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N = 4 and	M5-branes

• N M5-branes	on S1 N D4-branes: SU(N) SYM in	5d
• N M5-branes	on T 2 SU(N) SYM in	4d
• 4d	gauge	coupling

τ =
θ

2π
+

4πi

g2

is	the	shape	of	the	torus

0 1

τ

0 1

−1/τ

S-duality!
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N = 2 and	M5-branes

• WrapN M5-branes	on	a	more general	Riemann	surface
possibly	with punctures,
to	get N = 2 superconformal	field	theories

• Anticipated	in	’96–’98	by [Lerche,Warner], [Klemm,Mayr,Vafa],
[Witten], [Marshakov,Martellini,Morozov], [Ito,Yang], [Kapustin], . . .

but	not	thoroughly	explored	until [Gaiotto,0904.2715]
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6d, 4d	and	2d

• N M5-branes	wrapped	onX4 × Σ2

• Consider	the	partition	function Z of	the	6d	theory,
• furthermore	suppose Z depends only	on	the	complex	structure.

6d theory on X4 × Σ2

2d theory on Σ2

KK-reduce
 along X4

4d theory on X4

KK-reduce
 along Σ2
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N = 2 gauge	theory

• Vector	multiplets:
ϕiȷ̄ ψiȷ̄

α F iȷ̄
µν

• ϕ = diag(a1, a2, . . . , an) is	a	SUSY configuration
• breaks SU(N) to U(1)N−1:

S = τUV trFµνFµν + c.c. S = τij(a)F
i
µνF

j
µν + c.c.

• In N = 2 superspace,

S =

∫
d4θτUV trΦ2 + c.c. S =

∫
d4θF(a) + c.c.

F is	called	the prepotential.

ai, d F i = 0,

aDi =
∂F
∂ai

, d τij(a)⋆F
j = 0
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Prepotential

• Perturbatively,

F(a) = τUV

∑
a2i +

∑
i>j

(ai − aj)
2 log

ai − aj

ΛUV

• Instanton	corrections

F(a) =
∑
i>j

(ai − aj)
2 log

ai − aj

Λ
+
∑
k

Λ2Nkfk(a)

where fk(a): k-instanton	correction.

f1(a) =
∑
i

∏
j ̸=i

(ai − aj)
−2.

• Huge	literature	devoted	to	calculate fk.
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Nekrasov’s	partition	function

Z(a; ϵ1, ϵ2) = exp(
F(a)

ϵ1ϵ2
+ · · · )

..1 Take	5d	version	of	the	theory

..2 Put	it	on	a	circle	of	length β.

..3 Glue	the	two	ends	by
• by	4d	rotation Ω = eβϵ1L12+βϵ2L34 and
• by	gauge	rotation g = diag(eβa1 , . . . , eβaN )

..4 Take β → 0.

Ωµν

1

β

R4

1

R
4

1
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Localization

Ωµν

1

β

R4

1

R
4

1

• Only	half-BPS configurations	contribute.
• Consider	the	circle	as	“time.”
• At	each	slice, we	have	an	instanton.
• As	time	changes, the	parameters	of	the	instanton	changes.
• It’s	a	supersymmetric	QM on	the	instanton	parameter	space.

Z =
∑
k

Λ2Nk tr
QM Hilbert	space

gΩ(−1)F e−βH
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Localization: example

Z = tr
QM vacuum

g(−1)F

• Consider	a	SUSY particle	moving	on	a	sphere, with	monopole	flux n
• SU(2) = SO(3) acts	on	it. Take g = diag(eiθ/2, e−iθ/2).
• Vacua	form	spin n rep.

Z = einθ + ei(n−1)θ + · · · + e−inθ

• Can	also	be	calculated	from	the	sum	of	two	fixed	point	contributions

Z =
ei(n+1/2)θ

eiθ/2 − e−iθ/2
+

e−i(n+1/2)θ

e−iθ/2 − eiθ/2
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Nekrasov’s	partition	function: explicit	form

Z =
∑
k

Λ2Nk tr
QM vacuum

gΩ(−1)F

• SO(4) and SU(N) act	on	instanton	moduli	space.
• Need	to	understand	fixed	points	and	their	neighborhood.

a1 a2 a3

Z =
∑

(Y1,Y2,...,YN )

Λ2N(|Y1|+···+|YN |)Z{Yi}(ai; ϵ1, ϵ2)
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Nekrasov’s	partition	function: explicit	form

Z(a; ϵ1, ϵ2) =
∑

(Y1,Y2,...,YN )

Λ2N(|Y1|+···+|YN |)Z{Yi}(ai; ϵ1, ϵ2)

• One-instanton	contribution	is	(aij = ai − aj , ϵ = ϵ1 + ϵ2)

Z1 =
∑
i

1

ϵ1ϵ2
∏

j ̸=i aji(ϵ− aji)

• Two-instanton	contribution	is

Z2 =
∑
i<j

1

(ϵ1ϵ2)2(a
2
ij − ϵ21)(a

2
ij − ϵ22)

∏
k ̸=i,j aki(ϵ− aki)akj(ϵ− akj)

+
∑
i

1

2ϵ1ϵ
2
2(ϵ2 − ϵ1)

∏
j ̸=i aji(ϵ− aji)(ϵ2 − aji)(ϵ+ ϵ2 − aji)

+
∑
i

1

2ϵ2ϵ
2
1(ϵ1 − ϵ2)

∏
j ̸=i aji(ϵ− aji)(ϵ1 − aji)(ϵ+ ϵ1 − aji)
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Recap

• Prepotential

F(a) =
∑
i<j

(ai − aj)
2 log

ai − aj

Λ
+
∑

Λ2Nkfk(a)

• Nekrasov’s	partition	function

Z(a; ϵ1, ϵ2) = exp(
F(a1, . . . , aN)

ϵ1ϵ2
+ · · · )

has	an	explicit	expression	in	terms	of	Young	diagrams.

• There’s	a	completely	different	way	to	encode F(a), without	any
expansion.
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Seiberg-Witten	curve

Σ : ΛN(z+
1

z
) = yN +u2y

N−2+· · ·+uN

Σ

C

z=0 z=∞

• The	sphere	parameterized	by z is the	base C, the Gaiotto	curve.

• ItsN -sheeted	cover	is	the Seiberg-Witten	curve Σ

ai =

∫
Ai

ydz

z
, aDi =

∫
Bi

ydz

z
, and aDi =

∂F(a)

∂ai
.
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Seiberg-Witten	curve

Σ : ΛN(z+
1

z
) = yN +u2y

N−2+· · ·+uN

Σ

C
Ai

B1

B2z=0 z=∞

• Let yN + yN−2u2 + · · · + uN =
∏

(y − yi).

• Suppose yi ≫ Λ y ∼ yi on Ai

ai =

∫
Ai

ydz

z
= yi + O(Λ).

February	2010 17	/	38



M5-branes

Let λ = ydz/z. Then

ΛN(z +
1

z
) = yN + u2y

N−2 + · · · + uN

Σ

C

z=0 z=∞

becomes
λN + ϕ2(z)λ

N−2 + · · · + ϕN(z) = 0

where

ϕk(z) = uk

(
dz

z

)k

, ϕN(z) = (ΛNz + uN +
ΛN

z
)

(
dz

z

)k

.
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M5-branes

λN + ϕ2(z)λ
N−2 + · · · + ϕN(z) = 0

• λ: one-form. ϕk: degree-k form.
• Determine Σ ⊂ T ∗C

• WrappingN M5-branes	on Σ inside	the	hyperkahler T ∗C.
• 11d	spacetime	is R3,1 × T ∗C × R3.

Σ

C

z=0 z=∞
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6d N = (2, 0) theory

• Compactification	of	6d N = (2, 0) theory	on C with punctures.
• ϕk(z) are	the	worldvolume	fields	with	poles	at	punctures.
• Φ(z) be	the	hypothetical	adjoint-valued	field	whose	invariant
polynomials	are ϕk(z)

0 = λN + ϕ2(z)λ
N−2 + · · · + ϕN(z) = det(λ− Φ(z))

• The	Seiberg-Witten	differential λ is	the	‘eigenvalue’	of Φ(z).

C

z=0 z=∞
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Comments

All	these	have	been, in	some	sense, known	from	around	’97.
Gaiotto’s	insight	was

.

.

. ..

.

.

• What’s	important	is	the	base C with ϕk(z).
• Punctures	control	the	divergence	of ϕk(z).
• You	can	put	punctures	at	will.
• Lagrangian ⇔ configuration	of	the	punctures
• VEV ⇔ ϕk(z)
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Rules

• a	tube	gives SU(N) gauge	group

L = τ = 1/g2

• a	three-punctured	sphere	gives	the	matter	field	e.g.

givesN ×N hypermultiplets.
• Punctures	carry	flavor	symmetries. ⊙: SU(N) and • : U(1)
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Practice!

• Want	to	make	a SU(N) with 2N fundamentals?
• TakeN fundamental	hypers, gauge	fields, anotherN fundamental
hypers

L ~ τ ~ 1/g2

• Connect!

0

q 1

∞

• q ∼ exp(iτ ).
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4d	CFT vs	2d	CFT

• We	now	have	a map

GN : Riemann	surface	with	punctures 4d	field	theory

• GN behaves	nicely	under	degenerations of	the	Riemann	surface Σ
i.e. any	thin, long	tube	gives	a	weakly	coupled SU(N) gauge	group

• Take	whatever	physical	quantity Z calculable	in	4d:

Z : 4d	field	theory number

• Then, Z(GN(Σ)) factorizes	under	degenerations of Σ,

• This	morally	means	that Z ◦GN gives	a 2d	CFT.
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4d	CFT vs	2d	CFT

• Nekrasov’s	instanton	partition	function
=	the Virasoro/WN conformal	block.

• Full	partition	function
=	the Liouville/Toda	correlation	function.

• Superconformal	Index =	a 2d	TQFT
[Gadde-Pomoni-Rastelli-Razamat]

February	2010 26	/	38



SU(2) vs. Liouville

• What	do	we	get	from 2 M5-branes?

a ~ −a

• Each	channel	is	labeled	by	one	variable a with	the	identification
a ∼ −a.

• Three-point	Interaction	is	non-zero	for	generic a1, a2 and a3

• Such	2d	CFT is	bound	to	be	Liouville [Teschner,. . . ]

(N.B.	I learned	this	argument	from	Ari	Pakman.)
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Liouville

φ

p

−p

• Reflection	off	an	exponential	wall.
• The	action	is

S =
1

π

∫
d2x

√
g
(
|∂µφ|2 + µe2bφ +QRφ

)
• Q = b+ 1/b and c = 1 + 6Q2.
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Proposal: SU(2)

C

z=0 z=∞

• SW curve	was λ2 = ϕ2(z).
• Liouville	theory	has T (z).
• Both	have	spin-2.

⟨T (z)⟩dz2 → ϕ2(z) when ϵ1,2 → 0

under

vev a ↔ momentum p,
(ϵ1 + ϵ2)

2

ϵ1ϵ2
↔ Q2
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SU(2) with	four	flavors

z2

z1

z3

z4

⇐⇒ ⟨Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)⟩

• What	are	the	operators Vα(z)?

• ϕ2(z) ∼
m2

idz
2

(z − zi)2
⇐⇒ T (z)Vα(zi) ∼

m2
i

(z − zi)2
Vα(zi)

• Vαi(z) is	a primary	state with	dimensionm2
i .
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Pure SU(2)

C

z=0 z=∞ ⇐⇒ ⟨w|w⟩

• What’s	the	state |w⟩?

• λ2 = ϕ2(z) where ϕ2(z) ∼ (
u

z2
+

Λ2

z3
)dz2 around z = 0.

• Recall

T (z)dz2 ∼ (· · · +
L0

z2
+
L1

z3
+ · · · )dz2.

this	suggests

L0|w⟩ = (Q2 − a2)|w⟩, L1|w⟩ = Λ2|w⟩, Ln|w⟩ = 0 (n ≥ 2).

• |w⟩ is	the coherent	state of	the	Virasoro	algebra	!
February	2010 31	/	38



Comparison	to	Nekrasov

• What	you	do: assume

|w⟩ = |a⟩ + cL−1|a⟩ + (c′L−2 + c′′L2
−1)|a⟩ + · · ·

and	impose

L1|w⟩ = Λ2|w⟩, L2|w⟩ = 0, . . .

Recursively	determine c, c′, c′′, . . . .
• Form ⟨w|w⟩. (n.b.: you	need	to	take	BPZ conjugate.)

• Magically	agrees	with	Nekrasov’s Z(a, ϵ1, ϵ2).
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Status: SU(2)

• Many	checks.

• [Fateev-Litvinov	0912.0504] proved the	equality

Z of SU(2) with	massive	adjoint

= torus	one-point	conformal	block

by	showing	boths	sides	satisfy	the	same	non-linear	relation.

• Mathematically, the	2d/4d	relation	means⊕
k

H∗
SU(2)×U(1)2 (Mk)

has	the	structure	of Verma	module	of	Virasoro	algebra.

• Not	proved, but	should	be	available	in	a	few	years...
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Toda

φ1+φ2+φ3 = 0

• Waves	in φ1 + φ2 + · · · + φN = 0.
• Reflection	off	walls	at φi = φi+1.
• The	action	is

S =
1

π

∫
d2x

√
g

(
|∂µφ⃗|2 + µ

∑
i

e2be⃗i·φ⃗ +Qρ⃗ · φ⃗R
)

• Q = b+ 1/b and c = (N − 1) +Q2N(N2 − 1).
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WN symmetry

• Toda	theory	is	not	just	a	CFT with T (z).
• HasWN symmetry, with	generators

W2(z) = T (z), W3(z), . . . , WN(z)

• OPE ofW3 algebra	is

W3(z)W3(0) ∼
c

3z6
+

2T (0)

z4
+
∂T (0)

z3

+
1

z2

[
2βΛ(0) +

3

10
∂2T (0)

]
+

1

z

[
β∂Λ(0) +

1

15
∂3T (0)

]
where

Λ(z) = :T (z)T (z): −
3

10
∂2T (z), β =

16

22 + 5c
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Proposal: SU(N)

C

z=0 z=∞

• SW curve	was λN + ϕ2(z)λ
N−2 + · · · + ϕN(z) = 0.

• Toda	theory	has T (z),W3(z), · · · ,WN(z).

⟨Wk(z)⟩dzk → ϕk(z) when ϵ1,2 → 0

under vev a⃗ ↔ momentum p⃗,
ϵ1

ϵ2
↔ b2

• Weyl	reflection	=	Toda	reflection
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Comparison	for	generalN

• [Mironov-Morozov] studied SU(3) with	six	flavors

• [Taki] studied	pure SU(3) upto	2-instanton	level
• Both	used	nonlinear	algebra

• [Kanno,Matsuo,Shiba,YT] used	free-field	representation	and	studied
near	punctures

• more	to	be	done!
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Summary

• 6d N = (0, 2) theory	on C with	punctures 4d	theory
• 2d	CFT lives	on C
• Nekrasov’s	partition	function	in	4d	=	2d	CFT quantity	of C.

• Liouville/Toda	theory	is	the	quantization	of	the	SW curve.
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