕ, we have a natural G-connection over this S2 bundle over D. Then,

we perform the path integral (1.22.1) over G-connections which approach this particular

G-connection close to D. When d = 4, this construction also determines elements in V1
Q.

These are called ’t Hooft loops in physics literature.

Behaviors of Wilson loops and ’t Hooft loops have played an essential role in the physical

study of gauge theories in the last few decades. Mathematicians who wish to axiomatize

quantum field theories absolutely need to incorporate them in their formulations.

1.24 The Standard Model

After all these preparations, we can state what is the Standard Model, which describes all

of the real world, including you who is reading this review, and the activity in the neurons

in your brain trying to make out the meaning of this sentence.
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Take G0 = Spin(10) and its irreducible spinor representation S of dimension 16. Take

a standard subgroup U(5) ⊂ Spin(10), whose embedding is induced from C5 ' R10 as R
vector spaces. Let G be the Levi subgroup

G = U(1)× SU(2)× SU(3) ⊂ U(5) (1.24.1)

which is the stabilizer of U(1) ⊂ G ⊂ U(5), where we embed e
√
−1t ∈ U(1) to

e
√
−1 diag(2,2,2,−3,−3)t ∈ U(5). (1.24.2)

Under G, the representation S decomposes as

S = (W̄ ⊗ V ⊗ T )⊕ (W ⊗ T⊗−4)⊕ (W ⊗ T⊗2)⊕ (V ⊗ T⊗−3)⊕ T ⊕ C (1.24.3)

where T ' C, V ' C2 and W ' C3 are the defining representations of U(1), SU(2), SU(3)

respectively.

We consider a G-symmetric four-dimensional QFT

F4(S ⊕ S ⊕ S)×B4(V ⊗ T⊗3). (1.24.4)

This is anomaly-free, because F4(S⊕S⊕S) is anomaly-free as a G0-symmetric theory, since

[Â(TX ) ch(S ×G0 P)]6 = 0 due to a simple reason that there is no characteristic class of

Spin(10) of degree 2 or 6.

Then we can form the family

SM
∣∣
u1,u2,u3

=
[
F4(S ⊕ S ⊕ S)×B4(V ⊗ T⊗3)

]
/−G

∣∣
u1,u2,u3

. (1.24.5)

over (u1, u2, u3) ∈ R3
>0. This family is a subfamily of a bigger family SM

∣∣
u∈U where U is

of real dimension 38. The real world is a fiber of this family SM
∣∣
u0

at a particular point

u0 ∈ U .

The deformations of this family can be found by studying

Re(VSMu1,u2,u3 ,4
/ Image∇)SO(4). (1.24.6)

Recall (S ⊕S ⊕S)⊗ S+ ∈ VF4(S⊕S⊕S),3/2. We denote an element of it by ψ1⊕ ψ2⊕ ψ3. We

further decompose ψi according to (1.24.3) and denote

ψi = Qi ⊕ ūi ⊕ d̄i ⊕ Ei ⊕ ēi ⊕ ν̄i. (1.24.7)

Note that F4(S⊕S⊕S) is a G×U(3)Q×U(3)ū×U(3)d̄×U(3)E×U(3)ē×U(3)ν̄-symmetric

theory, where U(3)X acts on Xi=1,2,3.

Recall also V ⊗ T⊗3 ∈ VB(V⊗T⊗3),1. We denote an element of it by φ. Next, recall

(g ⊗ Λ2(Rd))G ∈ VQ/−G,2, corresponding to invariant polynomials of curvatures of the G-

connection. We denote an element of g ⊗ Λ2(Rd) by F1 ⊕ F2 ⊕ F3, according to the direct

product structure G = U(1)× SU(2)× SU(3). Terms in V4 involving ∇, such as ∇φ∇φ, are
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all easily seen to be in the image of ∇. Then, possible deformations in (1.24.6) are given by

polynomials of ψi, φ and Fi which are invariant under G × Spin(4), with mass dimension

less than or equal to 4.

The basis of such polynomials are given by the following: First,

m2|φ2|, λ|φ2|2 (1.24.8)

are called the Higgs mass and the Higgs quartic coupling,

Re
∑
ij

yuijφQiūj, Re
∑
ij

ydijφ̄Qid̄j, Re
∑
ij

yeijφEiēj, Re
∑
ij

yνijφ̄Eiν̄j (1.24.9)

are called the up-type Yukawa couplings, the down-type Yukawa couplings, the lepton

Yukawa couplings, and the Dirac neutrino mass terms, and

Re
∑
ij

µij ν̄iν̄j (1.24.10)

are called the Majorana neutrino mass terms, and

ui〈Fi,∧ ∗ Fi〉, θi〈Fi,∧Fi〉 (1.24.11)

are called the gauge coupling constants, and the theta angles.

The parameters m2, λ, αi and θi are real, and the rest yu,d,e,νij and µij are complex. The

Majorana mass term µij is symmetric in its two subscripts. U(3)Q ×U(3)ū ×U(3)d̄ acts on

on the space of yuij and ydij. The stabilizer of a typical point is U(1)B, which is called the

baryon number symmetry. U(1)B acts on θ2 by shifting it, due to ’t Hooft anomalies. This

effect is not explained in this review. U(3)E × U(3)ē × U(3)ν̄ acts on on the space of yeij
and ydν . The stabilizer of a typical point is again U(1)L, which is called the lepton number

symmetry. This U(1)L acts on the space of µij. So in total we have

2 + 6 + 72 + 12− 54 = 38 (1.24.12)

parameters in the Standard Model.

Before going further, we should emphasize that the Standard Model is not UV-complete.

It exists only as an effective theory, and various quantities such as Z(X) only exists as an

asymptotic series. This signifies physically that there are phenomena in the real world not

described by the Standard Model. Presumably there is a four-dimensional UV-complete

quantum gravity theory which describes the whole physical phenomenon, whose approxi-

mation is the Standard Model.

1.25 Vacua of QFT

So far in this review, given a QFT Q, ZQ(X) is defined only for compact X. When Q

is unitary, by studying the behavior of ZQ(X) when X is large, one can extract a finite-

dimensional Riemannian manifold

Mvac(Q) (1.25.1)
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called the moduli space of vacua of Q. When Q is G-symmetric, there is a natural G action

onMvac(Q). Essentially, we find that RGtQ with t very large, can be approximated by the

effective QFT σd(Mvac(Q)), introduced in Sec. 1.21.

A point u ∈Mvac(Q) is called a vacuum of Q. Then, for (d−1)-dimensional noncompact

Y with infinite volume,

HQ(Y, u) (1.25.2)

can be defined. For d-dimensional noncompact X with infinite volume, we can also define

ZQ,u ∈ Γ(MX , L) (1.25.3)

where M is the moduli space of d-dimensional noncompact spin manifolds X ′ such that

X \K = X ′ \K ′ (1.25.4)

for compact submanifolds K and K ′, respectively. L is a line bundle with connection on

MX .

The vacua and the OPE algebra V are related as follows:

• The continuous functions on Mvac(Q) is a subspace of V :

C∞(Mvac(Q)) ⊂ V . (1.25.5)

The action of Spin(d) on C∞(Mvac(Q)) is trivial. The algebra structure does not

necessarily match.

• For f ∈ C∞(Mvac(Q)) ⊂ V , we have

〈f(p)〉X,u = f(u). (1.25.6)

The left hand side is the one-point function ZQ,u(X; p, f), and the right hand side is

the evaluation of a function at u.

The theorem by Coleman, Mermin and Wagner states that when d ≤ 2, Mvac(Q) is

discrete.

From the axioms it follows that HQ(Rd−1, u) with a standard flat metric on Rd−1 carries

an action of its isometry Spin(d−1). This is known to enhance to an action of Spin(d−1, 1).

Once the contents of this section are fully formally developed, it should be straightforward

to restrict the axioms to the case where X = Rd, which should reproduce the standard

Osterwalder-Schroeder axioms.

2 Supersymmetric QFTs

The rest of the lecture note is mainly devoted to the discussion of N = 2 supersymmetric

QFTs in four dimensions. We discuss various structures associated to them. The readers

are advised to refer to Fig. 1 at the beginning of the lecture note as a summary. Below,

we start from generalities and gradually restrict our attention to four-dimensional N = 2

QFTs.
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2.1 Generalities

A supersymmetric d-dimensional QFT is, morally speaking, a QFT for a d-dimensional

manifold with super-Riemannian structure. Here, a super-Riemannian structure is a ‘su-

per’ version which adds additional structure on top of a standard Riemannian structure

with a Riemannian metric. In each spacetime dimension d, there are a few kinds of super-

Riemannian structure, first of all labeled by N , the so-called the number of the super-

symmetry. Even with d and N fixed, there are usually several different super-Riemannian

structures known in the physics literature, usually called the off-shell supergravity multi-

plets. The author does not know a concise definition of what a super-Riemannian structure

on a manifold is, encompassing various known versions.

Most of the time, physicists considers supersymmetric theories only with d ≤ 11.4 The

structure of the supersymmetry also depends strongly on d mod 8, as it uses the structure

of spin representations of so(d). Therefore, the discussions of the supersymmetry requires

each of d = 1, 2, . . . , 11 almost separately, one by one.

These limitations force the author to phrase the following discussions in a rather ad-hoc

manner. In this lecture note, we mainly discuss the case d = 4. At the end of this section

we will briefly discuss the d = 2 case in relation to the mirror symmetry. In the next section

we will also have a little to say about the d = 6 case. In the following, QFTs are assumed

to be four-dimensional unless otherwise specified.

A supersymmetric QFT which is conformally invariant as introduced in Sec. 1.15 is

called a superconformal field theory (SCFT). Many of the supersymmetric QFTs we deal

with below are superconformal.

2.2 Generalities in d = 4

A four-dimensional N -extended supersymmetric QFT Q is a QFT with a lot of additional

properties. First, Q is SU(N )-symmetric5. We write byR ' CN the defining representation

of this SU(N ). Second, the space of point operators VQ has an action of the super Lie algebra

(su(N )× so(4)) n (R4 ⊕ S+ ⊗R⊕ S− ⊗ R̄) (2.2.1)

where the even part R4 corresponds to the action of ∇, the part S+ ⊗ R ⊕ S− ⊗ R̄ is

the odd part. The commutator between an element in S+ ⊗ R and S− ⊗ R̄ is given by

the tensor product of the natural maps S+ ⊗ S− ' R4 and R⊗ R̄ → C. The elements in

S+⊗R⊕S−⊗R̄ are called supersymmetry generators. They map an element of VD to VD+1/2.

4This is due to the following reason. For a representation R of so(d), let us define its spin j by requiring

that the largest irreducible representation of so(3) ⊂ so(3)× so(d− 3) ⊂ so(d) appearing in the irreducible

decomposition of R has dimension 2j + 1. Physicists know very little about how to deal with theories

involving so(d) representations of spin greater than 2, and any nontrivial representation of supersymmetry

algebra for d ≥ 12 necessarily contains such representations. This forces d to be less than or equal to 11.
5Strictly speaking, there are supersymmetric QFTs with no SU(N ) R-symmetry known in the physics

literature, but as they do not play role in this review, we require the existence of SU(N ) R-symmetry in

the definition.
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An N -extended supersymmetric QFT is automatically N ′-extended supersymmetric QFT

for any N ′ < N . A 1-extended, 2-extended or 4-extended QFT is usually called an N = 1,

N = 2, N = 4 supersymmetric QFT, respectively.

An N -extended super-Riemannian structure on a 4-manifold X includes at least an

SU(N )-bundle with connection. Then we have its frame bundle as FSU(N )×Spin(4)X → X.

Now, consider the vector bundle

TX ⊕ S+X ⊕ S−X = R4 ⊕ S+ ⊗R⊕ S− ⊗ R̄ (2.2.2)

over X associated to (2.2.1). This determines three vector bundles TX, S+X and S−X over

X. The first is the standard tangent bundle; the second and the third are what can be called

the super-tangent bundles. A certain nice section of TX is an infinitesimal isometry, and is

called a Killing vector. similarly, a certain nice section of S+X or S−X is an infinitesimal

super-isometry, and is called a Killing spinor. A subcase is when the section is in fact

covariantly constant with respect to the spin connection and the SU(N ) connection. In

this review we only explicitly use this case. The partition function ZQ(X) and the n-point

functions of a supersymmetric QFT Q is invariant under the action of a super-isometry, just

as those of a Riemannian-structured QFT are invariant under the action of an isometry.

A G-symmetric N -extended supersymmetric QFT Q is an N -extended supersymmetric

QFT where G-action commutes with the action of the supersymmetry generators. The

SU(N ) symmetry acting on R is called the SU(N ) R-symmetry to distinguish it from

the non-R symmetry G just introduced above. A U(1) R-symmetric N -extended super-

symmetric QFT Q is one where Q is U(1)-symmetric such that it acts on R by a scalar

multiplication.

2.3 N = 1 supersymmetric QFTs

There are many interesting topics with N = 1 supersymmetry, but we state only the bare

basics to study N = 2 supersymmetric QFTs. Let us consider N = 1 susy QFT. Take a

supersymmetry generator δ ∈ S+ ⊗ R and fix it. This acts on VQ. We have δ2 = 0 from

the super-Lie-algebra structure mentioned above, and thus we can define its cohomology

H(VQ, δ).
Furthermore, δ has the following properties with respect to the OPE product, namely

• If v, w ∈ VQ are δ-closed, v ◦x w is finite when x→ 0.

• If furthermore w is δ-exact, v ◦x w is 0 when x→ 0.

This means that the OPE product ◦x with x→ 0 induces a standard super algebra structure

on H(VQ, δ). This is called the chiral ring of the theory.

These properties follow by considering n-point functions on a flat R4, where δ generates a

superisometry. As the OPE product is determined by the short-distance behavior of n-point

functions on arbitrary manifold, we can extract the statements above from the properties

on R4.
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The vacuum Mvacuum(Q) should be thought of as the bosonic part of a supermanifold

M′(Q), on which there is a natural action of the supersymmetry. The fixed loci of the

supersymmetry action, Msusyvac(Q) ⊂ M′(Q), is then a non-super manifold which is a

submanifold ofMvacuum(Q). This submanifold is naturally Kähler. It satisfies the important

relation

H(VQ, δ)so(d) = C[Msusyvac(Q)] (2.3.1)

and this is compatible with the property

VQ ⊃ C∞(Mvac(Q)) (2.3.2)

as vector spaces.

2.4 N = 2 supersymmetric QFTs

Given a G-symmetric N = 2 QFT Q, its vacuum moduli space Msusyvac(Q) has two pro-

jections

Msusyvac(Q)→MCoulomb(Q), Msusyvac(Q)→MHiggs(Q) (2.4.1)

such that

Msusyvac(Q)→MCoulomb(Q)×MHiggs(Q) (2.4.2)

is an embedding.

The Coulomb branch MCoulomb(Q) is a base space of a holomorphic integrable system

as discussed below. As a complex variety it is an affine space ' Cr, although there is no

canonical vector space structure on it. The number r is called the rank of Q. The G action

on it is trivial. The Higgs branchMHiggs(Q) is a hyperkähler manifold with a triholomorphic

G action with moment maps. SU(2) ' SO(3) R-symmetry acts on MHiggs(Q) by rotating

three complex structures.

When Q has U(1) R-symmetry, we can define more invariants. First, we have numbers

nv(Q), nh(Q). (2.4.3)

If Q is G-symmetric, we have numbers

kG0(Q) (2.4.4)

for each simple factor G0 ⊂ G. They are coefficients of the anomaly polynomial of Q as

a linear combination of a conventionally-chosen characteristic classes. Namely, A(Q) is a

degree-6 characteristic class in terms of TX , PU(1), PSU(2), PG:

A(Q) =
∑
G

kG
2
c1(PU(1))c2(PG)+

(nv − nh)[−
1

12
c1(PU(1))p1(TX ) +

1

3
c1(PU(1))

3] + nvc1(PU(1))c2(PSU(2)). (2.4.5)
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kG is also given by the short-distance behavior of two G-currents, and similarly c = nv/6 +

nh/12 is given by the short-distance behavior of two energy-momentum tensor. They are

the same quantities discussed in Sec. 1.12.

In this case MCoulomb ' Cr has an action of U(1) R-symmetry. In other words there is

a natural C× action giving a degree on its function ring. Let us write, then,

C[MCoulomb] = C[u1, . . . , ur] (2.4.6)

where ui has well-defined degrees. Then

nv(Q) =
∑
i

(2 deg(ui)− 1) (2.4.7)

in a standard convention where R in (2.2.1) has degree 1/2 as always.

For Q1 ×Q2, nv, nh, kG are additive

nv(Q1 ×Q2) = nv(Q1) + nv(Q2), nh(Q1 ×Q2) = nh(Q1) + nh(Q2), (2.4.8)

kG(Q1 ×Q2) = kG(Q1) + kG(Q2), (2.4.9)

whereas MHiggs and MCoulomb are multiplicative

MCoulomb(Q1 ×Q2) =MCoulomb(Q1)×MCoulomb(Q2), (2.4.10)

MHiggs(Q1 ×Q2) =MHiggs(Q1)×MHiggs(Q2). (2.4.11)

2.5 Hypermultiplets

Let us take a pseudoreal representation V of G, or equivalently, assume that V has a

quaternionic structure and we have a homomorphism G→ Sp(V ). Then there is a natural

complex action of G × SU(2) on V . We denote this G × SU(2) representation by V ′; the

underlying vector space is the same as V . Then there is a free G-symmetric N = 2 QFT

which we denote by Hyp(V ) :

Hyp(V ) = B4(V ′)⊕ F4(V ). (2.5.1)

This is called a half-hypermultiplet based on V . When V = W ⊕ W̄ for a complex repre-

sentation W of G, Hyp(W ⊕ W̄ ) is called a hypermultiplet based on W .

We have

MCoulomb(Hyp(V )) = {pt}, (2.5.2)

MHiggs(Hyp(V )) = V, (2.5.3)

nv(Hyp(V )) = 0, (2.5.4)

nh(Hyp(V )) = dimH V. (2.5.5)

For a simple component G0 ⊂ G, kG0(Hyp(V )) is given as follows. We decompose

V = ⊕iRi (2.5.6)
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into irreducible G0 representations Ri, and then

kG0(Hyp(V )) = 2
∑

c2(Ri) (2.5.7)

where c2(R) is the eigenvalue of the quadratic Casimir operator normalized so that c2(g0,C) =

h∨(G0). This also follows from kG0(B(V )) and kG0(F (V )) given in Sec. 1.16 and Sec. 1.17.

A hypermultiplet Hyp(V ) is G-anomaly-free, unless G has a simple component G0 =

Sp(n) and kG0(Hyp(V )) is odd. This is related to Witten’s global anomaly discussed previ-

ously in Sec. 1.18.

2.6 Quotients

Given a G× F -symmetric N = 2 QFT Q with no G-anomaly, we consider

[Q× F4(gC ⊗R)×B4(gC)] /−G
∣∣
u∈R>0,θ∈R/2πZ

. (2.6.1)

For simplicity we assume G is simple. This family of effective QFT is embedded in a bigger

family of QFT, whose complex-dimension-1 subfamily is again N = 2 supersymmetric.

Among others, one needs to add a deformation to (2.6.1) given by |~µG|2 ⊂ VQ, where

~µG :MHiggs(Q)→ g⊗ R3 (2.6.2)

is the hyperkähler moment map of the G action. This is an F -symmetric effective N = 2

supersymmetric QFT which we denote by

Q/−/−/−G
∣∣
τ
, (2.6.3)

where τ = 4π
√
−1u + θ/2π. The notation /−/−/− is chosen to suggest its relation to the

hyperkähler quotient below (2.6.7). The group F is called the flavor symmetry of this

theory. In (2.6.1), the part ×F4(gC⊗R)×B4(gC) /−G is called the N = 2 vector multiplet,

and the operation (2.6.3) is called the coupling of the vector multiplet of group G to the

theory Q.

The theory Q/−/−/−G
∣∣
τ

is a UV complete QFT if

kG(Q) ≤ 4h∨(G). (2.6.4)

Suppose Q is U(1) R-symmetric. Then Q/−/−/−G
∣∣
τ

is U(1) R-symmetric if and only if kG(Q) =

4h∨(G). Otherwise the U(1) R-symmetry acts nontrivially on τ . The action is given as

follows: define q and Λ via

q = e2πiτ = Λ2h∨(G)−kG(Q)/2 (2.6.5)

and say that Λ has degree 1. The data of simply-laced groups are given in Table 1. Note

that dimG = rankG(h∨(G) + 1).

Let Q′ = Q/−/−/−G. Then

nv(Q
′) = nv(Q) + dimG, nh(Q

′) = nh(Q) (2.6.6)
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G rankG dimG h∨(G) {da}
AN−1 N − 1 N2 − 1 N 2, 3, . . . , N

DN N N(2N − 1) 2N − 2 2, 4, . . . , 2N − 2;N

E6 6 78 12 2, 5, 6, 8, 9, 12

E7 7 133 18 2, 6, 8, 10, 12, 14, 18

E8 8 248 30 2, 8, 12, 14, 18, 20, 24, 30

Table 1: Data of the simply laced groups.

and

MHiggs(Q
′) =MHiggs(Q/−/−/−G) =MHiggs(Q)///G. (2.6.7)

Here on the right hand side the symbol /// stands for the hyperkähler quotient6. As complex

varieties

MCoulomb(Q′) =MCoulomb(Q)× SpecC[gC]GC (2.6.8)

where gC has degree one. This is compatible with (2.4.7) because

C[gC]GC = C[u1, . . . , ur] (2.6.9)

where deg ui = ei + 1 and ei is the i-th exponent of G, and

dimG =
∑
i

[2(ei + 1)− 1]. (2.6.10)

2.7 Examples of N = 2 gauge theories

A straightforward subclass of effective N = 2 supersymmetric QFTs are the set of

Hyp(V ) /−/−/−G (2.7.1)

for all possible V and G. These are called N = 2 gauge theories. We are mostly interested

in UV complete ones, i.e. those with kG0(Hyp(V )) ≤ 4h∨(G0) for all simple component G0

of G. Let us see some examples.

2.7.1 Pure theory

Take a simple gauge group G. The pure theory is

triv4 /−/−/−G
∣∣
τ
. (2.7.2)

This is a special case of (2.7.1) where V is zero dimensional, so that Hyp(V ) = triv4. This

is never U(1) R-symmetric.

6When Q is an N = 1 supersymmetric G-symmetric QFT, we can similarly define a gauging operation

Q/−/−G
∣∣
τ
, so that it is anN = 1 supersymmetric QFT. This quotient is a deformation of [Q×F4(gC)] /−G

∣∣
α,θ

.

Then Msusyvac(Q/−/−G) is a submanifold of Msusyvac(Q)//G, where the symbol // stands for the Kähler

quotient.
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2.7.2 N = 4 theory

Take a simple gauge group G, and consider

SYMN=4(G)
∣∣
τ
:= Hyp(gC ⊕ gC) /−/−/−G

∣∣
τ
. (2.7.3)

As kG(gC ⊕ gC) = 4h∨(G), this gauge theory is conformal. By decomposing we see that

SYMN=4(G)
∣∣
τ
= B4(gR ⊗R R6)× F4(gC ⊗C C4) /−G

∣∣
τ,properly deformed

(2.7.4)

and there is in fact an action ofN = 4 supersymmetry; the SU(4) R-symmetry acts naturally

on C4 and on R6 via the isomorphism SU(4) ' Spin(6).

It is believed

SYMN=4(G)
∣∣
τ
= SYMN=4(G∨)

∣∣
−1/(nτ)

(2.7.5)

where G∨ is the group Langlands-dual to G and n is the ratio of the length squared of long

roots and short roots. This is called the S-duality of the N = 4 super Yang-Mills theory,

and underlies the proposed relation between geometric Langlands program and the gauge

theory.

2.7.3 SQCD

Let V ' CNc and W ' CNf . Let G = SU(V ) and F = SU(W ). We have

kG(V ⊗ W̄ ⊕W ⊗ V̄ ) = 2Nf . (2.7.6)

Then we can consider the theory

Hyp(V ⊗ W̄ ⊕W ⊗ V̄ ) /−/−/−G (2.7.7)

when 2Nf ≤ 4Nc, i.e. Nf ≤ 2Nc. These are called N = 2 supersymmetric quantum chromo-

dynamics (SQCD). Nc and Nf are called the number of colors and of flavors, respectively.

Similarly, let V ' RN and W ' HM . Then Hyp(V ⊗RW ) is SO(V )×Sp(W )-symmetric.

We find

kSO(V )(Hyp(V ⊗R W )) = 4M, kSp(W )(Hyp(V ⊗R W )) = N. (2.7.8)

Since h∨(SO(V )) = N − 2 and h∨(Sp(W )) = M + 1, we find that

Hyp(V ⊗R W ) /−/−/−SO(V )
∣∣
τ

(2.7.9)

for M ≤ N − 2 and

Hyp(V ⊗R W ) /−/−/−Sp(W )
∣∣
τ

(2.7.10)

for N ≤ 4(M + 1), N even, are UV complete. Note that in the latter case odd N is not

allowed due to the anomaly.
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2.7.4 Quiver gauge theory

Let Γ be an unoriented graph
v2v1 e . (2.7.11)

For each vertex v, introduce complex vector spaces Vv and Wv. Let

VΓ :=
⊕
e

(Vh(e) ⊗ V̄t(e) ⊕ Vt(e) ⊗ V̄h(e))⊕
⊕
v

(Vv ⊗ W̄v ⊕Wv ⊗ V̄v), (2.7.12)

GΓ :=
∏
v

SU(Vv). (2.7.13)

We want to consider

Hyp(VΓ) /−/−/−GΓ

∣∣
(τv)∈(upper half plane)#vertices . (2.7.14)

This is UV complete when

2 dimVv ≥ dimWv′ +
∑
v′

dimVv′ (2.7.15)

for all v, where the summation on the right hand side is over the vertices v′ connected to v

via an edge. This means that Γ is either a Dynkin graph or an affine Dynkin graph. In the

latter case we also see that Wv is all zero dimensional.

2.7.5 An enumeration problem

As shown, the classification of UV-complete N = 2 gauge theory Hyp(V ) /−/−/−G, if we re-

strict V and G to be associated to a quiver as above, is equivalent to the classification of

the affine and non-affine Dynkin diagram. Therefore the classification of all UV-complete

Hyp(V ) /−/−/−G is a natural enumerative problem generalizing that question. It should not be

too difficult a problem but this classification has not been done to the author’s knowledge.

Let us see below a few additional typical examples of a UV-complete N = 2 gauge theory.

2.7.6 Trivalent gauge theory

Here we consider a different way to associate V and G given a combinatorial object. Let Γ

be a trivalent graph

v1 v2

v3

ee'
internal

external
, (2.7.16)
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i.e. we only allow univalent or trivalent vertices. An edge connected to two trivalent vertices

is called internal, and an edge connected to a univalent vertex and a trivalent vertex is called

external. For each edge e, introduce Ve ' C2, and let

VΓ :=
⊕

v:trivalent

Ve1(v) ⊗C Ve2(v) ⊗C Ve3(v), (2.7.17)

GΓ :=
∏

e:internal

SU(Ve). (2.7.18)

where e1,2,3(v) are the three edges connected to a trivalent vertex v. Then we consider

Hyp(VΓ) /−/−/−GΓ

∣∣
(τe)∈(upper half plane)#int. edges . (2.7.19)

This is a FΓ symmetric theory, where

FΓ :=
∏

e:external

SU(Ve). (2.7.20)

As we have

kSU(Ve)(VΓ) = 8 = 4h∨(SU(2)), (2.7.21)

this theory is always conformal with respect to all SU(Ve). This construction does not

generalize to any simple group G other than SU(2) if we only consider Hyp(V ) /−/−/−(G)n.

It is because there is no analogue of the pseudoreal representation V ⊗ V ′ ⊗ V ′′ where

V ' V ′ ' V ′′, which can be used in an analogue of (2.7.17), that satisfies the constraint

(2.6.4).

2.7.7 Exceptional gauge theories

Let G = E6, V ' C27 its minuscule representation. This is a complex representation, with

kE6(Hyp(V ⊕ V̄ )) = 12. As h∨(E6) = 12, we can consider

Hyp(V ⊗ CNf ⊕ V̄ ⊗ C̄Nf ) /−/−/−E6

∣∣
τ

(2.7.22)

for 0 ≤ Nf ≤ 4. This is an U(Nf )-symmetric theory.

Let G = E7, V ' H28 ' C56 its minuscule representation. This is a pseudoreal repre-

sentation, with kE7(Hyp(V )) = 12. As h∨(E7) = 18, we can consider

Hyp(V ⊗R RNf ) /−/−/−E7

∣∣
τ

(2.7.23)

for 0 ≤ Nf ≤ 6. This is an SO(Nf )-symmetric theory.

Let G = F4, V ' R26 its nontrivial real 26-dimensional representation. We find

kF4(Hyp(V ⊗R H)) = 12. As h∨(F4) = 9, we can consider

Hyp(V ⊗R HNf ) /−/−/−F4

∣∣
τ

(2.7.24)

for 0 ≤ Nf ≤ 3. This is an Sp(Nf )-symmetric theory.

LetG = G2, V ' R7 its nontrivial real 7-dimensional representation. We find kG2(Hyp(V⊗R

H)) = 4. As h∨(G2) = 4, we can consider

Hyp(V ⊗R HNf ) /−/−/−G2

∣∣
τ

(2.7.25)

for 0 ≤ Nf ≤ 4. This is an Sp(Nf )-symmetric theory.
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2.8 Mass deformations

When Q is F -symmetric, there is a standard deformation Qm where m is a semisimple

element of gC. The parameter m is called the mass. Qm and Qm′ are equivalent if m and m′

are conjugate. Qm is Fm-symmetric. When Q is U(1) R-symmetric, the mass m has degree

1 under the U(1) R-symmetry.

As a complex manifold we have

MCoulomb(Qm) 'MCoulomb(Q) (2.8.1)

but other structures on them are different. The most important one is the following.

2.9 Donagi-Witten integrable system

Let Q be an F -symmetric N = 2 supersymmetric QFT. We have the Donagi-Witten inte-

grable system

DW (Qm)→MCoulomb(Qm). (2.9.1)

The standard review on this topic is [Don97]. The basic requirements are that

• dimDW (Qm) = 2 dimMCoulomb(Qm) = 2r.

• The generic fiber is an r-dimensional principally polarized Abelian variety.

• There is a holomorphic symplectic form Ω on DW such that its restriction to a generic

fiber T is trivial: Ω|T = 0. These are why it is called an integrable system.

• There is a meromorphic one-form λSW , called the Seiberg-Witten differential, such

that Ω = dλSW .

• The polar divisor D of λSW has the structure

D =
⋃
w∈PF

Dw. (2.9.2)

Here and in the following, PF and QF stands for the weight and the root lattice of F .

Some of Dw can be empty.

Let L = H1(T \ (T ∩ D),Z). This has a skew-symmetric form 〈, 〉 on it given by the

polarization. There is a sequence

PF → L→ H1(T,Z), (2.9.3)

and L has a skew-symmetric form with signature (+r,−r, 0rankF ). Denote by Sp(L) the

group of automorphism of L preserving this skew symmetric form. The differential λSW
determines a homomorphism a : L → C. Its restriction on PF is constant on MCoulomb, as
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dλSW is holomorphic. This constant homomorphism PF → C is identified with m ∈ fC up

to conjugation.

Let Disc(Qm) be the discriminant of the fibration. We have an Sp(L) local system over

MCoulomb(Qm) \Disc(Qm). (2.9.4)

Locally we can take a basis of L

α1, . . . , αr; β1, . . . , βr; γ1, . . . , γrankF (2.9.5)

such that 〈αi, βj〉 = δij, otherwise = 0. We let

ai = a(αi), aDi = a(βi), mi = a(γi). (2.9.6)

We identify the sublattice generated by γi with PF . Then (m1, . . . ,mrankF ) is identified

with m of Qm. We denote by LE the maximally isotropic sublattice generated by {αi} and

{γj}.
Locally the tuple (a1, . . . , ar) gives a coordinate system on MCoulomb(Qm). As the fiber

is a polarized Abelian variety, we find that there is a holomorphic function

F(a1, . . . , ar;m1, . . . ,mrankF ) (2.9.7)

such that

aDi =
∂F
∂ai

(2.9.8)

and furthermore

τij =
∂2F
∂ai∂aj

(2.9.9)

is the period matrix of T , and in particular Im τij is symmetric positive definite.

The prepotential F is defined with respect to the choice of the maximally isotropic

sublattice LE ⊂ L. The relation (2.9.8) means that when we change the choice of LE the

prepotential is transformed by a Legendre transformation.

2.10 Donagi-Witten integrable system and gauging

It would be useful to consider a further fibration

D̃W F (Q)→ fC/FC (2.10.1)

where the fiber at m ∈ fC is DW (Qm). When Q is G× F -symmetric, it should be possible

to characterize D̃W F (Q/−/−/−G
∣∣
τ
) in terms of D̃W F×G(Q), but the author does not currently

know how to do it. Instead let us just state the condition when Q = Hyp(V ) where V is a

pseudoreal representation of G× F .

Let us then consider Hyp(V ) /−/−/−G
∣∣
τ,m

. Here Im τ can be non-canonically identified with

an invariant positive bilinear form (, ) on g. Let us write G =
∏

xGx where Gx is simple.
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Define τx by (, )|gx = τx(, )0 where (, )0 is the invariant product normalized so that the length

squared of the long root is 2. Note that Im τx is positive. We then set qx = e2π
√
−1τx . As

stated in (2.6.5), qx has degree 2h∨(Gx)−kGx(Hyp(V ))/2 under U(1) R-symmetry, whereas

a and m has degree one.

Then our aim is to find the fibration is

DW (Hyp(V ) /−/−/−G)→MCoulomb(Hyp(V ) /−/−/−G) = hC/W (2.10.2)

where h is the Cartan subalgebra of g and W is the Weyl group. This fibration depends

furthermore on qx and m. We pull back this family to

DW → hC. (2.10.3)

Let

hC ⊃ UK = {a ∈ hC | |α(a)| > K and |w(a⊕m)| > K} (2.10.4)

where α runs over all roots of G and w is over all weights of V . Note that a⊕m is in the

Cartan subalgebra of g× f and therefore there is a natural pairing with a weight w of V .

A standard perturbative computation shows that the family restricted to UK for a suf-

ficiently large K,

DW → UK (2.10.5)

satisfies the following properties.

• The monodromy of the local system on UK preserves an isotropic sublattice PG×PF ⊂
L, where we identify PG with the weight lattice of g.

• Let us then take a basis α1, . . . , αr of PG. Locally on UK , we can choose β1, . . . , βr
generating the complementary sublattice QG such that L = PG⊕QG⊕PF . We identify

QG with the root lattice of g.

• We let ai = αi(a) be the coordinate functions of a ∈ hC. We also introduce a ∈ hC via

αi(a) = ai =
∫
αi
λSW . Both the set {ai} and the set {ai} give a coordinate system in

UK .

• The most crucial condition is that the prepotential F (a) has the power series expansion

in terms of {qx}
F (a,m) =

∑
dx≥0

F{dx}(a,m)
∏
x

qdxx (2.10.6)

such that the leading term is

F{dx=0}(a,m) = (a, a)−
∑

v:roots of g

f(v(a)) +
1

2

∑
w:weights of V

f(w(a⊕m)) (2.10.7)

where

f(x) =
1

2π
√
−1

[
x2

2
log x− 3

4
x2

]
(2.10.8)
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is a function such that f ′′′(x) = 1/x, and other F{dx}(a,m) are rational functions of

{aj} and {mk}. The degree of F (a,m) under U(1) R-symmetry should be two. Recall

that a and m has degree 1 and qx has degree 2h∨(Gx)− kGx(Hyp(V ))/2.

Note that the branch cut of f(x) together with (2.9.8) determines the Sp(L) local

system on UK uniquely.

• The next condition is not so crucial as the previous one. It is on the property of ai as

a function of aj, qx and m. Namely, ai has a power series expansion in terms of qx

ai =
∑
dx≥0

fi,{dx}(a,m)
∏
x

qdxx (2.10.9)

such that the leading term is

fi,{d=0}(a,m) = ai (2.10.10)

and other fi,d(a,m) are rational functions of {aj} and {mk}. ai should furthermore

have degree 1 under the U(1) R-symmetry. This just says that the coordinate ai
defined by λSW and ai defined by the underlying h are not very different.

The physics intuition says that such fibration should exist and is furthermore essentially

unique, in the sense that if we have two solutions

F (a,m, {qx}), F̃ (a,m, {qx}) (2.10.11)

then there are power series with a definite degree under U(1) R-symmetry,

q̃x =
∑
dy≥0

q̃x,{dy}(m)
∏
y

qdyy (2.10.12)

where

q̃x,{dy=0} = qx (2.10.13)

and other q̃x,{dy}(m) are rational in m, so that

F (a,m, {qx}) = F̃ (a,m, {q̃x}). (2.10.14)

Before proceeding we mention that there is a one-parameter family of hyperkähler struc-

ture on DW (Qm) which is compatible with the holomorphic symplectic structure discussed

above. On this topic, see e.g. [GMN08].

2.11 Examples of Donagi-Witten integrable systems

It is not known how to construct the DW integrable system given Hyp(V ) /−/−/−G in complete

generality. Even describing them is tricky. The methods often employed are the following.
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1. One can start from a family of curves

ΣSW →MCoulomb (2.11.1)

and take the Jacobian (or a nice subspace of it such as Prym) at each point on the

base. In this case one needs to check that the resulting family is integrable. ΣSW is

called the Seiberg-Witten curve.

2. One can start from a Riemann surface C and a G′-Hitchin system on it, where G′ is a

group related to G. Then DW →MCoulomb is identified with a small modification of

the Hitchin fibration. Given a representation R of G, one can construct an associated

spectral curve ΣR → MCoulomb which can then be regarded as the Seiberg-Witten

curve.

3. One can also start from a family of compact Calabi-Yau 3-fold over the moduli space

of its complex structure. In this case the fibration of its intermediate Jacobian is an

integrable system but it is not principally polarized and Im τij is not positive definite.

One needs to take a certain limit to extract a positive-definite subsystem. We usually

end up with a family of non-compact 3-fold which is a fibration of deformed simple

singularities over a Riemann surface C, X →MCoulomb. This family can also arise as

a spectral geometry of a Hitchin system on C.

4. Finally there are also cases where DW (Q) is given by the moduli space of anti-self-dual

G′-connections on a certain open four-manifold.

We review below some of the typical Donagi-Witten integrable system of Hyp(V ) /−/−/−G.

We do not explain how to check that the conditions explained in Sec. 2.10 are satisfied. In the

literature some of them were checked. There are some cases where the conditions have not

been checked, although DW (Q) is believed to be correct from various other considerations.

2.11.1 G-Hitchin system

We begin by a quick review of the Hitchin system. Let C be a Riemann surface with

punctures p1, . . . pk with labels which we describe later. Let P → C be a GC-bundle with

a reference connection d′′. We take

φ ∈ Ω1,0(C, gC), A′′ ∈ Ω0,1(C, gC). (2.11.2)

Recall that we use V to denote a vector bundle associated to a representation V , (1.11.2).

D′′ = d′′ + A′′ is a connection. The labels determine the singularities allowed for φ and A.

Suppose a singularity p is at the origin of a local coordinate z = 0. A tame (or regular)

singularity is labeled by a gC-orbit O, and φ is of the form

φ ∼ X
dz

z
+ less singular terms, X ∈ O. (2.11.3)

52



A wild (or irregular) singularity is one where φ has a pole of order more than one.

We let

G = {f : C → GC}. (2.11.4)

Then

{D′′φ = 0}/G =:MG-Hitchin(C) (2.11.5)

is a holomorphic symplectic manifold and there is the Hitchin map

h :MG-Hitchin →
r⊕

a=1

H0(K⊗daC + p(a)) (2.11.6)

where KC is the canonical divisor and p(a) is a linear combination of p1, . . . , pk determined

by the labels. The Hitchin map h is given by

h : φ 7→ u1(φ)⊕ · · · ⊕ ur(φ) (2.11.7)

where we fixed the isomorphism

C[g∗C]GC ' C[u1, . . . , ur] (2.11.8)

so that ua has degree da. Given a representation R of G we can consider the spectral curve

of the Hitchin system. For example, when G = AN−1, we take the vector representation as

R and consider

detR(λ− φ) = λN + u2(φ)λN−2 + · · ·+ uN(φ) = 0 (2.11.9)

as an equation giving a curve within T ∗C, where λ is the tautological one-form on T ∗C.

MG-Hitchin(C) is recovered as its Jacobian.

The spectral curve has a spurious dependence on R. When G is simply-laced, a more

invariant object is its spectral geometry [DDP06]. Let us illustrate the construction by

considering two cases. First consider the case G = E6. The deformation of the simple

singularity of type E6 is given by

WE6 = x4
1 + x3

2 + x2
3 + u2x

2
1x2 + u5x1x2 + u6x

2
1 + u8x2 + u9x1 + u12 (2.11.10)

where x1, x2 and x3 have degree 3, 4, 6 respectively and uk are the generators as in (2.11.8)

where the subscripts are renamed to correspond to the degree. The whole expression has

the degree h∨(E6) = 12.

Then, given φ as in (2.11.2), we consider a three-fold X in the total space of the vector

bundle

K⊗3
C ⊕K⊗4

C ⊕K⊗6
C → C (2.11.11)

given by

0 = x4
1 + x3

2 + x2
3 + u2(φ)x2

1x2 + u5(φ)x1x2 + u6(φ)x2
1 + u8(φ)x2 + u9(φ)x1 + u12(φ)

(2.11.12)

53



where x1, x2, x3 are now sections of K⊗3
C , K⊗4

C , K⊗6
C , respectively. Then the fiber of the

Hitchin system is given by the intermediate Jacobian of X.

Next, let us consider the case G = AN−1. In this case the spectral geometry is given by

0 = x2x3 + xN1 + u2(φ)xN−2
1 + · · ·+ uN(φ) (2.11.13)

where x1, x2, x3 are sections of KC , K⊗2
C , K

⊗(N−2)
C , respectively. Note that this is essentially

equivalent to the spectral curve (2.11.9).

2.11.2 Pure theory

For a simple gauge group G, consider the pure theory Q
∣∣
τ
= triv4 /−/−/−G

∣∣
τ
. We use the

parameter q = Λ2h∨ = e2π
√
−1τ introduced in (2.6.5). This has degree 2h∨ under the U(1)

R-symmetry.

Its Donagi-Witten integrable system DW (Q) is the Toda integrable system of type G

when G is simply-laced. For non-simply-laced G, it is the twisted Toda system associated

to the Langlands dual of the affine Lie algebra Ĝ associated to G.

For type AN−1,

MCoulomb(Q) = SpecC[gC]GC = SpecC[u2, . . . , uN ] (2.11.14)

and the Seiberg-Witten curve is the spectral curve of the Toda system of type AN−1 given

by

ΛNz +
ΛN

z
= xN + u2x

N−2 + · · ·uN . (2.11.15)

By defining the one-form λ = xdz/z we have

λN + u2(
dz

z
)2λN−2 + · · ·+ (uN + ΛNz +

ΛN

z
)(
dz

z
)N = 0. (2.11.16)

This is of the form of a spectral curve of SU(N)-Hitchin system on a sphere, with two

marked points at z = 0 and z = ∞. ui(φ) for i < N has degree ≤ i poles at 0 and ∞,

but uN(φ) has order N + 1 poles there. The points 0 and ∞ are therefore irregular (wild)

singularities.

For type E6, say, the Seiberg-Witten geometry is given by

Λ12z +
Λ12

z
= x4

1 + x3
2 + x2

3 + u2x
2
1x2 + u5x1x2 + u6x

2
1 + u8x2 + u9x1 + u12 (2.11.17)

and this is of the form of the spectral geometry of the E6-Hitchin system on a sphere with

two marked points at z = 0 and z =∞, with

ui(φ) = ui
dzi

zi
, (i 6= 12), u12(φ) = (u12 + Λ12z +

Λ12

z
)
dz12

z12
. (2.11.18)

The points 0 and ∞ are again irregular (wild) singularities.
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2.11.3 N = 4 theory and N = 2∗ theory

Pick a simple g. Consider the N = 4 system introduced in Sec. 2.7.2:

Q
∣∣
τ
= Hyp(gR ⊗R H) /−/−/−G

∣∣
τ
. (2.11.19)

This is a Sp(1)-symmetric N = 2 supersymmetric theory, and therefore one can consider

the mass deformation Qτ,m where m is in the Cartan subalgebra of su(2)C, i.e. a complex

number up to sign. The theory when m 6= 0 is called the N = 2∗ theory.

Here q = e2π
√
−1τ is degree zero. The Donagi-Witten integrable system for a simply-laced

G when m = 0 is the G-Hitchin system on the elliptic curve with modulus q without any

puncture. When G is not simply-laced, it is given by the twisted Hitchin system associated

to the Langlands dual of the affine Lie algebra Ĝ associated to G. In either case, the

prepotential is just given by

F (a) = τ(a, a)0, (2.11.20)

where (·, ·)0 is the positive-definite invariant form on g introduced around (2.10.1).

When m 6= 0, DW (Qτ,m) is given by the elliptic Calogero-Moser system of type G when

G is simply-laced, and by the twisted version associated to the Langlands dual of Ĝ when

G is non-simply-laced [DP99]. When G = AN−1 it is given by an SU(N)-Hitchin system on

an elliptic curve with one puncture at z = 0, such that the gC-valued one-form φ at z = 0

has a residue conjugate to

Res
z=0

φ ∼ m diag(1, 1, . . . , 1, 1−N). (2.11.21)

There is no known way to construct (twisted) elliptic Calogero-Moser systems of other types

as a Hitchin system.

2.11.4 SQCD

Consider the SQCD introduced in Sec. 2.7.3:

Q
∣∣
τ
= Hyp(V ⊗ W̄ ⊕W ⊗ V̄ ) /−/−/−SU(V )

∣∣
τ

(2.11.22)

where V ' CN and W ' CNf . This is a U(W )-symmetric theory, and therefore we can

introduce mass deformations by m = (m1, . . . ,mNf ). The maximum Nf allowed is 2N .

The Seiberg-Witten curve is given by the family

ΣSW 3 (z, x) : z +
q
∏Nf

i=1(x−mi)

z
+ xN + u2x

N−2 + · · ·+ uN = 0 (2.11.23)

and λ = xdz/z. Here z has degree N and q = has degree 2N − Nf . From this one can

construct

DW (Q) := Jac(ΣSW )→MCoulomb(Q). (2.11.24)
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The one-form on DW is induced from the one-form λ = xdz/z on ΣSW . It is a good exercise

to check that indeed this fibration satisfies the defining conditions stated in Sec. 2.10. We

note that for Nf ≤ 2N − 2 we can identify mi = mi, but for Nf > 2N − 2, mi = mi +O(q).

Consider the upper limit case Nf = 2N . Let us rewrite (2.11.23) as the spectral curve

of the Hitchin system. We first redefine z to have

z

N∏
i=1

(x−mi) +
q

z

2N∏
i=N+1

(x−mi) + xN + u2x
N−2 + . . .+ uN = 0. (2.11.25)

We make a few rewrites: first, we gather the same powers of x to have

(z +
q

z
+ 1)xN + û1(z)xN−1 + · · ·+ ûN(z) = 0. (2.11.26)

By dividing by z + q/z + 1 and redefining xnew = xold − u1(z)/(z + q/z + 1)/N , we have

xN + ũ2(z)xN−2 + · · ·+ ũN(z) = 0. (2.11.27)

Now ũk(z) has degree k poles at z±, where z± are two zeros of z + q/z + 1 = 0.

This last expression is of the form of the spectral curve of a Hitchin system,

λN + u2(φ)λN−2 + · · ·+ uN(φ) = 0. (2.11.28)

where λ = xdz/z and uk(φ) = ũk(z)dzk/zk. The field φ has four singularities on a sphere

parameterized by z, all of which are regular. The cross ratio of four points is a function of

q. When all mi are generic, we find the following:

• At z = 0,∞, we have a pole of the form

φ ∼ diag(m̃1, . . . , m̃N)dz/z, φ ∼ diag(m̂1, . . . , m̂N)dz/z, (2.11.29)

so that
∑
m̃i =

∑
m̂i = 0.

• At z = z±, we have a pole of the form

φ ∼ m̃ diag(1, 1, . . . , 1, 1−N)
dz

z − z+

, φ ∼ m̂ diag(1, 1, . . . , 1, 1−N)
dz

z − z−
.

(2.11.30)

We thus see that there are two types of residues with distinct Levi types.

When some of the parameter, say m̃, is taken to zero, the residue of φ is no longer

semisimple. Instead, we have

φ ∼ (J2 ⊕ J1 ⊕ · · · ⊕ J1︸ ︷︷ ︸
N−2

)
dz

z − z+

, (2.11.31)

where Jk is a k × k Jordan block. We will have more to say about it in the next section.

Recall that we saw in Sec. 2.11.2 that we found wild singularities for the pure theories.

An experimental fact is that when we write the Seiberg-Witten curve in terms of a Hitchin

system we usually have
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• some wild singularities if 2h∨(G) > kG and

• all singularities are tame when 2h∨(G) = kG.

Let us consider a particularly simple case where N = 2 and Nf = 4. Then the residue

(1, 1−N) in (2.11.30) is equal to the residue (1,−1) in (2.11.29), and the four singularities

at z = 0,∞, z+, z− are all of the same type. This is in fact the simplest case of the trivalent

theory, with

Γ = . (2.11.32)

2.11.5 Trivalent theory

Let us then consider a general trivalent theory QΓ

∣∣
τ introduced in Sec. 2.7.6. Given

Γ =
v1 v2

v3

ee'
internal

external
, (2.11.33)

recall we have the theory Q = Hyp(VΓ) /−/−/−GΓ which is FΓ-symmetric, see (2.7.17), (2.7.18)

and (2.7.20). Note that mass deformation is given by m = {me}e:external. We associate to Γ

a Riemann surface by picking a three-punctured sphere P 1 for each vertex v, and for each

edge with τe associated, we make the identification zz′ = qe = e2π
√
−1τe :

C =

z=0

z'=0

zz'=q

. (2.11.34)

Note that each external edge e becomes a puncture pe on C. Let us say pe is at the origin

of the local coordinate ze = 0. Then we consider an SU(2)-Hitchin system on this Riemann

surface with the boundary condition

φ ∼ dze
ze

diag(me,−me) (2.11.35)

at each puncture. This gives the Donagi-Witten integrable system of QΓ,τ,m.

2.11.6 An exceptional gauge theory

Consider the theory

Hyp(V ⊗ CNf ⊕ V̄ ⊗ C̄Nf ) /−/−/−E6

∣∣
τ

(2.11.36)
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as introduced in Sec. 2.7.7, where V ' C27 is the minuscule representation of E6, and 0 ≤
Nf ≤ 4. As this is U(Nf )-symmetric, introduce the mass deformation ~m = (m1, . . . ,mNf ).

q = e2π
√
−1τ has degree 24− 6Nf .

The Seiberg-Witten geometry is given by

z +
q
∏Nf

i X({x1, x2, x3}, {ud},mi)

z
= WE6({x1, x2, x3}, {ud}) (2.11.37)

where WE6 was given in (2.11.10) and

X({x1, x2, x3}, {ud},m) = −8(x2
1 −
√
−1x3 +

1

2
u6)− 4u2x2

+ 4mu5 +m2(u2
2 − 12x2)− 8m3x1 + 2m4w2 +m6. (2.11.38)

Note first that when Nf = 0 it reduces to the geometry of the pure theory, (2.11.17). In

particular it is the spectral geometry of a E6-Hitchin system with two wild singularities.

The polynomial X above has the following important property. Consider

zX({x1, x2, x3}, {ud},m) = WE6({x1, x2, x3}, {ud}) (2.11.39)

as defining a family X of three-dimensional hypersurface in (z, x1, x2, x3) ∈ C4 parameterized

by m and {ud}. By the identification C[hC]W = C[ud] where hC is the Cartan subalgebra of

E6 and W the Weyl group, we can think of X as a family

X → C⊕ h 3 m⊕ a. (2.11.40)

Then the fiber develops a singularity of the form x2 + y2 + z2 +w2 = 0 if and only if there is

a weight of V such that m = w(a). Many of the Donagi-Witten system of Hyp(⊕iVi) /−/−/−G
for a simple G can be found using a polynomial Xi satisfying this condition for Vi [TT11].

Let us next consider the case Nf = 4 so that the theory is conformal. Here it is more

convenient to rewrite (2.11.37) to

zX(m1)X(m2) +
qX(m3)X(m4)

z
= WE6 . (2.11.41)

As in the rewriting in the conformal SU(N) case starting at (2.11.25), we can transform it

into the spectral geometry of a Hitchin system on a sphere with four tame singularities:

• At z = 0 and z =∞, the Hitchin field behaves as

φ ∼ [3(m1 +m2)(v2 − v4) + (m1 −m2)(v2 + v4)]
dz

z
, (2.11.42)

φ ∼ [3(m3 +m4)(v2 − v4) + (m3 −m4)(v2 + v4)]
dz

z
(2.11.43)

respectively, where vi is the i-th fundamental weight where the ordering of the nodes

is given by
6

12345. When m → 0 the residue is nilpotent, whose Bala-Carter label is

A4 + A1.
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• At z = z+ and z = z− at the zeroes of z + q/z + 1 = 0, we have

φ ∼ Eα
dz

z − z+

, φ ∼ Eα
dz

z − z−
. (2.11.44)

where Eα is an element in the SL(2) triple (Eα, Hα, Fα) associated to a simple root.

The Bala-Carter label is A1.

2.11.7 Affine quiver theory

As a final example, consider the quiver gauge theory QΓ introduced in Sec. 2.7.4, in a

particular case when the underlying graph Γ is an affine Dynkin diagram of type Ar, Dr or

Er. The gauge group is

GΓ =
r∏
i=0

SU(Nai) (2.11.45)

where di are the marks of the Dynkin diagram so that
∑
di = h∨(Γr). The flavor symmetry

FΓ is G̃Γ/GΓ where

G̃Γ =
r∏
i=0

U(Nai). (2.11.46)

The gauge couplings are given by qi = e2π
√
−1τi for i = 0, . . . , r. Then the Donagi-Witten

integrable system DW (Q) is given by the moduli space of anti-self-dual Γr-connections of

instanton number N on Eq × C where Eq is an elliptic curve with the complex structure

q = q0 · · · qr [NP12].

The fibration DW (QΓ) → MCoulomb(QΓ) is given by using Looijenga’s theorem, which

states that the moduli of holomorphic Γr-bundle on E is isomorphic to the weighted pro-

jective space WPa0,...,ar . Let us denote by x the coordinate on C. Then, restricting the Γr-

bundle on the fiber Eq at x, one has a holomorphic degree-N quasimap from C to WPa0,...,ar .

More explicitly, we have r + 1 polynomials χi of degree Nai of x:

χi(x) = qix
Nai +mix

Nai−1 + ui,2x
Nai−2 + · · ·+ ui,Nai (2.11.47)

so that [χ0(x) : χ1(x) : · · · : χr(x)] ∈ WPa0,...,ar . The coefficients are naturally associ-

ated to the coupling constants qi, masses mi of FΓ, and the coordinates ui,2, . . . , ui,Nai of

MCoulomb(QΓ) which comes from C[SU(Nai)]
su(Nai).

When Γr = Ar or Dr, one can also describe the same integrable system as an SU(N)-

Hitchin system or a twisted SU(2N)-Hitchin system, respectively. For Γr = Ar, we have an

SU(N)-Hitchin system on T 2 with complex structure q as above, with r+ 1 punctures with

residue of the form (2.11.30). For Γr = Dr, we have a twisted SU(2N)-Hitchin system on

a sphere in the following sense. In addition to r singularities where the residue of φ is of

the form (2.11.30), there are four singularities around which there is a monodromy by the

outer automorphism of SU(2N). These descriptions when the Dynkin diagram is of type A

or D are obtained by applying the Nahm transformation to the descriptions given above in

terms of instantons on T 2 × R2.
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2.12 BPS states and Wall crossing

Given an F -symmetric N = 2 supersymmetric theory Q, consider HQm(R3, p) for p ∈
MCoulomb(Qm) \Disc(Qm). This is an infinite dimensional Hilbert space, graded by L

HQm(R3, p) = ⊕l∈LHl(p). (2.12.1)

There is an action of the supersymmetry S+ ⊗R⊕ S− ⊗ R̄ on HQm(R3, p) compatible

with the grading by L. Recall that we introduced a map a : L→ C. Pick δ+ ∈ S+ ⊗R and

δ− ∈ S− ⊗ R̄ and let

δϕ = δ+ + eiϕδ− (2.12.2)

for ϕ ∈ R. It is known that

[δϕ, δ
†
ϕ]+ = δϕδ

†
ϕ + δ†ϕδϕ = t− Re(e−iϕa) (2.12.3)

where t is an Hermitean operator on HQm(R3, p) called the Hamiltonian, defined by the

map

e−βt = ZQm([0, β]× R3, p) : HQm(R3, p)→ HQm(R3, p). (2.12.4)

Therefore, the eigenvalue of t on Hl is bounded below by |a(l)|. Let ϕ = Arg a(l). Then

δϕv = 0 for v ∈ Hl(p) if and only if tv = |a(l)|v. The subspace of Hl(p) satisfying this

condition is called the space of BPS states and we denote it by BPSl(p). BPSl(p) is a

Z/Z2-graded finite-dimensional vector space. BPSl(p) is locally constant but it can jump at

real-codimension-1 walls. Its wall-crossing behavior is intensively studied. See e.g. [GMN09].

2.13 Topological twisting

Let Q be any N = 2 supersymmetric QFT. We define a new QFT Qtop, which is not a

supersymmetric QFT, as follows. First, recall an N = 2 supersymmetric QFT is SU(2)

R-symmetric. Given a spin 4-manifold X, we decompose the frame bundle FSpin(4)X → X

to PSU(2) ×X P ′SU(2) → X, and then we feed it to ZQ to define ZQtop :

ZQtop(X) = ZQ(PSU(2) → X). (2.13.1)

In other words we choose a homomorphism

ϕ : SU(2)R → Spin(4). (2.13.2)

The supertangent to X as defined in (2.2.2) is now, due to the identification of SU(2) ⊂
Spin(4) and the SU(2) R-symmetry, given by

S+X ⊕ S−X = (C⊕ Λ2+TX)⊕ TX (2.13.3)

where Λ2+TX is the bundle of self-dual two-forms. Therefore there is a trivial subbundle

of the supertangent bundle, which then has a covariantly constant section. This gives a

superisometry δ.
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This can be identified with a fixed element in S+ ⊗R acting on VQ, and we define the

space of point operators of Qtop by

VQtop = H(VQ, δ). (2.13.4)

Using this superisometry δ, we can show the following properties of Qtop:

• ZQtop(X) depends only on smooth structure on X. To show this, consider changing

the metric of X from g to g + εδg. Then, from the analysis in Sec. 1.12, we have

∂

∂ε
ZQtop(X) =

∫
X

(〈T (p) + ϕ(∇J(p))〉X , δg(p))d volX (2.13.5)

where T is the energy-momentum tensor, J is the SU(2) R-current, and ϕ is the map

R4 × su(2)R → Sym2 R4 induced from (2.13.2). Now it turns out the point operator

T + ϕ(∇J) is δ-exact, and therefore its one-point function on the right hand side of

(2.13.5) vanishes. Therefore ZQtop(X) does not depend on the continuous deformation

of the metric.

• For the quotient Q/−/−/−G
∣∣
τ

we have

Z
Q/−/−/−G

∣∣
τ

,top
=
∑
n

qn
∫
Mn

ZQtop(PG → X) (2.13.6)

where q = e2π
√
−1τ and Mn is the moduli space of ASD G-connections on X with

c2 = n. Morally speaking, this happens as there is an action of δ on the integration

domain of the path integral which is a supermanifold based on the moduli space M
of G-bundles with connections. Then the integral localizes to the integral over the

δ-fixed points, which happen to be given by the ASD G-connections. As a corollary,

we see (triv /−/−/−SU(2))top is the Donaldson invariant.

2.14 Topological twisting and the mirror symmetry

Before continuing, let us have a look at a classic application of topological twisting. We

start from a 2d supersymmetric theory. A 2d supersymmetry algebra is of the form

(so(N+)× so(N−)× so(2)) n (R2 ⊕ S+ ⊗R+ ⊕ S− ⊗R−) (2.14.1)

where R± ' CN± . The R-symmetry group acting on R± is only so(N±), not u(N±), in

order for the action to be compatible with the CPT conjugation action on the superalgebra,

which as introduced in Sec. 1.14 is an action of Pin(2) where the element disconnected from

the identity acts by a conjugate-linear map.

Here we only consider the case when (N+,N−) = (2, 2). In this case we write so(N+) =

u(1)+, so(N−) = u(1)−:

(u(1)+ × u(1)− × so(2)) n (R2 ⊕ S+ ⊗R+ ⊕ S− ⊗R−) (2.14.2)
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We consider two subalgebras of u(1)+ ⊕ u(1)− given by

u(1)A = {x⊕ x ∈ u(1)+ ⊕ u(1)−}, u(1)B = {x⊕ (−x) ∈ u(1)+ ⊕ u(1)−}. (2.14.3)

We then consider subalgebras

(u(1)A × so(2)) n (R2 ⊕ S+ ⊗R+ ⊕ S− ⊗R−), (2.14.4)

(u(1)B × so(2)) n (R2 ⊕ S+ ⊗R+ ⊕ S− ⊗R−). (2.14.5)

There is an outer automorphism of the supersymmetry algebra (2.14.2) which exchanges

(2.14.4) and (2.14.5).7

Various 2d supersymmetric QFT is known. Some have the symmetry of (2.14.4), some

have the symmetry of (2.14.5), and some have both actions, leading to the symmetry of the

full algebra (2.14.2).

For example, there are supersymmetric versions of non-linear sigma models introduced

in Sec. 1.21, which can be defined for a Kähler manifold M . Let us denote it by Σ(M).

This is always u(1)A symmetric, i.e. has the symmetry of (2.14.4). When M is Calabi-Yau,

it is u(1)A × u(1)B symmetric.

As another set of examples, there are so-called Landau-Ginzburg models given a Calabi-

Yau manifold M and a holomorphic function f on it; here M can in general be non-compact

as long as the locus df = 0 is compact. Denote it by LG(M, f). This is always u(1)B
symmetric. When f is quasi-homogeneous, it is u(1)A × u(1)B symmetric. When f = 0,

LG(M, 0) = Σ(M).

Now, a u(1)A symmetric 2d supersymmetric theory Q can be topologically twisted by

using the homomorphism

ϕA : u(1)A ' so(2) (2.14.6)

as in (2.13.2), where so(2) is the Lie algebra of the structure group of the two-dimensional

spacetime. Let us denote it Qtop,A. This is a 2d topological theory. For a Kähler manifold

M , Σ(M)top,A is the topological A-model on M , denoted by A(M) in Sec. 1.7.

Similarly, a u(1)B symmetric 2d supersymmetric theory Q can be topologically twisted

by using the homomorphism

ϕB : u(1)B ' so(2) (2.14.7)

as in (2.13.2). Let us denote it Qtop,B. This is again a 2d topological theory. For a Calabi-

Yau manifold M and the superpotential f , LG(M, f)top,B is the topological B-model on M .

When M is compact and f = 0, this is the B-model on M , denoted by B(M) in Sec. 1.7.

Note that when M is a compact Calabi-Yau manifold, we can define both the A-twist and

the B-twist, denoted by A(M) and B(M).

Mirror symmetry is a manifestation of the outer automorphism exchanging (2.14.4)

and (2.14.5). This gives rise to an equivalence between the category of u(1)A symmetric

2d supersymmetric QFTs and the category of u(1)B symmetric 2d supersymmetric QFTs.

7In physics literature u(1)A here is denoted u(1)V , and u(1)B here is denoted u(1)A, where V is for vector

and A is for axial vector.
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Assuming that a large part of the category of the u(1)A symmetric theories is generated in

some sense by Σ(M), and similarly that a large part of the category of u(1)B symmetric

theories is generated by LG(M, f), there should be a correspondence

Σ(M) ' LG(W, f) (2.14.8)

where M is determined by (W, f) and vice versa. In this relation, when M is Calabi-Yau,

the left hand side is u(1)A×u(1)B symmetric. The right hand side should also be symmetric

under u(1)A × u(1)B. Therefore f = 0, and we have

Σ(M) ' LG(W, 0) = Σ(W ). (2.14.9)

Note that this equivalence involves the outer automorphism.

By taking the A-twist of the left hand side and the B-twist of the right hand side, this

gives rise to the equivalence A(M) ' B(W ). Further taking the category of branes, we see

that there is the equivalence of the Fukaya category Fuk(M) of M and the derived category

of the coherent sheaves D(W ) on W . Similarly, by taking the B-twist of the left hand side

and the A-twist of the right hand side, we obtain B(M) ' A(W ).

3 6d theory and 4d theories of class S

In this section we study four-dimensional N = 2 supersymmetric QFTs arising from the

so-called dimensional reduction of a class of six-dimensional N = (2, 0) supersymmetric

QFTs.

3.1 Dimensional reduction

In general, given a d-dimensional QFT Q and a d′ < d dimensional Riemannian manifold

K, we can define a d− d′ dimensional QFT Q[K] via the relation

ZQ[K](X) = ZQ(K ×X). (3.1.1)

The definition of the space of operators VQ[K] requires more care. This operation is called

the dimensional reduction. The resulting theory Q[K] depends on the Riemannian metric

on K, and is too detailed. We want an operation which depends only on rougher structures

on K so that it is more tractable. This can often be done if the original d-dimensional QFT

is supersymmetric.

For definiteness, we start from a six-dimensional supersymmetric theory. A six-dimensional

supersymmetry algebra is of the form

(sp(N+)× sp(N−)× so(6)) n (R6 ⊕ S+ ⊗R+ ⊕ S− ⊗R−) (3.1.2)

where R± ' HN± . The R-symmetry group acting on R± is only sp(N±), not u(2N±), in

order for the action to be compatible with the CPT conjugation action on the superalgebra,
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which as introduced in Sec. 1.14 is an action of Pin(6) where the element disconnected from

the identity acts by a conjugate-linear map.

This is called the (N+,N−)-extended six-dimensional supersymmetry, and the sp(N+)×
sp(N−) part is the R-symmetry. An (N+,N−)-extended theory and an (N−,N+)-extended

theory are essentially the same by a change of convention. We only deal with the case

(N+,N−) = (2, 0), for which the supersymmetry algebra is

(sp(2)× so(6)) n (R6 ⊕ S+ ⊗R+). (3.1.3)

Note that sp(2) ' so(5) in our convention. This is usually called the six-dimensional

N = (2, 0) supersymmetric theory.

Given a six-dimensional spin manifold Y with a Riemannian metric, together with an

Sp(2) R-symmetry bundle with connection, we have the frame bundle FSp(2)×Spin(6)Y → Y .

Then the algebra bundle (3.1.3) gives rise to the supertangent space

TY ⊕ S+Y = R6 ⊕ S+ ⊗R+. (3.1.4)

Now, given a d′-dimensional manifold K, we pick a homomorphism ϕ : so(d′) → sp(2).

Then we have an sp(2) bundle ϕ(Fso(d′)K × X) over K × X constructed from the frame

bundle of TK, which we use to define Q[Kϕ]

ZQ[Kϕ](X) := ZQ(ϕ(Fso(d′)K)×X). (3.1.5)

When ϕ(so(d′)) has a nontrivial stabilizer G in sp(2) R-symmetry group, Q[Kϕ] becomes

a d− d′ dimensional supersymmetric theory with G R-symmetry. This procedure is called

the partial twisting.

In this review we only consider the case when d′ = 2 and the homomorphism ϕ is given

by the diagonal embedding

ϕ : so(2) ⊂ so(2)× so(3) ⊂ so(5) ' sp(2). (3.1.6)

Its stabilizer is so(2)× so(3) ' u(1)× su(2). Then the theory Q[Kϕ] is a four-dimensional

N = 2 supersymmetric theory with SU(2)×U(1) R-symmetry. Indeed, one can check that

the supertangent bundle (3.1.4) over K × X contains a subbundle pulled back from the

supertangent bundle (2.2.2) over X of an N = 2 theory with SU(2) × U(1) R-symmetry.

The properties of Q[Kϕ] we study only depends on the complex structure and the total area

of K. This can be shown as in the derivation of the independence of Qtop from the metric

given in Sec 2.13.

3.2 6d N = (2, 0) theory

Now we need 6d N = (2, 0) supersymmetric theory to be used in the dimensional reduction

just introduced above. They are known to have an ADE classification, namely, for each
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Dynkin diagram Γ = An, Dn, En, we have a 6d N = (2, 0) supersymmetric theory SΓ.8

This is Out(Γ)-symmetric, where Out(Γ) is the graph automorphism of Γ. The theory SΓ

itself is constructed by a dimensional reduction starting from 10d quantum gravity system

called string theories. A description of this theory for mathematicians can be found e.g. in

[Wit09b, Wit09a, Moo12].

A d-dimensional gauge theory of the form Q/−G involves a path integral over the moduli

space of the G-bundles with connections on a d-dimensional manifold X. A d-dimensional

quantum gravity theory should involve a path integral over the moduli space of the Rieman-

nian manifolds of dimension d. But physicists learned that it is almost impossible to start

from a QFT Q and form Q/−(diffeo. on metric). A quantum gravity theory is constructed

in a rather indirect way, and only a few of them are known to exist. Also, as we need to

perform an integral over the Riemannian manifolds, we do not expect that a quantum grav-

ity theory gives a number given a compact d-dimensional Riemannian manifold. Rather,

given a d − 1 dimensional Riemannian manifold Y , we expect that the path integral over

the moduli space of d-dimensional Riemannian manifolds with metric whose boundary is Y

would give rise to a number.

A well-established supersymmetric quantum gravity theory is the Type IIB string theory

StIIB in 10 dimensions. This means that it can produce a number given a 9-dimensional

Riemannian manifold. We can then perform a dimensional reduction to define

SΓ = StIIB[S3/Γ] (3.2.1)

where Γ is identified with the corresponding finite subgroup of SU(2). This is a 6dN = (2, 0)

supersymmetric QFT.

Its space of point operators is not completely known, but it at least satisfies

VSΓ
⊃ C[h⊗R (C⊕ C⊕ R)]W . (3.2.2)

Here, h is the Cartan subalgebra of the Lie algebra of type Γ, Spin(5) acts naturally on

C⊕C⊕R ' R5, and C[h⊗R3]W comes from the deformation parameters of a hyperkähler

asymptotically-flat metric filling S3/Γ.

SΓ is a Spin(5)-symmetric QFT. Then its anomaly polynomial A(SΓ) is a degree-8 char-

acteristic class in TX and PSpin(5), known to be of the form

A(SΓ) = (rankG)I8 + dimGh∨(G)
p2(PSpin(5))

24
(3.2.3)

where G is a Lie group of type Γ and

I8 =
1

48

[
p2(PSpin(5))− p2(TX ) +

1

4
(p1(PSpin(5))− p1(TX ))2

]
. (3.2.4)

8This is a generalized QFT in the sense of Sec. 1.5, but in this review this important subtlety is grossed

over. More on this point, see e.g. [FT12].
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3.3 Dimensional reduction on S1

Before studying SΓ compactified on a Riemann surface, let us study S6d
Γ [S1

` ] where the

subscript ` denotes the circumference of the circle. This turns out to be a 5d gauge theory

as an effective theory. Let G be the simply-laced group of type Γ. Then

SΓ[S1
` ] = Bd=5(gR ⊗ R5)× Fd=5(gC ⊗H2) /−G

∣∣
`∈R>0, properly deformed

(3.3.1)

This is the N = 2 supersymmetric 5d gauge theory with Spin(5)R ' Sp(2)R R-symmetry,

which acts on R5 and H2 in a natural way. As we have the Spin(5) action on the tangent

space of the five-manifolds and an additional Spin(5)-bundle associated to the Spin(5) R-

symmetry, we distinguish the latter by putting R in the subscript in this section.

This effective 5d theory has a path integral expression:

ZSΓ[S1
` ](X) =

∫
M
e−Id volM (3.3.2)

where

I =

∫
X

1

`

[
〈φ̄,4φ〉+ 〈F, ?F 〉+ 〈ψ̄D

/
ψ〉+ · · ·

]
d volX , (3.3.3)

M is the moduli space of principal G-bundles P → X with connection, and sections φ of

(gR ⊗ R5) ×G P → X, and sections ψ of (gC ⊗ S) ×G×Spin(5) FG×Spin(5)X → X where S is

the spinor representation of Spin(5).

When X = S1
`′ × Y , and take the limit `′`→ 0 keeping `′/` fixed, we have

ZSΓ[S1
` ](X)→

∫
M
e−IdvolM (3.3.4)

where M is now the moduli space of P , φ, ψ over Y , and

I =

∫
Y

`′

`

[
〈φ̄,4φ〉+ 〈F, ?F 〉+ 〈ψ̄D

/
ψ〉+ · · ·

]
d volY . (3.3.5)

The holonomy of G-connection around S1
`′ gives another gR-valued function on Y , and so φ

is now a section of (gR ⊗ R6)×G P → Y . In total we have

SΓ[S1
` × S1

`′ ]→
B(gR ⊗ R6)× F (gC ⊗ C4) /−G

∣∣
τ=i`′/`,properly deformed

= Hyp(gC ⊕ gC) /−/−/−G
∣∣
τ=i`′/`

. (3.3.6)

This is the four-dimensional N = 4 supersymmetric Yang-Mills with simply-laced gauge

group G, introduced in Sec. 2.7.2. From the 6d construction we have the symmetry `↔ `′,

which is a nontrivial symmetry τ ↔ −1/τ from the 4d point of view.
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3.4 Properties of nilpotent orbits

Before continuing it is necessary to gather here the properties of nilpotent orbits and other

conjugacy classes of gC. For more details, refer to [CM93]. In this section all Lie algebra is

over C and drop the subscript C. Given an element x ∈ g, it can be uniquely decomposed

to x = e + m where e is nilpotent and m is semisimple and is in ge. A subalgebra l of g of

the form l = gm for a semisimple m is called a Levi subalgebra.

We denote the g-orbit containing x by Ox. This has a natural holomorphic symplectic

structure on it. There is only a finite number of nilpotent orbits. Given two nilpotent

orbits Oe and Oe′ , we define a partial ordering Oe ≤ Oe′ if and only if Oe ⊂ Ōe′ . There

is a maximal object in this partial order called the principal orbit. The minimal object in

the partial order is of course the zero orbit, and the next-to-minimal object is called the

minimal nilpotent orbit.

Below, we often use the generators of su(2) given by (e, h, f) with the commutation

relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (3.4.1)

A triple (e, h, f) in g satisfying the relations above is called an SL(2) triple. The theorem

of Jacobson and Morozov says that any nilpotent element e in g can be completed to an

SL(2) triple unique up to conjugation, and that classifying an SL(2) subalgebra in g up

to conjugation is equivalent to classifying e up to conjugation. For the principal nilpotent

element eprincipal, h = 2ρ where ρ is the Weyl vector.

Given e, the subspace

e+ Se = {e+ x | [f, x] = 0, x ∈ g} (3.4.2)

is called the Slodowy slice at e.

A nilpotent element of g = AN−1 is classified by its Jordan normal form, i.e. by a partition

ofN which we denote by [n1, n2, . . .] whereN =
∑
ni and n1 ≤ n2 ≤ · · · . Nilpotent elements

in classical algebras are similarly labeled by partitions with certain constraints. In general, a

nilpotent orbit is specified by picking a nilpotent element e in it and specifying the smallest

Levi subalgebra which contains e. This Levi subalgebra does not always uniquely specify a

nilpotent orbit, in which case we add a discrete label. This pair of a Levi subalgebra and a

discrete label if needed is the Bala-Carter label of a nilpotent orbit. The weighted Dynkin

diagram is just the element h as specified as the set of αi(h), where αi is the i-th simple

root and h is conjugated to the positive Weyl chamber.

Given a Levi subalgebra l and an element x ∈ l, it is known that x + e where e is a

generic nilpotent element outside of l is in a fixed conjugacy class. This conjugacy class is

denoted by Indg
l x and called the induced orbit. There is an order-reversing map dLS on the

set of nilpotent orbits of g called Lusztig-Spaltenstein map. This satisfies

d2
LS = id (3.4.3)

when g is type A but it only satisfies

d3
LS = dLS (3.4.4)
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if not. When g is type A, dLS is given by the transpose of the partition specifying the

nilpotent orbit. One important property of dLS is its compatibility with the induction,

Indg
l d

l
LS(Oe) = dgLS(Indg

l Oe). (3.4.5)

A nilpotent orbit which is in the image of dLS is called special. Given a special orbit Oe,

the set of nilpotent orbits Oe′ such that d2
LS(Oe′) = Oe is the special piece of Oe. Within the

special piece of Oe, Oe itself is the maximal element. The partial order among the special

piece is encoded in a subgroup C(O′e) ⊂ Ā(Oe) [Som01, AS02, Ach03]. Here, Ā(Oe) is a

reflection group defined as a certain quotient of the component group A(Oe) = Ge/(Ge)◦

introduced by Lusztig. Then when two orbits in the special piece of Oe then

Oe′ ≤ Oe′′ ↔ C(Oe′) ⊃ C(Oe′′). (3.4.6)

In particular C(Oe) = {id}.

3.5 4d operator of 6d theory

From now on we fix a simply-laced Dynkin diagram Γ and a corresponding group G. We

know that the theory SΓ has various 4d operators, and therefore we have

ZSΓ
(X6 ⊃ D4

1 tD4
2 t · · · ) (3.5.1)

where each four-dimensional submanifold D4
i carries a certain label. In the following we

sometimes indicate the dimension of a manifold by putting the dimension as a superscript

as a way of clarification.

So far two classes of labels are known:

• Tame or regular operators. The label is a pair (e,m) up to conjugacy, where e is a

nilpotent element of gC and m a semisimple element of geC.

• Wild or irregular operators. The author does not quite know what are the available

labels.

In this review we mainly talk about the regular operators.

To study a 4d operator, we consider the following setup:

X6 = Y 4 × ⊃ Y 4 × • = D4 (3.5.2)

We can dimensionally reduce around S1 of the cigar. Then we can study SΓ[S1] on

X5 = Y 4 × ⊃ Y 4 × • = D4 (3.5.3)

using its description as a gauge theory we discussed in Sec. 3.3. Now we have a four-

dimensional operator at a boundary of five-dimensional spacetime. We have a boson B(gR⊗
R5) on X5 and a G-bundle P → X with the connection. We decompose

gR ⊗ R5 = gC ⊕ gR ⊗ R3, (3.5.4)
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and denote a section of gC ×G P by Φ and a section of (gR ⊗R3)×G P by (φ1, φ2, φ3). The

so(2) ' u(1) R-symmetry acts on Φ and the so(3) ' su(2) R-symmetry acts on (φ1, φ2, φ3).

Let us introduce a coordinate s perpendicular to the boundary so that the boundary is

at s = 0. A regular four-dimensional boundary operator is defined by the requirement that

the fields φ1,2,3 to approach a singular solution of the Nahm equation

d

ds
φ1 = [φ2, φ3],

d

ds
φ2 = [φ3, φ1],

d

ds
φ3 = [φ1, φ2] (3.5.5)

given by

φi = ρ(σi)/s (3.5.6)

where σ1,2,3 are the standard generators of su(2) and

ρ : su(2)→ g (3.5.7)

is a homomorphism. We then require

lim
s→0

Φ = m ∈ gρC. (3.5.8)

By the Jacobson-Morozov theorem, we can use the nilpotent element ρ(e) instead of ρ to

label a regular 4d operator. We often just write e instead of ρ(e).

Note that with nonzero m we do not have U(1) R-symmetry any more, as nonzero m is

not fixed by U(1) action. In contrast, even with nonzero ρ, the SU(2) R-symmetry action

can be absorbed by a gauge transformation of the G-bundle P thanks to the form (3.5.6).

Also note that when m = 0, one can introduce Gρ-bundle with connection on the boundary

D4 without ruining the boundary condition above. This means that the 4d operator (ρ, 0)

is a Gρ-symmetric 4d operator. We note that (Gρ)C is the reductive part of Ge
C.

Two extreme types of regular 4d operators are:

• e = 0, i.e. ρ : sl2 → gC is the zero map. Then Ge = G. So, if we insert a 4d

operator with the label (e = 0,m = 0), there is an additional G-symmetry. Under an

S1 reduction, this corresponds to the Neumann boundary condition for φ1,2,3 and the

Dirichlet boundary condition for Φ at s = 0.

• e = eprin, a principal nilpotent element, and ρprin : sl2 → gC is a principal embedding.

Gprin = {1}. This 4d operator corresponds to the absence of a 4d operator in 6d:

X6 = Y 4 × (3.5.9)

and its S1 reduction is

X5 = Y 4 × (3.5.10)

with the boundary condition φi → ρprin(σi)/s. We have Neumann boundary condition

for Φ.
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It might be slightly counter-intuitive that nothing in 6d corresponds to a principal embed-

ding, and that a G-symmetry in 6d corresponds to a zero embedding. The point is that

zero does not always mean nothing.

A 4d operator with a label (e, 0) has its own anomaly polynomial of degree 6, in terms

of characteristic polynomial of PSpin(3), PSpin(2), PGρ , TD and ND where ND is the normal

bundle of D within X. The coefficients are known to be given by formulas involving h.

Below, the symbol ρ almost always refers to the Weyl vector. Instead of the representa-

tion (3.5.7) we use e to label the nilpotent orbit.

3.6 4d theory of class S

Given a Riemann surface C with points x1, . . . , xk and labels (e1,m1), . . . , (ek,mk), let us

define a 4d QFT Q = SΓ[C;x1, (e1,m1), . . . , xk, (ek,mk)] via

ZQ(Y 4) = ZSΓ
(Y 4 × C ⊃ tiY 4 × {xi}) (3.6.1)

with the given labels. We implicitly perform the topological twisting by ϕ given in (3.1.6),

but for simplicity we do not explicitly denote them in the expressions. A 4d theory of class S

is an N = 2 supersymmetric QFT Q obtained this way. When mi = 0 for all i, this is a∏
iG

ei-symmetric N = 2 supersymmetric QFT with U(1) R-symmetry. Apart from the

labels, the theory depends only on the complex structure of the Riemann surface C with

punctures and the total area.

The anomaly polynomial of Q = SΓ[C;xi, (ei, 0)] is obtained from the anomaly polyno-

mial of SΓ integrating over C summed to the contributions of 4d operators. We have

nv(Q) =
∑
i

nv(ei) + (g − 1)(4
3
h∨(G) dimG+ rankG), (3.6.2)

nh(Q) =
∑
i

nh(ei) + (g − 1)(4
3
h∨(G) dimG), (3.6.3)

where

nh(e) = 8ρ · (ρ− h

2
) +

1

2
dim g1/2, nv(e) = 8ρ · (ρ− h

2
) +

1

2
(rankG− dim g0). (3.6.4)

Here ρ is the Weyl vector and h is an element in h so that (e, h, f) is an SL(2) triple. The

terms proportional to g − 1 in (3.6.2) and (3.6.3) can be easily obtained by integrating

A(SΓ), (3.2.3), over C, taking into account the homomorphism (3.1.6), and reading off nv
and nh from the resulting anomaly polynomial by (2.4.5).

When e is principal, h = 2ρ, and therefore nv(e) = nh(e) = 0. This is consistent with the

fact that a 4d operator with the label e = ρprin corresponds to the absence of any puncture.

Therefore it should not add anything to nv(Q) or nh(Q). When e = 0, we instead find

nv(e = 0) = 8ρ · ρ+
1

2
(rankG− dimG), nh(e = 0) = 8ρ · ρ (3.6.5)
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where we used the relation ρ · ρ = h∨(G) dimG/12.

As for the flavor symmetry, kF (Q) for a simple component F ⊂ Gei associated to the

puncture at xi is given by kF (Q) = kF (e) where

kF (e) = 2
∑
j

c2(Rj), gC = ⊕dVd ⊗Rd (3.6.6)

where the direct sum decomposition on the right hand side is with respect to ρ(SU(2)) ×
F ⊂ G such that Vd is the irreducible representation of SU(2) of dimension d and Rd is a

representation of F . As always we normalize the quadratic Casimir c2 by c2(fC) = h∨(F ).

For example, F = G when e = 0, and kG(e) = 2h∨(G).

3.7 Gaiotto construction

The most important observation by Gaiotto [Gai09] is pictorially given by

SΓ[
e=0

]× SΓ[
e=0

] /−/−/−Gdiag

∣∣
τ
= SΓ[ ] (3.7.1)

where on the right hand side two Riemann surfaces are connected via the identification of

the local coordinates z, z′ around the punctures. The area of the surface on the right hand

side is the sum of the area of the two surfaces on the left hand side. This procedure is only

possible when both two punctures have the label (e = 0,m = 0).

Let us describe the operation more carefully. Let us take two class S theories

QL = SΓ[CL;x0, (e = 0,m = 0), xi, (ei,mi)], (3.7.2)

QR = SΓ[CR;x′0, (e = 0,m = 0), x′i, (e
′
i,m

′
i)]. (3.7.3)

Both QL and QR is G-symmetric, associated to the puncture x0 and x′0 respectively. Then

we can form a family

Q
∣∣
τ
= (QL ×QR) /−/−/−Gdiag

∣∣
τ
. (3.7.4)

When all mi and m′i are zero, both QL and QR are U(1) R-symmetric. As kGdiag
(QL ×

QR) = kG(QL) + kG(QR) = 4h∨(G), this family is also U(1) R-symmetric. Let us introduce

qgauge = e2π
√
−1τ .

Let us consider a family of Riemann surfaces Cq formed from CL and CR by gluing them

at x0, y0 with the identification zz′ = qgeometric, where x0 is at z = 0 and x0 is at z′ = 0. The

area of Cq is the sum of the area of CL and CR. We take another family of class S theory

Q̃
∣∣
qgeometric

= SΓ[C;xi, (ei,mi), x
′
i, (e

′
i,m

′
i)]. (3.7.5)

When all mi and m′i are zero, this family is U(1) R-symmetric.

Then these two families are equivalent

Q
∣∣
τ
' Q̃

∣∣
qgeometric

(3.7.6)
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under the identification

qgauge = qgeometric +
∑
n>1

cnq
n
geometric (3.7.7)

where cn is a complicated function of the complex structure moduli of CL and CR, etc.

There is not much use in specifying cn precisely, because neither of qgauge and qgeometry are

canonically defined.

The reasoning behind this important relation (3.7.1) is as follows. Start from the right

hand side:
l

l' (3.7.8)

and perform the S1 reduction around the neck:

5d max
susy YM

(3.7.9)

we have a 5d super-Yang-Mills on the neck. Let us cut at two points slightly within the

neck. Then the boundary condition for φi there is regular finite. Then this is further equal

to
e=0 e=0

/�/�/�G
τ = il/l'

. (3.7.10)

Let us check that

nv,h(QL ×QR /−/−/−G) = nv,h(Q). (3.7.11)

The left hand side can be computed using (3.6.2), (3.6.3) and (2.6.6). The right hand side

can be computed using (3.6.2) and (3.6.3). Noting that the genus of C is the sum of the

genus of CL and CR, the equality (3.7.11) boils down to the statement (3.6.5).

3.8 Donagi-Witten integrable system

For Q = SΓ[C;xi, (ei,mi)] its Donagi-Witten integrable system DW (Q)→MCoulomb(Q) is

given as follows [CDT12]. Consider G-Hitchin system on C, with the following singularities

at xi:

Φ ' αi
dzi
zi

+ regular + · · · (3.8.1)

where zi is a local coordinate such that xi is at zi = 0 and

αi ∈ Indg
l (mi + dlLS(ei)). (3.8.2)

where l is the smallest Levi subalgebra containing ei. Two common cases are
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• When ei = 0, we just have αi = mi, and

• When mi = 0, we just have αi ∈ dLS(ei).

The Coulomb branch has the dimension

dimMCoulomb(SΓ[C;xi, (ei,mi)]) = (g − 1) dimG+
∑
i

1

2
dimCOαi . (3.8.3)

In the following we concentrate on the case mi = 0. Not all of the group of gauge

transformation

G = {f : C → GC} (3.8.4)

preserves the boundary condition. We let

G0 = {f : C → GC | f(xi) ∈ Gαi
C }. (3.8.5)

Then we can consider the Hitchin map

h : {D′′Φ = 0}/G0 →
⊕
a

H0(K⊗daC + (da − 1)
∑

xi). (3.8.6)

but this is not quite the Donagi-Witten integrable system.

First, let us describe the situation for type AN−1. A label e is given by a nilpotent orbit,

or equivalently a partition [ni] of N . The dual α is given by the transpose partition [ai].

From this we define integers pd(α) = d− νd(α) where

(ν1(α), ν2(α), . . . , νN(α)) = (1, . . . , 1︸ ︷︷ ︸
a1

, 2, . . . , 2︸ ︷︷ ︸
a2

, . . . , ). (3.8.7)

Then we find that the image of the Hitchin map π is in fact onto

h : {D′′Φ = 0}/G0 →
N⊕
d=2

H0(K⊗dC +
∑
i

pd(αi)xi). (3.8.8)

The right hand side is an affine space whose dimension is given by (3.8.3), and we identify

it with MCoulomb(SΓ[C;xi, (ei,mi)]).

When G is not of type A and with general choice of labels ei, the image of the Hitchin

map h is not in itself affine. Instead we have the following structure. There is a natural

projection

h : G0 →
∏
i

A(αi)→
∏
i

Ā(αi) (3.8.9)

where A(α) = Gα/Gα◦ is the component group of the stabilizer of α, and Ā(α) is the

Lusztig’s component group. We introduced C(e) ⊂ Ā(α) in Sec. 3.4. Then we take

G ′0 = π−1
∏
i

C(ei). (3.8.10)
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Then we finally have

DW (Q) = {D′′Φ = 0}/G ′0 →MCoulomb(Q) (3.8.11)

where MCoulomb(Q) is affine and is of dimension (3.8.3), such that the Hitchin map

h : DW (Q)→
⊕
a

H0(K⊗daC + (da − 1)
∑

xi) (3.8.12)

factors through MCoulomb via a finite map:

h : DW (Q)→MCoulomb(Q)
finite−→ h(DW (Q)). (3.8.13)

3.9 On degrees of generators

Let Q = SΓ[C;xi, (ei,mi = 0)] be a class S theory. The number nv(Q) is given by the

formula (3.6.2) as a class S theory. From the general property of N = 2 theory it is given

also by (2.4.7) applied to MCoulomb(Q). For C with genus g without any punctures, the

Donagi-Witten integrable system DW (SΓ[C]) is the standard G-Hitchin system on C, and

MCoulomb(SΓ[C]) =
⊕
a

H0(K⊗daC ). (3.9.1)

Then it has (2da − 1)(g − 1) generators of degree da, and so

nv(SΓ[C]) =
∑
a

(2da − 1)2(g − 1) = (g − 1)(4
3
h∨(G) dimG+ rankG). (3.9.2)

showing the agreement between (3.6.2) and (2.4.7).

In general, we conjecture there is a non canonical way to write

MCoulomb(SΓ[C;xi, ei]) =

[⊕
a

H0(K⊗daC )

]
⊕
⊕
i

V (ei) (3.9.3)

where V (e) is a Z-graded affine space. Here the gradation is by the U(1) R-symmetry, and

the equality is considered as elements in the Grothendieck group of the vector spaces with

U(1) action. Furthermore, to be compatible with the structure (3.8.10) and (3.8.11), we

demand that for a special orbit e, there is a linear action of the reflection group Ā(dLS(e))

on V (e) compatible with the grading such that

V (e′) = V (e)/C(e′) (3.9.4)

when dLS(e) = dLS(e′). Note that C(e′) is a reflection group, and therefore both V (e) and

V ′(e) can be affine spaces.

We deduce the following properties from (3.8.3) and (3.6.2). Its dimension is

dimV (e) =
1

2
dimCOα (3.9.5)
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where Oα is the Lusztig-Spaltenstein dual orbit of e. Let us call the basis of V (e) with

definite degrees as ui, i = 1, . . . , dimV (e). Then∑
i

(2 deg ui − 1) = nv(e) = 8ρ · (ρ− h

2
) +

1

2
(rankG− dim g0). (3.9.6)

This is interesting because the structure of V (e) is governed both by e and its Lusztig-

Spaltenstein dual α.

For type A we know what V (e) is thanks to the explicit description of the base of the

Hitchin fibration (3.8.8). The degree-d piece has the dimension

V (e)d = pd(α) (3.9.7)

where α is the dual orbit of e. Then the properties (3.9.5) and (3.9.6) are straightforward

to check.

As a very nontrivial example, consider G = E8 and a puncture with a label e in a special

piece of e0 = E8(a7). Basic properties of each e are displayed in Table 2. The Spaltenstein

dual is e0 for all e in the table. Ā(e0) is S5, and the subgroup of S5 assigned to each of

the 7 nilpotent orbits by Sommers is also shown in the table, in terms of the generating

reflections (i, i+ 1), which act on the set {1, 2, 3, 4, 5}. Using (3.6.2) one can compute nv(e)

for each nilpotent orbit, as h for each e is known. Since dimCOe0 = 208, dimV (e) = 104

for all e. The degrees of four of the bases can be determined as follows.

Since Ā(E8(a7)) is S5, for the special nilpotent orbit e0 we expect

V (e0) = V ⊕ V ′ (3.9.8)

with dimV = 4, dimV ′ = 100 so that S5 acts as the Weyl group of A4 on V and acts

trivially on V ′. Let us say the degree of the bases of V is d. For Then, for e = A4 + A3

degrees of V are replaced by {2d, 3d, 4d, 5d}. These four numbers should be degrees of

Casimir invariants of E8, {2, 8, 12, 14, 18, 20, 24, 30}. The only possibility is d = 6. Then,

for each of the 7 choices in the table, C(e) determines the degrees of these four generators ,

which are listed in the fourth column of Table 2, while the contribution to nv from just these

four generators is listed in the fifth column. The contribution from V ′ is not known but

they should be completely the same for the 7 nilpotent elements. As a consistency check,

the difference between nv(e) and the contribution to nv from just the known 4 bases should

be a constant. This is indeed so. The difference between entries on the same row in the

third and fifth columns of Table 2 is always 4020.

3.10 Higgs branches

Let us study the Higgs branch of the class S theories

MHiggs(SΓ[C;xi, (ei,mi = 0)]). (3.10.1)
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E8(a7)

E7(a5)

E6(a3) +A1 D6(a2)

A5 +A1 D5(a1) +A2

A4 +A3

e h C(e) nv(e) known ops known nv

E8(a7)
0

0002000 ∅ 4064 6, 6, 6, 6 44

E7(a5)
0

0010100 (12) 4076 6, 6, 6, 12 56

D6(a2)
1

0100010 (12), (34) 4088 6, 6, 12, 12 68

E6(a3) + A1

0
0101001 (12), (23) 4100 6, 6, 12, 18 80

A5 + A1

0
1000101 (12), (23), (45) 4112 6, 12, 12, 18 92

D5(a1) + A2

0
1010010 (12), (23), (34) 4136 6, 12, 18, 24 116

A4 + A3

0
0100100 (12), (23), (34), (45) 4184 12, 18, 24, 30 164

Table 2: A special piece in the set of nilpotent orbits of E8, h given as the inner products

of h with simple roots, the corresponding subgroups of S5 = Ā(E8(a7)), nv and the degrees

of bases governed by subgroups of S5. The sixth column shows the contribution to nv just

from the known 4 bases.
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This object is a hyperkähler manifold, which depends on the area A of C but is independent

of the complex structure of the punctured surface C. We denote this space by just

ηG(C, {ei},A). (3.10.2)

The dependence on A is also known to be simple, as the underlying space of ηG(C, ei,A) is

independent of A and the metric gA on it satisfies

gA = A−1gA=1. (3.10.3)

The holomorphic symplectic structure does not depend on A. For now let us only consider

the holomorphic symplectic structure; we come back to the A dependence at the end of this

subsection.

Using the gluing property (3.7.1) of the class S theories and the behavior of the Higgs

branch under the gauging (2.6.7), we have

[ηG(CL, e = 0, ei)× ηG(CR, e
′ = 0, e′i)]///G = ηG(C, ei, e

′
i) (3.10.4)

where C is obtained by gluing CL and CR at the two punctures with labels e = 0 and

e′ = 0. If we think of a point marked by e = 0 as a boundary S1, this means that ηG defines

a functor from the category of cobordisms to the category HS of holomorphic symplectic

spaces. Here, an object of HS is a compact group G, and an element in HomHS(G,G′) is a

holomorphic symplectic manifold X with a Hamiltonian action of G×G′. The composition

of

X ∈ HomHS(G,G′), X ′ ∈ HomHS(G′, G′′) (3.10.5)

is given by the holomorphic symplectic quotient

(X ×X ′)///G′diag ∈ HomHS(G,G′′). (3.10.6)

Let us describe ηG(S2, e, e′,A) explicitly. We put e and e′ at the two poles of S2, and

perform the dimensional reduction around S1. We have the N = 2 supersymmetric Yang-

Mills theory on a segment of length proportional to A, with the boundary conditions given

by (3.5.6) at both ends. The Higgs branch of this system is known to be given by the

moduli space of the Nahm equation with this boundary condition. When e = e′ = 0 it is

particularly simple, the result as a holomorphic symplectic manifold is just

T ∗GC ' GC × gC 3 (g, x) (3.10.7)

which has an action of G × G. The holomorphic moment maps are given by x and gxg−1.

The property (3.10.3) can be checked easily. This is indeed the identify homomorphism in

HomHS(G,G).

A more general case is given by

ηG(S2, e = 0, e′) = {(g, x) ⊂ GC × gC | x ∈ e′ + Se′} ⊂ T ∗GC (3.10.8)
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where e′ + S ′e is the Slodowy slice at e′. The most general case is then

ηG(S2, e, e′) = {(g, x) ⊂ GC × gC | gxg−1 ∈ e+ Se, x ∈ e′ + Se′} ⊂ T ∗GC. (3.10.9)

As ηG(S2, e = 0, e′) is already known (3.10.8), it suffices to know

WG,g,n := ηG(Cg, n points with e = 0) (3.10.10)

where Cg is a genus-g surface. This is a hypekähler space with a triholomorphic action of

Sn oG = Sn n [G×G× · · · ×G︸ ︷︷ ︸
n times

] (3.10.11)

where the permutation group Sn acts on Gn by permuting them.

These properties, together with the known case (3.10.7), uniquely fixes the dimension of

ηG. We have

dimH ηG(C; ei) = rankG+
∑
i

1

2
(dimG− rankG− dimCOei). (3.10.12)

By the pants decomposition, the determination of XG,g,n boils down to the determination

of

WG := WG,g=0,n=3. (3.10.13)

In an unpublished work Ginzburg and Kazhdan constructed WG,g=0,n in general and showed

that they satisfy (3.10.4). Therefore in principle we know arbitrary ηG(C, {ei}).
For G = A1, it is known that

WA1 = V1 ⊗C V2 ⊗C V3 (3.10.14)

where Vi ' C2 so that Vi is acted naturally by SU(2). It is instructive to check that this

action of S3 oSU(2) preserves the holomorphic symplectic structure. By the gluing property,

we have

WA1,g=0,n=4 = ηA1(
x

y

u

v
) = [Vx ⊗ Vy ⊗ V ⊕ V ⊗ Vu ⊗ Vv]/// SU(V ). (3.10.15)

The right hand side should be invariant under the exchange Vy ↔ Vu but this is not obvious

in this notation. The right hand side, when written as

V ⊗R R8/// SU(V ), (3.10.16)

is the ADHM construction of the minimal nilpotent orbit of SO(8) ⊃ SU(Vx) × SU(Vy) ×
SU(Vu)× SU(Vv), and the exchange Vy ↔ Vu is given by an outer automorphism of SO(8).

For G = A2, it is conjectured that

WA2 = ηA2( ) = minimal nilpotent orbit of E6. (3.10.17)
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This has S3 o SU(3) ⊂ E6 triholomorphic action. Then

ηA2(
x

y

u

v
) = ηA2( )× ηA2( )/// SU(3). (3.10.18)

The action of S4 o SU(3) is not manifest.

As a natural generalization of (3.10.15) and (3.10.17), it is known that

ηA2n−1(S2; [n2], [n2], [n2], [n2]) = M̃D4,n, (3.10.19)

ηA3n−1(S2; [n3], [n3], [n3]) = M̃E6,n, (3.10.20)

ηA4n−1(S2; [2n2], [n4], [n4]) = M̃E7,n, (3.10.21)

ηA6n−1(S2; [3n2], [2n3], [n6]) = M̃E8,n (3.10.22)

where M̃G,n is the centered framed moduli space of G-instantons on R4 with instanton

number n, with real dimension 4h∨(G)(n−1); note that the minimal nilpotent orbit of G is

the centered framed one-instanton moduli space of G. More details on this functor ηΓ can

be found in [MT11].

Let us consider the A dependence [GMT11]. One problem is that T ∗GC is no longer an

identity under the composition; instead, we have

(T ∗GC)A × (T ∗GC)A′///G = (T ∗GC)A+A′ (3.10.23)

where XA is introduced in (3.10.3). This translates to the following slight problem to

define the category HK of hyperkähler spaces in a way similar to the category HS. An

object of HK is a compact group G, and HomHK(G,G′) consists of hyperkähler spaces with

triholomorphic G×G′ action. But there is no identity element in HomHK(G,G′).

Correspondingly, the source category of ηG is not just the cobordism category, but the

category wit h cobordisms with an area assigned, just as in the case of 2d Yang-Mills with

continuous gauge group G Sec. 1.8.3.

3.11 When SΓ[C] is Hyp(V )

Let us consider when Q = SΓ[C] = Hyp(V ). If this is the case, we should have

• nv(Q) = 0,

• rankQ = dimCMCoulomb(Q) = 0,

• and nh(Q) = dimHMHiggs(Q).

It is believed that any one of these conditions implies all the others. Let us enumerate a

few known cases. Enumerating all possible cases would be an interesting exercise.

79



3.11.1 Trifundamental of A1

For G = A1, the basic case is

SA1 [ ] = Hyp(V1 ⊗ V2 ⊗ V3) (3.11.1)

where Vi ' C2. From this we can construct N = 2 gauge theories associated to trivalent

graphs introduced in Sec. 2.7.6 by Gaiotto’s gluing (3.7.1). Then the Donagi-Witten inte-

grable system of the trivalent theories, discussed in Sec. 2.11.5, naturally follows from the

property of the class S theory, discussed in Sec. 3.8. The residue of the Hitchin field φ at

the punctures are given by the formula (3.8.2), but it just becomes a semisimple element in

su(2), giving (2.11.35).

3.11.2 Bifundamental of AN−1

One natural generalization of the trifundamental for A1 in Sec. 3.11.1 is the bifundamental

for or G = AN−1. We have

SAN−1
[ , e = [N − 1, 1], e = 0, e = 0] = Hyp(V1 ⊗ V̄2 ⊗W ⊕ V̄1 ⊗ V2 ⊗ W̄ ). (3.11.2)

Here Vi ' CN on which SU(Vi) acts, and W ' C has an action of G[N−1,1] = U(1). A

Cartan element m of this U(1) is given by

m = µ diag(1, 1, . . . , 1, 1−N). (3.11.3)

Let us compute nv(Q) and nh(Q) in two ways. As Hyp(V ), it is determined as in Sec. 2.5,

then we should have nv(Q) = 0 and nh(Q) = N2. As a class S theory, we start from

nv(e = 0) =
1

6
N(N − 1)(4N + 1), nh(e = 0) =

2

3
N(N − 1)(N + 1) (3.11.4)

and

nv(e = [N − 1, 1]) = N2 − 1, nh(e = [N − 1, 1]) = N2. (3.11.5)

Plugging them to the formulas (3.6.2) and (3.6.3), we again find nv(Q) = 0 and nh = N2.

As for the symmetry SU(N)×SU(N), we find kSU(N)(Q) = kSU(N)(e = 0) = 2h∨(SU(N)) =

2N as a class S theory. As Hyp(V ), we already studied it in Sec. 2.7.3 and found it is 2N .

Let us take two copies and apply Gaiotto’s gluing construction. We find

Hyp(V ⊗ W̄ ⊕ V̄ ⊗W ) /−/−/−SU(V )
∣∣
τ
=

SAN−1
(

x

y

u

v
, x, e = [N − 1, 1], y, e = 0, u, e = [N − 1, 1], v, e = 0) (3.11.6)

where

W = Vx ⊗Wy ⊕ Vu ⊗Wv ' C2N . (3.11.7)
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This is the SQCD introduced in Sec. 2.7.3, with Nf = 2N . Its Donagi-Witten integrable sys-

tem was discussed in Sec. 2.11.4. This now follows from the property of the Donagi-Witten

integrable system of a class S theory, discussed in Sec. 3.8. For example, at the puncture

e = [N − 1, 1], the residue α of the Hitchin field should be in its Lusztig-Spaltenstein orbit.

The dual partition to [N−1, 1] is [2, 1N−2], which describes the Jordan block decomposition

of α, and indeed it agrees with what we saw in (2.11.31). With the mass deformation of

the form (3.11.3) at this puncture, the residue α of the Hitchin field is given by the formula

(3.8.2), which just gives α = m. This again reproduces what we saw in (2.11.30).

We can also construct a gauge theory of the form

Hyp(⊕ni=1Vi ⊗ V̄i+1 ⊕ V̄i ⊗ Vi+1) /−/−/−
n∏
i=1

SU(Vi)
∣∣
{τi}

(3.11.8)

where we set Vn+1 = Vn, via Gaiotto’s gluing (3.7.1). This theory is therefore

= SAN−1
[T 2, x1, [N − 1, 1], x2, [N − 1, 1], . . . , xn[N − 1, 1]] (3.11.9)

where τi is encoded in the complex structure of the elliptic curve with n punctures.

This is a case of the quiver gauge theory introduced in Sec. 2.7.4, where the underlying

graph is of type Ân−1. Its Donagi-Witten integrable system discussed in Sec. 2.11.7, in the

Hitchin system formulation, immediately follows from this construction. It is known how to

represent other quiver gauge theories as a class S theory if the underlying graph is of type

A, D or D̂, but we will not detail the construction here.

The Higgs branch of the theory above is

[⊕ni=1Vi ⊗ V̄i+1 ⊕ V̄i ⊗ Vi+1]///
n∏
i=1

SU(Vi). (3.11.10)

This is an SU version of a quiver variety.

3.11.3 E6

As an example of enumeration of all class S theories which are Hyp(V ), let us consider

Q = SE6 [ ; e1, e2, e3 = 0]. From the formula above,

nv(Q) = −(
4

3
h∨(G) dimG+ rankG) + nv(e1) + nv(e2) + nv(e3 = 0). (3.11.11)

Scanning through the list of nilpotent orbits of E6, one finds that there is only one solution

to nv(Q) = 0, namely with

e1 = E6(a1), e2 = A2 + 2A1. (3.11.12)

Here the notation E6(a1) and A2 + 2A1 are the standard Bala-Carter labels. We then have

dimMCoulomb(Q) = 0, dimMHiggs = nh(Q) = 54 = 27× 2. (3.11.13)
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Recall that the minuscule representation of E6 is Vmin ' C27. It is likely, from the

numerical data above, that

Q = Hyp(Vmin ⊗ F ⊕ V̄min ⊗ F̄ ) (3.11.14)

with F ' C2. This has a natural pseudoreal action of E6 × U(2). And indeed, GE6(a1) = 1

and EA2+2A1
6 = SU(2)× U(1).

Let us first compute kE6(Q) in two ways. As a class S theory, this is kE6(e = 0) =

2h∨(E6) = 24. As Hyp(V ), we saw in Sec. 2.7.7

kE6(Hyp(Vmin ⊗ F ⊕ V̄min ⊗ F̄ )) = 24 (3.11.15)

and they nicely match.

We can also compute kSU(2)(Q) in two ways, using the formula as class S theory and

using the formula for Hyp(V ). In the former, we need to decompose e6 by

Ge2 ⊗ ρe2(SU(2)) ' SU(2)⊗ ρe(SU(2)). (3.11.16)

We find

e6 = V5 ⊗ V3 ⊕ V3 ⊗ V5 ⊕ V4 ⊗ V2 ⊕ V2 ⊗ V4 ⊕ V3 ⊗ V3 ⊕ V1 ⊗ V3 ⊕ V3 ⊗ V1. (3.11.17)

It turns out that SU(2) ⊂ Ge2 ⊂ G is also of type A2 + 2A1, explaining the symmetry. We

find

kSU(2)(A1 + 2A2) = 54. (3.11.18)

In the other way of computation,

kSU(2)(Hyp(Vmin ⊗ F ⊕ V̄min ⊗ F̄ )) = 27× 2 = 54. (3.11.19)

We can use this to determine the Donagi-Witten integrable system of some E6 gauge

theory. Namely, we have

DW [Hyp(Vmin ⊗ F ⊕ V̄min ⊗ F̄ ) /−/−/−E6]

=MHitchin(
x

y

u

v
, E6(a1), E6(a1), A2 + 2A1, A2 + 2A1). (3.11.20)

According to the property of the Hitchin system associated to the class S theories discussed

in Sec. 3.8, the Hitchin system should have two regular singularities with residues in

dLS(E6(a1)) = A1 (3.11.21)

and two more regular singularities with residues in

dLS(A2 + 2A1) = A4 + A1 (3.11.22)

when there is no mass deformation. For either puncture of type e = A2 + 2A1, we can

add a mass deformation m in ge. They can be conjugated to av2 + bv4 where vi is the i-th

fundamental weights where we labeled the nodes as
6

12345. Then the residue should be given

by the formula (3.8.2):

Inde6
A2+2A1

[m+ dA2+2A1
LS (A2 + 2A1)] = m. (3.11.23)

This is exactly what we saw in Sec. 2.11.6 previously.
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3.11.4 E7

Let Q = SE7 [ ; e1, e2, e3 = 0]. As in the E6 case, we find only one combination where

nv(Q) = 0, namely with

e1 = E7(a1), e2 = A3 + A2 + A1. (3.11.24)

One can check that automatically we have

dimMCoulomb(Q) = 0, dimMHiggs = nh(Q) = 84 = 28× 3. (3.11.25)

The minuscule representation of E7 is Vmin ' H28 ' C56 and is pseudoreal. It is likely,

from the numerical data above, that

Q = Hyp(Vmin ⊗R R3). (3.11.26)

This has a natural pseudoreal action of E7×SO(3). And indeed, GE7(a1) = 1 and EA3+A2+A1
7 =

SO(3). kE7(Q) can be computed both as a class S theory and as Hyp(V ) and they agree; it

is 36.

We can compute kSO(3)(Q) in two ways, using the formula as class S theory and using

the formula for Hyp(V ). In the former, we need to decompose e7 by

Ge2 ⊗ ρe2(SU(2)) ' SO(3)⊗ SU(2). (3.11.27)

We find

e7 = V5 ⊗ V7 ⊕ V7 ⊗ V5 ⊕ V5 ⊗ V3 ⊕ V3 ⊗ V5 ⊕ V1 ⊗ V3 ⊕ V3 ⊗ V1 ⊕ V9 ⊗ V3, (3.11.28)

It happens that SO(3) ' Ge2 has the type A4 + A2. We find

kSO(3)(A3 + A2 + A1) = 224. (3.11.29)

In the latter, we have

kSO(3)(Hyp(V ⊗R R3)) = 28× 8 = 224. (3.11.30)

The Donagi-Witten integrable system of E7 gauge theory is then

DW [Hyp(Vmin ⊗R R6) /−/−/−E7]

=MHitchin(
x

y

u

v
, E7(a1), E7(a1), A3 + A2 + A1, A3 + A2 + A1). (3.11.31)

The spectral geometry of this Hitchin system agrees with what was found before using string

duality.
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4 Nekrasov partition functions and the W-algebras

In the last section we obtained a 4d QFT SΓ[C2] by dimensionally reducing a 6d theory SΓ

on a two-dimensional surface C2. The partition function was given schematically by

ZSΓ[C2](X
4) = ZSΓ

(X4 × C2). (4.0.32)

We can switch the role of X4 and C2, and consider the 2d theory SΓ[X4], whose partition

function is again given by

ZSΓ[X4](C
2) = ZSΓ

(X4 × C2). (4.0.33)

Therefore we see the equality

ZSΓ[C2](X
4) = ZSΓ[X4](C

2) (4.0.34)

which relates two-dimensional QFTs and four-dimensional QFTs. This is not surprising

from the six-dimensional point of view, but for a person who only knows the theories SΓ[C2]

and SΓ[X4] as defined intrinsically in respective dimensions, this is a rather mysterious

relation.

As seen in the last section, the behavior of SΓ[C2] under the cutting and the pasting of

the two-dimensional surface is relatively well understood. It would be nice to have a way to

understand SΓ[X4] in a similar manner. Currently we have not come to this point. Instead,

what has been done is to guess SΓ[X4] by studying ZSΓ[C2](X
4) using the knowledge of

SΓ[C2].

So far we have the understanding of SΓ[X4] for basically two classes:

1. R4 with equivariance, S4, and their variants

2. S1 × S3 and its variants

In this section we discuss the former, and in the next section we discuss the latter.

4.1 Nekrasov’s partition function

4.1.1 Definition

We first introduce the concept of Nekrasov’s partition function of an N = 2 supersymmetric

F -symmetric QFT Q, which is basically ZQ(R4) with a few qualifications.

• We consider a general mass deformation Qm for m ∈ f.

• We consider R4 ' C2 with equivariance under a natural U(1)2 action. We have an

equality

H∗U(1)2(pt) = C[ε1, ε2]. (4.1.1)

We call ε1 and ε2 the equivariant parameters.
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• As R4 is noncompact, we need to specify a vacuum p ∈Msusyvac(Q).

• We perform the topological twists to the theory as in Sec. 2.13. Then the partition

function only depends on the projection of p to MCoulomb(Qm).

• We pick a maximally isotropic sublattice LE ⊂ L and introduce the coordinates ai =∫
αi
λ of MCoulomb and parameterize the mass deformation by mj =

∫
γj
λ as explained

in Sec. 2.9.

Then we define

ZNek
Q (ε1, ε2; a1, . . . , ar; {mj}) := ZQm,top(R4

ε1,ε2
, p). (4.1.2)

It is known that the prepotential as introduced in Sec. 2.9 is obtained from Nekrasov’s

partition function:

lim
ε1,ε2→0

ε1ε2Z
Nek
Q (ε1, ε2; a1, . . . , ar; {m}) = F(a1, . . . , ar; {m}). (4.1.3)

The transformation of F(a1, . . . , ar; {m}) under the change of LE ⊂ L was via the Legendre

transformation. To reproduce it in the limit ε1,2 → 0, ZNek(a1, . . . , ar; {m}) should transform

under the change of LE ⊂ L via the Fourier transformation, but the contour to be used in

this Fourier transformation is not well understood. As the properties of ZNek globally over

MCoulomb(Q) is not understood, we fix a patch of MCoulomb(Q) on which the monodromy

of the Sp(L) local system preserves the sublattice LE.

This is the formalization of Nekrasov’s partition function as used in physics literature.

This concept was first introduced in [Nek04]. It is convenient for our purposes to extend

the concept slightly. Namely, for an F -symmetric QFT Q, we can consider

ZQtop(PF → R4, p) (4.1.4)

where PF is an F -bundle with connection over R4. The object (4.1.4) determines a section

of a bundle over the moduli space of F -bundles. When PF → R4 is further assumed to

be anti-self-dual, this section descends to a closed equivariant differential form onMF , the

moduli space of framed anti-self-dual F -connections on R4. We denote it by

ZNek(Q) ∈ H∗F×U(1)2(MF )⊗ Frac(H∗F×U(1)2(pt))⊗ C(a1, . . . , ar) (4.1.5)

where we identify

H∗F×U(1)2(pt) = C[m1, . . . ,mF ][ε1, ε2]. (4.1.6)

Note that

H∗F×U(1)2(MF ) = ⊕n≥0H
∗
F×U(1)2(MF,n) (4.1.7)

where n is the instanton number and

dimRMF,n = 4h∨(F )n. (4.1.8)
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We can obtain the standard Nekrasov function (4.1.2) by projecting the object (4.1.5) to

the n = 0 component in the decomposition (4.1.7), and evaluating the formal variables ε1,2
and mi in (4.1.6) by assigning numbers. The integer kF (Q) determines the degree of ZNek

Q :

degZNek(Q)|H∗
F×U(1)2

(MF,n(R4)) = kF (Q)n. (4.1.9)

Therefore when kF (Q) = 2h∨(F ), ZNek
Q determines a middle-dimensional class onMF , and

when kF (Q) = 4h∨(F ), ZNek
Q is a top form on MF .

4.1.2 For Hyp(V ⊕ V̄ )

Let Q = Hyp(V ⊕ V̄ ) for a complex F -representation V . MCoulomb(Q) is a point. Then

ZNek(Hyp(V ⊕ V̄ )) ∈ H∗F×U(1)2(MF )⊗ Frac(H∗F×U(1)2(pt)) (4.1.10)

is given by

ZNek(Hyp(V ⊕ V̄ )) =
∏

w:weights of V

ΓB(w(m)|ε1, ε2)× e(IndD
/
V

) (4.1.11)

where D
/
V

is the Dirac operator associated to the F -bundle

V ×F PF → R4, (4.1.12)

IndD
/
V

is the index bundle determined by D
/
V

over MF,n, e is the equivariant Euler class,

and

ΓB(x|ε1, ε2) = regularized version of
∏
m,n≥0

1

x+ nε1 +mε2
(4.1.13)

is the Barnes double gamma function.

4.1.3 For the products

For Q = Q1 ×Q2, Nekrasov’s partition function behaves multiplicatively:

ZNek(Q) = ZNek(Q1)× ZNek(Q2). (4.1.14)

4.1.4 For the quotients

Let Q be G× F -symmetric, and suppose we know

ZNek(Q) ∈ H∗G×F×U(1)2(MG ×MF )⊗ FracH∗G×F (pt)⊗ C(a1, . . . , arankQ)

= H∗G×F×U(1)2(MG ×MF )⊗ FracH∗F (pt)⊗ C(a1, . . . , arankQ; a′1, . . . , a
′
rankG) (4.1.15)

where we introduced the variables a′1, . . . , a
′
rankG via

H∗G(pt) ' C[a′1, . . . , a
′
rankG]WG (4.1.16)
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where WG is the Weyl group of G.

Recall that the Coulomb branches of Q and Q/−/−/−G satisfy the relation (2.6.8)

MCoulomb(Q/−/−/−G) =MCoulomb(Q)× SpecC[gC]GC . (4.1.17)

Then Nekrasov’s partition function for Q/−/−/−G
∣∣
τ

for us is defined over the patch

MCoulomb(Q/−/−/−G) ⊃MCoulomb(Q)× UK (4.1.18)

for large K, where UK was defined in (2.10.4). Then the algebras of functions on UK we are

interested in is contained in

C(a′1, . . . , a
′
rankG) = FracH∗G(pt), (4.1.19)

and Nekrasov’s partition function for Q/−/−/−G takes values in

H∗F×U(1)2(MF )⊗ C(a1, . . . , arankQ; a′1, . . . , a
′
rankG) (4.1.20)

Then ZNek(Q/−/−/−G
∣∣
τ
) is obtained by a natural operation which sends an element in

(4.1.15) to (4.1.20). Such a map is defined by using the fundamental class

[MG] = ⊕n≥0[MG,n] (4.1.21)

and we have

ZNek(Q/−/−/−G
∣∣
τ
) = q

1
ε1ε2
〈a,a〉0

×
∏

α:pos. roots

1

ΓB(α(a)|ε1, ε2)ΓB(ε1 + ε2 − α(a)|ε1, ε2)
× 〈qN[MG], ZNek

G 〉 (4.1.22)

where N is an operator which is a multiplication by n on H∗G(MG,n) and as always q =

e2π
√
−1τ .

Combining (4.1.11) and (4.1.22) we can define and compute Nekrasov’s partition function

for N = 2 gauge theory Hyp(V ) /−/−/−G, assuming that there is a good control of the moduli

spaceMG of antiselfdual G connections and the determinant line bundle IndD
/
V

on it. the

Donagi-Witten integrable system of Hyp(V ) /−/−/−G can then be recovered by studying its

small ε1ε2 behavior, (4.1.3). This is best developed when G is of type A, and there are a

few scattered works for other classical G’s. For the case when G is a product of type A

groups, the most recent comprehensive discussions are in [NP12]. For classical G, see an

older review [Sha05]. A more conceptual review from a more physical point of view is given

in [Tac13].

4.2 Nekrasov’s partition function for class S theories

Now we would like to study ZNek(SΓ[C]). Its ε1, ε2 → 0 limit determines DW (SΓ[C]) =

MHitchin(C). Therefore it should be some kind of a quantization of the Hitchin system.
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First we consider the case when all the punctures are with the label e = 0. With n

punctures the theory SΓ[Cg,n] is Gn symmetric. We write

FracH∗Gn×U(1)2(pt) = FracH∗G×U(1)2
⊗n (4.2.1)

in the understanding that each of G appearing on the right hand side refers to an isomorphic

but different groups, and that the tensor product is with respect to the base field

K = C(ε1, ε2) = FracH∗U(1)2(pt). (4.2.2)

In the following we regard that we fixed an evaluation homomorphism K → C which sends

ε1,2 to generic complex numbers.

First let us consider the three-punctured sphere:

ZNek(SΓ[ ]) ∈ V ⊗3
G ⊗XG (4.2.3)

where

VG = H∗G×U(1)2(MG)⊗ FracH∗G(pt) (4.2.4)

and

XG = C(a1, . . . , ax) (4.2.5)

with the coordinates a1,. . . , ax of a patch of MCoulomb(SΓ[ ]). Therefore

x = dimCMCoulomb(SΓ[ ]) =
1

2
dimG− 3

2
rankG. (4.2.6)

We then have, from (3.7.1) and (4.1.22),

ZNek(SΓ[
x

y

u

v
]) = ZNek(SΓ[ ]× SΓ[ ] /−/−/−Gdiag

∣∣
τ ) (4.2.7)

= (
∏ 1

ΓBΓB
)〈qN[MG], ZNek(SΓ[ ])ZNek(SΓ[ ])〉 (4.2.8)

where the product of (ΓBΓB)−1 stands for the factor in (4.1.22). This takes values in

V ⊗4
G ⊗X⊗2

G ⊗ FracH∗G(pt) (4.2.9)

In more generality, we have

ZNek(SΓ[Cg,n]) ∈ V ⊗nG ⊗X⊗2(g−1)+n
G ⊗ FracH∗G(pt)⊗3(g−1)+n. (4.2.10)

This can be thought of as defining a 2d holomorphic generalized QFT QΓ on the Riemann

surface C via

ZQΓ
[Cg,n] := ZNek(SΓ[Cg,n]). (4.2.11)
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As ZNek is basically the partition function on R4
ε1,ε2

as explained in (4.1.2), we regard

QΓ = SΓ[R4
ε1,ε2

]. (4.2.12)

To study QΓ, first let us discuss the properties of a 2d holomorphic QFT in general.

Regard a three-punctured sphere to be equipped with three local coordinates z1,2,3 so

that the punctures are at zi = 0, respectively. Now let us assume that the local coordinates

are such that the circles |zi| = 1 do not intersect and do not contain each other. Therefore

this is now a sphere with three holes as in . A sphere with two holes with parameter

q, in this description, has two local coordinates z and z′ and zz′ = q with two circles |z| = 1

and |z′| = 1. The gluing operation in this language is always done by identifying two local

coordinates z1 and z2 associated to two punctures by z1z2 = 1, so that the circles at |z1| = 1

and |z2| = 1 are identified.

This 2d theory QΓ should have a space of states HQΓ
(S1). We take it to be

HQΓ
(S1) = VG = H∗G(MG)⊗ FracH∗G(pt) (4.2.13)

with the inner product

VG 3 v, w 7→ (v, w) = 〈[MG], v ∧ w〉 ∈ H∗G(pt). (4.2.14)

Then we have

ZNek(SΓ[ ]) = ZQΓ
( ) : HQΓ

(S1)→ HQΓ
(S1)⊗2 ⊗XG, (4.2.15)

ZNek(SΓ[ ]) = ZQΓ
( ) : HQΓ

(S1)⊗2 → HQΓ
(S1)⊗XG (4.2.16)

where XG was introduced in (4.2.5). Here, HQΓ
(S1) = H∗G(MG)⊗FracH∗G(pt) appearing on

the right hand side of each equation are considered with respect to three copies of distinct

but isomorphic groups G.

Furthermore, we introduce

qN = ZQΓ
(

q
) : HQΓ

(S1)→ HQΓ
(S1), (4.2.17)

Here twoHQΓ
(S1) = H∗G(MG)⊗FracH∗G(pt) appearing in the right hand side are considered

with respect to the same group G.

Then the gluing formula (4.2.8) can be understood as the decomposition of

ZQΓ
( ) : HQΓ

(S1)⊗2 → HQΓ
(S1)⊗2 ⊗K⊗2

G ⊗ FracH∗G(pt) (4.2.18)
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to

ZQΓ
( ) = ZQΓ

( )ZQΓ
(

q
)ZQΓ

( ). (4.2.19)

What is this 2d holomorphic extended QFT QΓ? There are two immediate clues:

• For a genus-g surface Cg with no puncture, we have

ZQΓ
(Cg) = ZNek(SΓ[Cg]) ∈ X⊗2(g−1)

G ⊗ (FracH∗G(pt))⊗3(g−1) (4.2.20)

which has transcendental degree (g − 1) dimG, as easily follows from (4.2.5). This is

the dimension of the conformal block of the WG algebra on a genus g Riemann surface.

• Also, the anomaly polynomial of QΓ = SΓ[R4
ε1,ε2

] can be obtained by integrating the

anomaly polynomial A(SΓ) of the 6d theory SΓ, (3.2.3), over R4
ε1,ε2

in the equivariant

sense. As QΓ is a 2d holomorphic QFT, it should have an action of the Virasoro

algebra on its space of states HQΓ
(S1). The central charge c of this Virasoro algebra

is encoded in the anomaly polynomial, and we find

c = rankG+
(ε1 + ε2)2

ε1ε2
h∨(G) dimG. (4.2.21)

This is closely related to the formula of the central charge c of the WG algebra in the

free field representation:

c = rankG+ (b+
1

b
)2h∨(G) dimG. (4.2.22)

where b is the background charge.

These two points strongly suggests that QΓ is in fact the theory of WG conformal blocks

itself, with the identification

b2 =
ε1
ε2
. (4.2.23)

4.3 W-algebras and Drinfeld-Sokolov reduction

Before continuing let us recall the basics of the W-algebras [FBZ04]. Given a finite-

dimensional group G, we consider the affine Lie algebra ĝ. For simplicity we assume g

to be simply-laced. There is a way to construct ĝ as a subalgebra of tensor products of

r = rank g free bosons, with background charge bρ, which is related to the level k of the

affine algebra via

k = −h∨(G) +
1

b2
. (4.3.1)

Given a nilpotent element e, one can construct from ĝ a vertex operator algebra W (g, e) by

a method called Drinfeld-Sokolov reduction. The central charge of the Virasoro subalgebra

is

c = dim gh=0 +
1

2
dim gh=1 + 24(

ρ

b
+
bh

2
) · (ρ

b
+
bh

2
) (4.3.2)
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where h is the Cartan element so that (e, h, f) is an SL(2) triple, and ρ is the Weyl vector.

Let f ⊂ ge is the centralizer of (e, h, f). Denote by ρf the Weyl vector of f. W (g, e) has a

subalgebra f̂. For a simple component f0 ⊂ fe the level is

k2d
f0

= −
∑

c2(Rd) + b2 1

h∨(f0)

∑
d

dc2(Rd) (4.3.3)

where

gC = ⊕dRd ⊗ Vd (4.3.4)

as before. In particular, W (g, e = 0) = ĝ and WG = W (g, eprincipal). Note that in the latter

case hprincipal/2 = ρ and many of the formulas below simplify. We note that the WG algebra

has Virasoro quasi-primary fields

Wda , (a = 1, . . . , rankG) (4.3.5)

of dimension da, where da is the a-th exponent of G plus one. In particular, W2 = T is the

energy momentum tensor.

There is a functor which sends a highest-weight ĝ representation to a highest-weight

W (g, e) representation. A highest weight irreducible representation of ĝ is labeled by the

level k and an element λ ∈ h where h is the Cartan subalgebra of g. We denote it by Lλ. Let

us denote its image under the functor byWbλ. All highest weight irreducible representation

of W (g, e) is obtained in this manner. In particular, the vacuum representation is the image

of the vacuum representation L0 and therefore is W0. The operator L0 in the Virasoro

subalgebra of W (g, e) acts on the highest weight vector of Wa by a scalar multiplication by

L0 = −1

2
a · a+ a · (ρ

b
+
bh

2
) (4.3.6)

The important feature is the shifted Weyl invariance of Va:

Wa+ρ/b+bh/2 =Wwa+ρ/b+bh/2 (4.3.7)

where w is a Weyl group element of f. The invariance of (4.3.6) is just one consequence.

We mainly consider the case when b is real. When

a =
√
−1m+ (

ρ

b
+
bh

2
), m ∈ hR (4.3.8)

the eigenvalues of L0 on Wa is manifestly nonnegative. In this case there is a unitary

structure on it and furthermore Wa is just the Verma module.

For W (g, eprincipal), given another SL(2) triple (e, h, f), we also consider representations

Wa where a is of the form

a =
√
−1m+ (b+

1

b
)(ρ− h

2
), m ∈ heR. (4.3.9)

This is again a unitary representation. Note that the case (4.3.8) is when e = 0. We call

these representations semi-degenerate.
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4.4 Class S theories and W-algebras

Let us come back to the study of QΓ = SΓ[R4
ε1,ε2

], which we guess is the theory of WG =

W (g, eprincipal) algebra, with the parameter b given as in (4.2.23). Its space of states

HQΓ
(S1) = VG was given in (4.2.4). This involved

H∗G(pt) = C[m1, . . . ,mrankG]W . (4.4.1)

We consider an evaluation

m : H∗G(pt)→ C (4.4.2)

which we regard as an element m ∈ h in the Cartan subalgebra. We thus obtain an infinite

dimensional space Vm from VG. Our conjecture is that this Vm is, when m is generic, the

Verma module of the WG algebra, under the following matching of parameters:

Vm =Wm′ , m′ =
m√
ε1ε2

+ (

√
ε1
ε2

+

√
ε2
ε1

)ρ. (4.4.3)

We now have a proof of this statement when G is of type A [SV12, MO12].

Nekrasov’s partition function of a three-punctured sphere gives the following element:

ZNek(SΓ[ ]) ∈ Vm1 ⊗ Vm2 ⊗ Vm3 ⊗XG (4.4.4)

which define an intertwiner

ZQΓ
( ) ∈ Vm1 ⊗ Vm2 → Vm3 ⊗XG. (4.4.5)

Here m1,2,3 are three evaluations of H∗G(pt). In the theory of WG algebras, it is known that

the space of intertwiners among three generic Verma modules has transcendental degree

1

2
(dimG− 3 rankG). (4.4.6)

which is equal to the transcendental degree of XG as shown in (4.2.5). For a closed Riemann

surface Cg of genus g without puncture, we already saw that

ZNek(SΓ[Cg]) = ZQΓ
(Cg) ∈ X⊗2(g−1)

G ⊗ FracH∗G(pt)3(g−1). (4.4.7)

has the correct transcendental degree as the space of the conformal blocks of WG algebra

with generic c on the Riemann surface of genus g > 1. Therefore, our conjecture is that

Nekrasov’s partition function of class S theory provides the space of conformal blocks of

WG algebras.

So far we only considered Riemann surfaces with punctures with label e = 0 only.

For other regular punctures labeled by (e,m), let us denote the space we obtain from the

consideration of the SΓ theory by Vem. Again, when m is a generic element in ge, we
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conjecturally identify it as a semi-degenerate representation of the WG algebra as defined

in (4.3.9):

Vem =Wm′ , m′ =
m√
ε1ε2

+ (

√
ε1
ε2

+

√
ε2
ε1

)(ρ− h

2
). (4.4.8)

As an example, consider a puncture labeled by the principal element eprincipal. It is equivalent

to not having a puncture. m is necessarily 0, and

Ve0 =W0 (4.4.9)

which is the vacuum representation of the WG algebra. This agrees with the idea that

without any puncture in the 2d QFT, the only operation doable on a Riemann surface is to

insert a vacuum representation.

As another example, let us recall that we have, for G = AN−1,

SΓ[ ; e = 0, e = 0, e = [N − 1, 1]] = Hyp(V1 ⊗ V̄2 ⊕ V2 ⊗ V̄1). (4.4.10)

where Vi ' CN . Then

ZNek(SΓ[ ; (e = 0,m1), (e = 0,m2), (e = [N−1, 1], µ)]) : Vm1⊗V [N−1,1]
µ → Vm2 (4.4.11)

and µ is the equivariant parameter H∗
G[N−1,1](pt) ' C[µ]. The intertwiner here is uniquely

determined, asMCoulomb(Hyp(V1⊗ V̄2⊕V2⊗ V̄1))) is a point. It was given in (4.1.11) as the

Euler class of the determinant line bundle of the Dirac operator associated to V1⊗ V̄2. It is

satisfying to know that the space of the intertwiner (4.4.11) above, under the identification

(4.4.3) and (4.4.8), is known to be unique.

In general, we can consider the theory

Q = SΓ[ ; (e1,m1), (e2,m2), (e3,m3)] (4.4.12)

and the element

ZNek(Q) : Ve1m1
⊗ Ve2m2

→ Ve3m3
⊗XG,e1,e2,e3 . (4.4.13)

Here we have

XG,e1,e2,e3 = C(a1, . . . , arankQ) (4.4.14)

is the algebra of holomorphic functions on a patch of MCoulomb(Q), and rankQ was given

in (3.8.3). When G = AN−1, the transcendental dimension of the space of the intertwiner of

WG algebra among the representations Veimi , (i = 1, 2, 3) is known and it agrees with rankQ.

This is another check of our proposed identification (4.4.8).

We can also consider irregular punctures. The only irregular puncture discussed in this

review is the one introduced in Sec. 2.11.2. There, we saw that the Donagi-Witten integrable

system of triv /−/−/−G for simply-laced G is given by a G-Hitchin system on a sphere with two
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irregular punctures at z = 0,∞. Correspondingly, we expect that Nekrasov’s partition

function has the form

(ψ, qNψ) = (qN/2ψ, qN/2ψ) (4.4.15)

where ψ is a state in the representation corresponding to the irregular puncture. The formula

for Nekrasov’s partition function (4.1.22), when applied to the pure theory triv /−/−/−G, gives

ZNek(triv /−/−/−G) ∼ 〈[MG], qN · 1〉. (4.4.16)

Therefore, we find the representation to be Va we already discussed, where

a : H∗G(pt)→ C (4.4.17)

is a point on the Coulomb branch MCoulomb(triv /−/−/−Q) ' C[gC]GC , and

ψ = [MG] = ⊕n≥0[MG,n]. (4.4.18)

The boundary condition of the Hitchin field, after the application of the Hitchin map,

is in general given by

uda ∼ O(1)(
dz

z
)da , (da 6= h∨(G)), uh∨(G) ∼

Λh∨(G)

z
(
dz

z
)h
∨(G). (4.4.19)

We propose in general that uda is the expectation value of WG quasiprimary fields Wda(z)

(4.3.5). In terms of Fourier modes, the standard convention is

Wda(z) ∼
∑Wda,i

zda+i
dzda (4.4.20)

which means that the state ψ′ = qN/2ψ corresponding to the pure theory is given by the

condition

Wda,iψ
′ = 0, ((da 6= h∨(G) and i ≥ 1) or i ≥ 2), Wh∨(G),1ψ

′ = Λh∨(G)ψ′. (4.4.21)

This is the condition of a Whittaker state in the representation. Note that q = Λ2h∨(G) as

seen in (2.6.5), and recall that we identified N and L0. Then the conditions (4.4.21) boils

down to the conditions

Wda,iψ = 0, ((da 6= h∨(G) and i ≥ 1) or i ≥ 2), Wh∨(G),1ψ = ψ. (4.4.22)

Indeed, when G is type A, this statement that ψ given geometrically by (4.4.18) is a Whit-

taker state given by these conditions is already proved.
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4.5 Nekrasov’s partition function with surface operator

So far we considered the 6d theory SΓ on R4
ε1,ε2
×C. Let us pick a subspace R2

ε1
×{0} ⊂ R4

ε1,ε2

and introduce a 4d operator with the label (e,m) on R2
ε1
× {0} × C. Then we can repeat

our analysis above, and there should be a 2d theory

QΓ,(e,m) = SΓ[R4
ε1,ε2
⊃ R2

ε1
; (e,m)] (4.5.1)

satisfying the defining relation

ZQΓ,(e,m)
(C) = ZNek(SΓ[C])(R4

ε1,ε2
⊃ R2

ε1
; (e,m)). (4.5.2)

The questions then are

• What is the theory QΓ,(e,m) ?

• What is the 2d operator labeled by (e,m) on R2
ε1
× {0} ⊂ R4

ε1,ε2
of the 4d theory

SΓ[C]?

For the former question, an obvious guess is the W-algebra W (g, e) given by the Drinfeld-

Sokolov reduction, briefly recalled in Sec. 4.3. From the formula of the central charge (4.3.2),

we see that

c(W (g, e))− c(W (g, eprincipal))

= (dim gh=0 − rankG)− 1

2
dim gh=1 − 12ρ · (ρ− h

2
) +

ε2
ε1

(
h

2
· h

2
− ρ · ρ). (4.5.3)

where we used the relation (4.2.23). This should be given by the integral of the anomaly

polynomial of the 4d operator of label e integrated over R2
ε1

. Note that this is given by a

linear combination of terms

dim gh=0 − rankG, dim gh=1, ρ · (ρ− h

2
),

h

2
· h

2
− ρ · ρ. (4.5.4)

The quantities nv,h(e) given in (3.6.4), which are contributions of a 4d operator to the central

charges nv,h, are also given as linear combinations of the same four terms. This is consistent

to the idea that both nv,h(e) and c(W (g, e))− c(W (g, eprincipal)) are given by integrating the

anomaly polynomials of the 4d operator of type e. Note that the equivariant integrals∫
R4
ε1,ε2

1 =
1

ε1ε2
,

∫
R2
ε1

1 =
1

ε1
(4.5.5)

would naturally provide coefficients of the form 1/(ε1ε2) or 1/ε1 in the linear combination.

Here the fact that the formula (4.5.3) has terms of the form 1/ε1 and no terms of the form

1/(ε1ε2) agrees with the fact that the 4d operator is on R2
ε1
× C.

The algebra W (g, e) contains the affine subalgebra ĝe. For a simple component f ⊂ ge,

its level k2d
f is given by (4.3.3). Similarly, a 4d operator of type e gave rise to a Ge-symmetric
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4d theory, whose k4d is given in (3.6.6). Again, we see that these two expressions are rather

similar, and in terms of b2 = ε2/ε1 we only see the coefficients of the form 1/ε1. This again

gives a small piece of evidence to our general proposal.

To answer the latter question, let us recall the discussions in Sec. 3.8. There, we consid-

ered the 4d operator with label (e,m) on

X4 × C2 ⊃ X4 × {pt}. (4.5.6)

There, we saw that the Hitchin field φ had the residue of the form

φ ∼ α
dz

z
(4.5.7)

where α was given by the formula (3.8.2). In particular, consider the case when α is

semisimple. Let l be the Levi subalgebra commuting with α. Then e is given by a principal

nilpotent element of l.

The setup here just has a different four-dimensional subspace

R4 × C2 ⊃ R2 × {pt} × C2. (4.5.8)

Therefore the behavior of the fields transverse to the 4d subspace should be the same. Then,

a natural generalization of the conjecture is that there is a natural action of W (g, e) on

H∗G×U(1)2(MASD,G,α) (4.5.9)

whereMASD,G,α is the moduli space of the ASD connection on R4 with a singularity trans-

verse to R2 ⊂ R4 given by a semisimple conjugacy class α. When there is no singularity,

α = 0, and e is the principal nilpotent element of g. Then W (g, e) is just WG, and we come

back to the original conjecture. When the singularity α is a regular semisimple element,

i.e. when the Levi subalgebra l is Abelian of maximal rank , then e is zero. Then W (g, e) is

just the affine Lie algebra ĝ. The action of g with the level (4.3.1) on the space (4.5.9) has

been constructed [Bra04].

4.6 S4 partition function

Recall that in 2d WZW model for the affine Lie algebra g of positive integral level k, we

first constructed a finite-dimensional vector bundle over the moduli of the Riemann surface.

This vector bundle had a finite number of natural sections χi(τ), where i labels the sections

and τ denotes the complex structure of the surface. These are the conformal blocks of g at

level k. The mapping class group naturally acts on the space of sections.

The 2d conformal field theory on T 2 is a modular invariant combination∑
cij̄χi(τ)χj(τ) (4.6.1)

where cij̄ is an integer valued matrix. Usually one of the modular invariant choice is∑
i

χi(τ)χi(τ) (4.6.2)
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which is called the diagonal modular invariant.

The 2d WZW models of g at level k are called rational CFTs. Here rationality refers

to the finite dimensionality of the space of conformal blocks. In the case of WG algebra at

generic c, the dimension of the space of the conformal blocks is infinite dimensional, but we

can still form a diagonal invariant. We see in the following that such a diagonal invariant

naturally arises by considering the partition function of SΓ[C] on the sphere. These are the

simplest examples of irrational CFTs.

Let Q an N = 2 supersymmetric theory. Consider the following squashed four-sphere

S4
b := {(x, z, w) ∈ R× C× C | x2 + b|z|2 +

1

b
|w|2 = 1}. (4.6.3)

This only specifies the metric. The N = 2 supersymmetric extension of the concept of the

metric has a complex function in it, and we choose it appropriately so that the supermetric

has a superisometry. It is known that

ZQ(S4
b ) =

∫
Γ

ZNek(Q)(a)ZNek(Q)(a)da1 . . . darankQ (4.6.4)

where Γ is a specific real rankQ dimensional cycle in MCoulomb [Pes07, HH12].

When Q = SΓ[Cg,n], ZQ(S4
b ) determines a function on the moduli space Mg,n of genus-

g Riemann surface with n marked punctures , and is the diagonal invariant of the WG

conformal block, if we assume our conjecture that ZNek(Q) gives a natural section of the

conformal blocks.

This 2d CFT is called the Toda theory for general G, and the Liouville theory in the

simplest case G = A1. The cycle Γ in this case is determined as follows: on Vm with m ∈ hC,

the Virasoro subalgebra acts with

L0 = −〈m,m〉+
h∨(G) dimG

24
(b+

1

b
)2 (4.6.5)

as already discussed in (4.3.6). We only pick unitary representations where L0 ≥ 0. Then

it is natural to take m ∈
√
−1hR.

In particular, for G = A1 and Q = SA1 [
x

y

u

v
], using Gaiotto’s gluing (3.7.1)

and the formula for Nekrasov’s partition function (4.1.22), we have

ZQ(S4
b ) =

∫
R
da

∏
±±± ΓB(±m1 ±m2 ± a)

∏
±±± ΓB(±m3 ±me ± a)∏

pm ΓB(±2a)ΓB(ε1 + ε2 ± 2a)

× e−4π Im τ〈a〉Zinst(a,mi; τ)Zinst(a,mi; τ) (4.6.6)

where

Zinst(a,m1,m2; τ) = 〈[MA1 ], qNZNek(Hyp(Va ⊗ Vm1 ⊗ Vm2))〉. (4.6.7)

where Vx ' C2 has an action of SU(2) with H∗SU(2)(pt) = C[x]. As ZNek is given in (4.1.11),

this is a explicitly computable quantity, and is known as the Liouville four-point functions in

the 2d CFT literature. For an account on the Liouville theory readable for mathematicians,

see e.g. [Tes01].
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5 Superconformal indices and Macdonald polynomials

The content of this section is based on a series of papers [GPRR10, GRRY10, GRRY11b,

GRRY11a, GRR12].

5.1 Definition

For a G-symmetric N = 2 supersymmetric theory Q with U(1)R symmetry, let us consider

its partition function on S1×S3 with the following flat bundle on it. Namely, we start from

R× S3, and when we identify {x} × S3 and {x+ β} × S3, we use the transformations

g ∈ G, s ∈ U(1), t ∈ U(1) ⊂ SU(2), (p, q) ∈ U(1)2 ⊂ Spin(4) (5.1.1)

where U(1)× SU(2) is the R-symmetry and Spin(4) is the isometry of S3. Then we have

ZQ(S1 × S3; β, p, q, s, t, g) = trHQ(S3)(−1)F e−βHpqtsg (5.1.2)

where on the left hand side p, q, t and s are considered as complex numbers with absolute

number one, and on the right hand side they are considered elements of the groups acting

on HQ(S3). The space of states HQ(S3) is Z2 graded, and (−1)F is this Z2 grading. Also,

e−βH : HQ(S3)→ HQ(S3) (5.1.3)

is the operator defined by ZQ([0, β] × S3). This supertrace becomes computable when the

background has a superisometry. This translates to the condition that two specific linear

combinations of β, log t, log s, log p and log q should vanish. We write β and s in terms of p,

q and t, and write the resulting partition function as ZSCI
p,q,t(Q); we leave the dependence on

g implicit in the notation. This is called the superconformal index of the theory Q. We use

physicists normalization of t, so that trC2 t = t1/2 + t−1/2. Therefore the expressions below

are Laurent polynomials of p, q, t1/2.

Let us view the superconformal index from a slightly different point. We first note that

for general d-dimensional conformal QFT Q, there is the identification

HQ(Sd−1) = VQ (5.1.4)

where the left hand side is the state of states on Sd−1 and the right hand side is the space

of point operators. The element e−H defined in (5.1.3) acting on HQ(S3) can be identified

with the grading on VQ. This is called the state-operator correspondence.

When d = 4, Q is N = 2 supersymmetric and conformal with G symmetry, Q is called

N = 2 superconformal with G symmetry. In this case HQ(S3) has a natural action of the

superconformal group

SU(2, 2|2) (5.1.5)

times G. The corresponding super Lie algebra is su(2, 2|2) × g. The character of the

su(2, 2|2) × g representation HQ(S3) is extremely hard to compute. An easier quantity to
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compute is obtained as follows. Pick an odd element δ ∈ su(2, 2|2) with δ2 = 0. The

centralizer of δ in SU(2, 2|2) is SU(1, 1|2). Then the cohomology H(HQ(S3), δ) has an

action of SU(1, 1|2) × G, and the superconformal index is the graded virtual character of

the SU(1, 1|2)×G representation H(HQ(S3), δ):

ZSCI
p,q,t(Q) = trH(HQ(S3),δ)(−1)Fpqtg = trHQ(S3)(−1)Fpqtg (5.1.6)

where (p, q, t) ∈ SU(1, 1|2) is taken from the Cartan subgroup of SU(1, 1|2). This explains

why we have three parameters p, q, t.

5.2 Basic properties

For Q = Hyp(V ) for a pseudoreal representation V of a group G, we have

ZSCI
p,q,t(Hyp(V )) =

∏
w:weights of V

Γp,q(t
1/2zw) (5.2.1)

where Γp,q(x) is the elliptic gamma function

Γp,q(x) =
∏
m,n≥0

1− x−1pm+1qn+1

1− xpmqn (5.2.2)

and we regard z ∈ G as an element in the Cartan torus z = (z1, . . . , zr) ∈ T r and zw =
∏

i z
wi
i

for a weight w = (w1, . . . , wr). This can be checked by recalling that a hypermultiplet

consists of a free boson and a free fermion Sec. 2.5, and that the state of states HQ(S3) of

a free boson and a free fermion is given by the spectrum of the Laplacian and the Dirac

operator, respectively, as we saw in Sec. 1.16 and in Sec. 1.17. In more detail, we have

HQ(S3) = HB4(V )(S
3)⊗HF4(V )(S

3) where

HB4(V )(S
3) = C⊕A⊕ Sym2A⊕ · · ·

HF4(V )(S
3) = C⊕ B+ ⊕ Λ2B+ ⊕ · · · (5.2.3)

with

A = Γ(S3, V ⊕ V̄ ), B = Γ(S3, V ⊗ S ⊕ V ⊗ S) (5.2.4)

and B+ is the subspace where the Dirac operator has positive eigenvalue. The superconfor-

mal group SU(2, 2|2) contains the conformal group Spin(4, 2) ' SU(2, 2) as the subgroup,

and it is a fact that

Γ(Sd−1,C), Γ(Sd−1, S ⊕ S)+ (5.2.5)

are natural irreducible representations of the conformal group Spin(d, 2). When V is ir-

reducible as pseudoreal representations, the combination A ⊕ B+ appearing in (5.2.3) is

an irreducible representation of SU(2, 2|2) × G. Then HQ(S3) is naturally a Z2-graded

polynomial algebra over A⊕ B+, which inherits the action of SU(2, 2|2)×G.
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More explicitly, under the compact subgroup SU(2)1×SU(2)2×SU(2)R×G of SU(2, 2|2)×
G, we have

A =

[⊕
d≥0

V
(1)
d ⊗ V (2)

d

]
⊗R⊗ V, (5.2.6)

B+ =

[⊕
d≥0

(V
(1)
d ⊗ V (2)

d+1 ⊕ V
(1)
d+1 ⊗ V

(2)
d )

]
⊗ V (5.2.7)

where V
(i)
d is the d-dimensional irreducible representation of SU(2)i, R is the two-dimensional

irreducible representation of SU(2)R. From this we find that

[HHyp(V )(S
3)] =⊗

m,n≥0

[Sym•(T⊗1/2 ⊗ P⊗mQ⊗n ⊗ V )⊗ ∧•(T⊗−1/2 ⊗ P⊗(m+1)Q⊗(n+1) ⊗ V )] (5.2.8)

as an element in the representation ring of G×U(1)3, where T , P , Q are the one-dimensional

representations for (t, p, q) ∈ U(1)3 ⊂ SU(1, 1|2) ⊂ SU(2, 2|2).

Next, the superconformal index behaves multiplicatively under the multiplication of

QFTs:

ZSCI
p,q,t(Q×Q′) = ZSCI

p,q,t(Q)ZSCI
p,q,t(Q

′). (5.2.9)

Also, for a G×F -symmetric theory Q, Q/−/−/−G
∣∣
τ

is F -symmetric and its superconformal

index is independent of τ and is given by

ZSCI
p,q,t(Q/−/−/−G

∣∣
τ
) = (

1

Γp,q(t)Γ′p,q(1)
)r

1

|W |

∫
T r

r∏
i=1

dzi

2π
√
−1zi

(
∏

α:roots of G

1

Γp,q(zα)Γp,q(tzα)
)ZSCI(Q). (5.2.10)

where z ∈ T r ⊂ G and |W | is the order of the Weyl group. At the level of the representation

ring the operation

|W |−1

∫
T r

∏ dzi

2π
√
−1zi

∏
α

zα : Rep(G× F ) 3 [V ] 7→ [V G] ∈ Rep(F ) (5.2.11)

which extracts the invariant part under G.

5.3 Application to the theories of class S

Recall

SA1 [ ] = Hyp(V1 ⊗ V2 ⊗ V3) (5.3.1)
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where Vi ' C2 is the defining representation of A1. Then

ZSCI
p,q,t(SA1 [ ]) =

∏
±±±

Γp,q(t
1/2u±v±z±) (5.3.2)

where u, v, w ∈ U(1)3 ⊂ SU(2)3. Then, from the gluing axiom, we have

ZSCI
p,q,t(SA1 [

x

y

u

v
]) =

1

Γp,q(t)Γ′p,q(1)

1

2

∮
dz

2π
√
−1z

∏
±

1

Γp,q(z±2)Γp,q(tz±2)

×
∏
±±±

Γp,q(t
1/2u±v±z±)

∏
±±±

Γp,q(t
1/2x±y±z±). (5.3.3)

It should be symmetric under the exchange u↔ x, which is not apparent from the integral

form on the right hand side.

The measure appearing in (5.2.10) is an elliptic generalization of the Macdonald inner

product. When p = 0, it becomes

(
∏
n≥0

1− qn+1

1− tqn )r
1

|W |
r∏
i=1

dzi

2π
√
−1zi

∏
α

∏
n≥0

1− qnzα
1− tqnzαK(z)−2 (5.3.4)

where

K(z) = (
∏
n≥0

1

1− tqn )r
∏
α

∏
n≥0

1

1− tqnzα . (5.3.5)

and
1

|W |
r∏
i=1

dzi

2π
√
−1zi

∏
α

∏
n≥0

1− qnzα
1− tqnzα (5.3.6)

is the standard measure appearing in the theory of Macdonald polynomials. This means

that the orthonormal polynomials under (5.3.4) are

K(z)P λ(z) (5.3.7)

where

P λ(z) = (
∏
n≥0

1− qn+1

1− tqn )−r/2N
−1/2
λ Pλ(z). (5.3.8)

Here, Pλ(z) is the standard Macdonald polynomial and

Nλ =
1

|W |

∫
T r

r∏
i=1

dzi

2π
√
−1zi

∏
α

∏
n≥0

1− qnzα
1− tqnzαPλ(z)Pλ(z

−1) (5.3.9)

is the norm of the Macdonald polynomial, which has an explicit infinite-product form.

Consider a class S theory Q = SΓ[Cg, e1, . . . , en] associated to a curve C of genus g

with n punctures labeled by e1, . . . , en. This is a
∏

iG
ei symmetric theory. Then the
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superconformal index is a function of p, q, t and zi, where zi is an element of the Cartan

torus of Gei , which we further regard as an element of the Cartan torus of G.

Then the superconformal index of Q , when p = 0, is conjecturally given by

ZSCI
p=0,q,t(Q)({zi}) =

∏n
i=1Kei(z)

Kρ
2g−2+n

∑
λ

∏n
i=1 P λ(zit

hi/2)

P λ(t
ρ)2g−2+n

(5.3.10)

Here, at each puncture labeled by ei, we pick an SL(2) triple (ei, hi, fi). We then used the

map

Ge × ρe(SU(2))→ G (5.3.11)

to define

(z, t) 7→ zth/2. (5.3.12)

To define Ke(z), let us make the decomposition

gC = ⊕dRd ⊗ Vd (5.3.13)

as always, where Vd is an irreducible representation of dimension d of ρe(SU(2)). Then

Ke(z) =
∏
d

∞∏
n=0

∏
w:weights of Rd

1

1− t(d+1)/2qnzw
. (5.3.14)

Note that Ke=0(z) = K(z) defined above. The form (5.3.10) makes the associativity trans-

parent.

When the class S theory becomes just Hyp(V ), the general formula (5.3.10) gives con-

jectural formula rewriting an infinite product determined by the weights of V into a sum

over λ. We discussed many such cases in Sec. 3.11. Let us consider the simplest case (5.3.1).

We now have an identity∏
±±±

∏
n≥0

1

1− t1/2a±1 a±2 a±3 qn
=

∏
n≥0

3∏
i=1

(
1

1− ta2
i q
n

1

1− t
1

1− ta−2
i qn

)
∞∑
λ=0

∏3
i=1 P λ(ai, a

−1
i ; q, t)

P λ(t
1/2, t−1/2; q, t)

(5.3.15)

where P λ is the A1 Macdonald polynomial in a nonconventional normalization (5.3.8).

When p 6= 0 the generalization of (5.3.10) will be to set

Ke(z) =
∏
d

∏
m,n≥0

∏
w:weights of Rd

1− t(d−1)/2pm+1qn+1zw

1− t(d+1)/2pmqnzw
. (5.3.16)

and replace P λ by Ψλ which is orthonormal under the elliptic measure

(

∏
m,n≥0, (m,n)6=(0,0)(1− pmqn)∏

m,n≥0(1− tpmqn)(1− t−1pm+1qn+1)
)r

× 1

|W |
r∏
i=1

dzi

2π
√
−1zi

∏
α

∏
m,n≥0

1− pmqnzα
(1− tpmqnzα)(1− t−1pm+1qn+1zα)

(5.3.17)
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The problem is that the existence and the properties of Ψλ is not quite known in the

mathematical literature yet. At least the associativity of the case Γ = A1, (5.3.3), is shown

by a different method [vdB11].

When q = t, the Macdonald polynomial just becomes the character, and the formula

(5.3.10) becomes the partition function of a 2d theory YMq
2(G) called q-deformed Yang-Mills

theory on C:

ZSΓ[C,ei](S
1 × S3) = ZYMq

2(G)(C). (5.3.18)

This means that

SΓ[S1 × S3
q=t,p=0] = YMq

2(G). (5.3.19)

When q → 0, the right hand side is just the 2d QFT triv2 /−G discussed in Sec. 1.8.

5.4 A limit and the generators of the Coulomb branch

One interesting limit of the superconformal index is when u = pq/t is fixed and the limit

p, q → 0 is taken. We have

ZSCI
u=pq/t,p→0,q→0(Hyp(V )) = 1 (5.4.1)

and

ZSCI
u=pq/t,p→0,q→0(Hyp(V ) /−/−/−G) =

rankG∏
i=1

1

1− udi (5.4.2)

where di is one plus the i-th exponent of G; this follows from the explicit formula given in

Sec. 5.2. In broad generality, it is believed that

ZSCI
u=pq/t,p→0,q→0(Q) = trC[MCoulomb(Q)] u (5.4.3)

where u ∈ C× is the natural U(1) action on the Coulomb branch of Q, discussed in Sec. 2.4.

Once the superconformal index with general p, q and t is understood, we can take this limit

of the generalization of (5.3.10), and obtain full information necessary to reconstruct V (ei)

discussed in Sec. 3.9.

5.5 Another limit and the Hilbert series of the Higgs branch

Another interesting subcase is the limit p = q = 0, keeping t fixed. Then

ZSCI
p=q=0,t=τ2(Hyp(V )) =

∏
w

1

1− τzw . (5.5.1)

This is the graded character of C[V ]. Note also that

ZSCI
p=q=0,t=τ2(Hyp(V ) /−/−/−G) =

1

|W |

∫ ∏ dz

2π
√
−1z

∏
α

(1− zα)(1− τ 2)r
∏
α

(1− τ 2zα)
∏
w

1

1− τzw (5.5.2)
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is the graded character of C[V///G] under favorable conditions. Note that the factor (1 −
τ 2)r

∏
α(1 − τ 2zα) provides the relation imposed by µC = 0 in the hyperkähler quotient.

The conjecture is that in general

ZSCI
p=q=0,t=τ2(Q) = chC[MHiggs(Q)] = trC[MHiggs(Q)] τz (5.5.3)

under favorable conditions. Here τ is the grading on the Higgs branch and z is in the Cartan

torus of G. When Q = SG(X; ei), ηG(X; ei) =MHiggs(SG(X; ei)) was discussed at length in

Sec. 3.10.

In the formula (5.3.10) in this limit, Ke(z) becomes

Ke(z) =
∏
d

∏
w:weights of Rd

1

1− τ d+1zw
. (5.5.4)

and P λ is replaced by Hλ which is orthonormal with respect to

(
1

1− τ 2
)r

1

|W |
r∏
i=1

dzi

2π
√
−1zi

∏
α

1− zα
1− τ 2zα

. (5.5.5)

The standard Hall-Littlewood polynomial is orthogonal with respect to this measure.

This can be used to obtain a conjectural formula of the graded character of the centered

instanton moduli spaces of Er gauge group, since we believe that these spaces arise as the

Higgs branch of particular class S theories, as we saw in Sec. 3.10. For the instanton number

1, we just have

ZSCI
p=q=0,t=τ2(SA2 [S2; [13], [13][13]]) = chC[M̃E6,n=1] (5.5.6)

ZSCI
p=q=0,t=τ2(SA3 [S2; [22], [14][14]]) = chC[M̃E7,n=1] (5.5.7)

ZSCI
p=q=0,t=τ2(SA5 [S2; [32], [23][16]]) = chC[M̃E8,n=1]. (5.5.8)

On the right hand side the character is with respect to C× × Er, and on the left hand side

it is with respect to C××SU(3)2, C××SU(2)×SU(4)2, C××SU(2)×SU(3)×SU(6). Note

that the rank of the both sides agree.

Although we believe that the instanton moduli spaces are obtained as in (3.10.22) for

general n, they are not in favorable conditions where the equality of the superconformal

indices and the graded character of the Higgs branch is applicable. A seemingly related fact

is thatMEr,n with n > 1 has a nontrivial triholomorphic action of SU(2)×Er, where SU(2)

comes from a triholomorphic action of SU(2) on R4 preserving its hyperkähler structure.

Instead, we have the relation

MHiggs(SA3n−1 [S2; [n2, n− 1, 1], [n3], [n3]) = C2 × M̃E6,n =ME6,n, (5.5.9)

MHiggs(SA4n−1 [S2; [2n, 2n− 1, 1], [n4], [n4]) = C2 × M̃E7,n =ME7,n, (5.5.10)

MHiggs(SA6n−1 [S2; [3n, 3n− 1, 1], [2n3], [n6]) = C2 × M̃E8,n =ME8,n (5.5.11)
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where MEr,n is the noncentered moduli space. Then we have

ZSCI
p=q=0,t=τ2(SA3n−1 [S2; [n2, n− 1, 1], [n3], [n3]) = chME6,n, (5.5.12)

ZSCI
p=q=0,t=τ2(SA4n−1 [S2; [2n, 2n− 1, 1], [n4], [n4]) = chME7,n, (5.5.13)

ZSCI
p=q=0,t=τ2(SA6n−1 [S2; [3n, 3n− 1, 1], [2n3], [n6]) = chME8,n (5.5.14)

On the right hand side the character is with respect to C× × SU(2) × Er, and on the

left hand side it is with respect to C× × U(1)2 × SU(2) × SU(3)2, C× × U(1)2 × SU(4)2,

C× × U(1)2 × SU(3) × SU(6). Note that the rank of the both sides agree. These relations

have been put to some test in [GR12, KS12, HMR12].
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