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A

We review recent works on the instanton calculation of prepotentials for
Yang-Mills theory in four and five dimensions with eight supersymme-
tries. We firstly review relevant prerequisites, specifically the Atiyah-
Drinfeld-Hitchin-Manin construction of instantons and the localization
formula of Atiyah-Bott-Lefschetz. We then move on to discuss the cele-
brated works initiated by Seiberg and Witten, which used strong coupling
arguments to determine the low energy prepotential. Finally, combining
the knowledge obtained in the two preparatory chapters, we compute the
low energy prepotential by direct instanton calculation. An extension of
these developments by the author is also briefly reported.
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Chapter 0

Introduction

Dynamical properties of non-ableian gauge field is a notoriously difficult problem. The one-
loop beta function is negative. This has virtues in that it can explain the asymptotic freedom of
the strong interaction. However, the very same property leads to the conclusion that their low
energy spectrum and interactions cannot be studied perturbatively. Experimentally, we know
that non-abelian gauge fields confine themselves. This is the inevitable fact if one accepts that
quantum chromodynamics(QCD) describes the strong interaction. Hence, we can say that
theoretical understanding of the confinement is inarguably one of the most important and
most challenging problems for theoretical physicists. Although many theoretical scenarios
have emerged over the years (e.g. an article [1] by A. M. Polyakov and articles [2, 3, 4] by G.
’t Hooft), they did not lead to a satisfactory answer until quite recently. The confinement of
pure QCD has rejected all the attempts by theoreticians to date. The reader may know that a
one-million-dollar prize has been set up for this problem by Clay Research Institute. No one
has yet obtained that prize.

Then, what will be a good way to approach the non-perturbative dynamics of non-abelian
gauge fields? Classically, vacua of Yang-Mills equation is labeled by an integer and there are
potential barriers of finite height between them. We know that tunnelling paths connecting
different vacua are non-perturbative objects. Semi-classical WKB analysis around the action-
minimizing configuration would be a natural first try. Configurations which minimize
the action satisfies a so-called (anti-)self-dual equation and they are collectively known as
instantons. For the bosonic case however, the Gaussian correction around the instantons
are very complicated and moreover they are divergent in the infrared. They were still too
difficult. Here two things come to the rescue.

First is the complete classification and construction of multi-instantons by Atiyah, Drin-
feld, Hitchin and Manin[5]. This means that we at least know where to do the integral of the
semi-classical approximation. In view of the fact that the (anti-)self-dual equation is still a
highly nonlinear differential equation, it is astonishing that they solved the equation at such
an early stage of the development of the subject as the whole.

Second is the incorporation of supersymmetry. For models with supersymmetry, bosonic
and fermionic contributions to the correction tend to cancel against each other. Hence, we
can in principle write down explicitly the integrand to integrate over. This should enable
us to calculate the instanton contribution to the dynamics, and indeed in the last decade we
saw a steady development along these directions (see for example the great review [6] by
M. Shifman and A. Vainshtein.) Moreover, for supersymmetric theories we have another
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2 Chapter 0. Introduction

means of investigating the low energy dynamics. That is the use of holomorphy. Namely,
since many parts of the Lagrangian of a supersymmetric theory is holomorphic functions of
parameters and fields, brief understanding of the neighborhoods of their poles suffices to
determine the complete results (one of good reviews is the lecture note [7] by M. Peskin).
For example, the low energy prepotential, which governs the lowest derivative part of the
dynamics of N = 2 supersymmetric gauge theory, was determined in this way by N. Seiberg
and E. Witten[8] in 1994. Hence we have quantities to check the instanton calculation against.

Another big branch of the study of instantons is the application to mathematics. S.
K. Donaldson utilized the moduli space of instantons to construct new diffeomorphism
invariants for four dimensional manifolds and proved many surprising properties. To state
his result in a word, one may say that it is the study of cohomology of the instanton moduli
on four-manifolds, while the classical invariants were cohomology of the four manifolds
themselves. E. Witten, lead by the suggestions by M. Atiyah, showed in his classic work[9]
that Donaldson’s new invariants are none other than the correlation functions of certain
topologically twisted version of N = 2 supersymmetric gauge theories. If one turns around
the argument, one can say that certain quantities in N = 2 supersymmetric gauge theories
are determined solely by the topology of the moduli space, eliminating the necessity of
complicated integral.

What was gradually realized after the turn of the century is that the prepotential itself is
one of such topological quantities[10, 11, 12] and that they can be computed using the method
of localization. They were lead to these results by examining carefully the instanton action
and by showing that they can be cast into a cohomological framework. Finally N. Nekrasov
pinpointed the physical mechanism which makes possible the application of the topological
method, and immediately wrote down the all-instanton result of instanton calculation[13].
He and his collaborators showed that their results precisely matched with the prepotential
obtained from holomorphy[14]. The aim of this master thesis is to report these unifying
developments in the last two years, namely the instanton calculation, utilizing localization,
of the low energy properties of N = 2 supersymmetric gauge theories.
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Organization of the thesis The master thesis is organized as follows. In chapter 1, we
recall several basic facts about the instantons in Yang-Mills theory. We treat the ADHM
construction of instantons in great detail. Furthermore, we show how this algebraic de-
scription of instantons comes from the dynamics of D-branes. We also discuss the effect of
non-commutativity and see the disappearance of the small instanton singularity.

In chapter 2, we review the Atiyah-Singer index theorem, its equivariant versions and
other localization techniques. We derive them using supersymmetric quantum mechanics.
Some application of the theorems is discussed.

In chapter 3, we summarize the celebrated Seiberg-Witten solution of N = 2 supersym-
metric Yang-Mills theory. After reviewing the generic properties of N = 2 supersymmetric
theories in four dimensions, we give a detailed derivation of the solution for gauge group
SU(2). Then we see how this result can be concisely summarized using a family of elliptic
curves. Next we extend the analysis to SU(N) gauge groups and hyperelliptic curves. We
conclude the chapter by examining the weak coupling expansion of the result obtained in
the earlier part of the chapter.

Chapter 4 is the main part of the master thesis. We report the recent development in the
instanton calculation of prepotential of N = 2 supersymmetric Yang-Mills. First we shortly
review the structure of five dimensional supersymmetry which was crucial in the under-
standing. Second, we move on to explain why the calculation of the prepotential is reduced
to the equivariant index of the instanton moduli. We study in detail the fixed points and
their contribution to the index, and will see that they are succinctly summarized using Young
tableaux. We compare the result so obtained against the weak coupling expansion obtained
in chapter 3 and find satisfactory result. Then we study how to extract the hyperelliptic
curves from Young tableaux. Finally, we provide a short exposition of the recent work of the
author which studies the effect of five-dimensional Chern-Simons terms to the exact effective
prepotential.

In chapter 5 we conclude the thesis by summarizing and assessing the future directions.
The organization of the thesis is diagrammatically represented in figure 1.
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Figure 1: Schematic organization of the thesis



Chapter 1

The instanton moduli

1.1 Geometry of Yang-Mills fields

Firstly, let us recall some basic facts about the geometry of Yang-Mills fields on R4. The
discussions are mainly to show our notations and conventions. We take R4 to be Euclidean.

For U(N) connections Aµ taking values in anti-hermitean N×N matrices, the curvature or
the field strength Fµν is defined by the commutator of the covariant derivative Dµ = ∂µ +Aµ:

Fµν = [Dµ,Dν] = ∂µAν − ∂νAµ + [Aµ,Aν]. (1.1)

We often denote the curvature using two-form

F =
1
2

Fµνdxµ ∧ dxν. (1.2)

The Hodge star operation is defined by

(∗F)µν =
1
2
εµνρσFρσ (1.3)

The Yang-Mills action is defined by

S =
∫

d4x
1

2g2 trFµνFµν =
∫

1
g2 trF ∧ ∗F. (1.4)

For the action to be finite, Fµν is to decay sufficiently fast to zero around the spatial
infinity, hence the gauge field can be extended to S4, the one point compactification of R4.
SU(N) bundle on S4 is obtained by gluing the trivial bundle over each hemisphere along the
equator, hence is topologically classified by the homotopy of gluing functions S3

→ SU(N).
As π3(SU(N)) = Z, we see SU(N) gauge bundles are classified by an integer. This is called
the instanton number in the physics literature. It is given by the formula

instanton number =
1

8π2

∫
trF ∧ F. (1.5)

For manifolds other than S4, this measures the second Chern class of the bundle. We can add
to the action

+
iθ

8π2

∫
trF ∧ F. (1.6)

5



6 Chapter 1. The instanton moduli

The variable θ is normalized so that a k-instanton configuration contributes kθ to the action.
Since k is integer, θ and θ+ 2π gives the same contribution under the path integral

∫
[dA]e−S.

Hence θ is often called the θ angle.
To carry out semi-classical calculation, it is necessary to find the minimum action config-

uration in each topological sector. From the equation

0 <
∫

1
2g2 tr(F − ∗F) ∧ ∗(F − ∗F) (1.7)

=
1
g2

∫
trF ∧ ∗F −

1
g2

∫
trF ∧ F (1.8)

we find that the Yang-Mills action is bounded by the multiple of instanton number,

1
g2

∫
F ∧ ∗F > ±

8π2

g2 × instanton number (1.9)

and that the bound is attained when the gauge field satisfies

F = ± ∗ F. (1.10)

The configuration with+or− sign is called self-dual (SD) or anti-self-dual (ASD), respectively.
Hence, the determination of the structure of the solution of this equation is of great physical
importance.

There is another physical significance to the anti-self-dual equation. Note that, under
the Lorentz group SO(4) ' SU(2) × SU(2), self-dual (anti-self-dual) antisymmetric tensor
transform respectively under the representation (3, 1) ( (1, 3) ). In supersymmetric theories,
the transformation law of the superpartner λα of the gauge field is given by

δλα = ε
βFαβ + · · · (1.11)

and

δλα̇ = ε
β̇Fα̇β̇ + · · · . (1.12)

This means that when the self-dual part of the curvature Fαβ vanishes, one-half of the original
supersymmetry is preserved in the gauge field background. Often, the calculation of various
quantity protected by supersymmetry reduces to the analysis of the neighborhood around
the configuration with some unbroken supersymmetry. This observation also tells us the
importance of the (anti-)self-dual equation.

These developments in physics around nineteen seventies triggered the interest in the
mathematical community, and in 1978 Atiyah, Drinfeld, Hitchin and Manin succeeded in
the explicit determination of all anti-self-dual connections on S4. Their method was that
of twistor theory and of complex algebraic geometry, and not of the everyday language to
many of the physicists. Fortunately, Corrigan and Goddard[16] have found a differential
geometric rephrasing of the findings of ADHM, and the results are very understandable.
In the following sections we review the construction of all ASD connections on R4 by their
method.
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1.2 the ADHM construction

Atiyah, Drinfeld, Hitchin and Manin[5] realized the instanton moduli as a hyperkähler
quotient of a vector space. The element of the vector space is often called the ADHM data.
We describe in the first subsection the ADHM data and its hyperkähler quotient. Secondly
we describe how to construct ASD connection from the ADHM data. Next we discuss briefly
the construction of the Dirac zero modes on the ASD connection.

1.2.1 ADHM data and hyperkähler quotient construction

Denote by V and W hermitean complex vector space with dimensions k and N, respectively
and denote by

X = (V∗ ⊗ V) ⊕ (V∗ ⊗ V) ⊕ (W∗ ⊗ V) ⊕ (V∗ ⊗W). (1.13)

Elements of X are denoted by
X = (B1,B2, I, J), (1.14)

with
B1,B2 : V → V, I : W → V, J : V →W. (1.15)

We can endow the space X by an anti-linear involution

J : (B1,B2, I, J) 7→ (B†2,−B†1, J
†,−I†) (1.16)

Hence, the space X is naturally a flat, hyperkähler space. X has a natural action of U(k) and
U(N) inherited from the action of these groups to V and W. Moreover, this group action
respects the hyperkähler structure. The three moment maps for U(k) action,

µi = (µR,ReµC, ImµC) : X→ u(k)∗ ⊗R3 (1.17)

i.e. the Hamiltonian generating the group action on X with respect to the three hyperkähler
forms, are given by

µR = [B1,B†1] + [B2,B†2] + II† − J†J (1.18)
µC = [B1,B2] + IJ (1.19)

The hyperkähler quotient of X by U(k) action is defined by

X///U(k) ≡ µ−1ι(ζi)/U(k) (1.20)

where ι : R ' u(1)∗ ↪→ u(k)∗ is the canonical inclusion.
Atiyah, Drinfeld, Hitchin and Manin identified the manifold Mn,k = µ

−1ι(0)/U(k) and the
k-instanton moduli of U(N) connection. Let us next see the precise correspondence between
the two.

Before going to the next section, we note that the anti-self-dual equation itself can be
considered as a hyperkähler reduction in a infinite-dimensional setup. Indeed, consider the
space of connections A on a n-dimensional vector bundle on R4. Tangent space of A at a
gauge field configuration Aµ is the space of u(n) valued one-forms. One can introduce to this
space a metric using

(α, β) = −
∫

M
tr(α ∧ ∗β). (1.21)
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space of  
ADHM data

space of  
gauge fields

instanton moduli

hyperkähler reduction!

Figure 1.1: Two hyperkähler reductions

Hyperkähler structure on M makes A a flat, infinite dimensional hyperkähler space. Stan-
dard action of gauge group G = space of maps R4

→ U(N) on A respects the hyperkähler
structure, hence one can consider the hyperkähler quotient

A ///G . (1.22)

The defining equation can be determined by calculating the moment maps. The moment
maps are functions valued in the dual of Lie algebra of G , that is, they determine for each
gauge field configuration u(n) adjoint valued function on R4. The result turns out to be

ωx
∧ F. (1.23)

where ωx is the three self-dual 2-forms which gives the hyperkähler structure on M. These
relations are summarized in figure 1.1.

1.2.2 ADHM data to ASD connection

Construction and anti-self-duality

Given an ADHM data X = (B1,B2, I, J) ∈ X satisfying µR = µC = 0, let us construct an ASD
connection over R4. Consider a linear operator depending on x = (z1, z2) ∈ R4

' C2:

∇
†(x) =

(
I −(B2 − z2) B1 − z1
J† (B1 − z1)† (B2 − z2)†

)
:

W
⊕

S− ⊗ V
→ S+ ⊗ V, (1.24)

where we denoted the two-dimensional representation of positive (negative) chirality spinors
respectively by S+(−). A short calculation reveals that ∇†(x)∇(x) acts on S+ ⊗ V as

∇
†(x)∇(x) = idS+ ⊗ �(x) (1.25)

where

�(x) = (B1 − z1)(B1 − z1)† + (B2 − z2)(B2 − z2)† + II† (1.26)

= (B1 − z1)†(B1 − z1) + (B2 − z2)†(B2 − z2) + J†J. (1.27)
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This means that generically the map ∇†(x) is surjective, hence Ker∇†(x) determines a N
dimenional vector bundle over R4. From the hermitian metric of W ⊕ V ⊕ V, a natural U(N)
connection is defined on the bundle. Its curvature is anti-self-dual. Although this fact can
be derived by direct calculation, we show this by a somewhat longer argument. The method
will be necessary later in this master thesis, in chapter 4 .

Firstly, recall basic facts on holomorphic bundles. The aim is to show that the natural
unitary connection on a holomorphic bundle has its curvature only in (1, 1) component. Let
us start by giving some definitions. A holomorphic bundle is a bundle with holomorphic
transition functions. A hermitian bundle is a holomorphic bundle with a hermitian metric
(·, ·). A connection on a holomorphic bundle is holomorphic if represented as a one-form in
a patch it is purely of type (1, 0). Let us find the condition when a holomorphic connection
is simultaneously unitary. For clarifying this, take a holomorphic basis e1,. . . ,en in a patch,
and write hi ̄ = (ei, e j). Then from the Leibnitz rule

∂h + ∂̄h = hi ̄A + A†hi ̄ (1.28)

Comparing the type of differential forms, the connection is uniquely determined to be A =
h−1∂h. One may say that the connection is ‘holomorphically pure gauge’. From this we can
easily verify that the curvature has no (2, 0) part.

Secondly, let us express Ker∇†(x) by a cohomology of a complex:

V
σ(x)
−→

W
⊕

S− ⊗ V

τ(x)
−→ V (1.29)

where

σ =


J

B1 − z1
B2 − z2

 , τ =
(
I −(B2 − z2) B1 − z1

)
(1.30)

That this forms a complex, that is τ(x)σ(x) = 0, follows from a part of ADHM constraints
µC = 0. Moreover, �(x) appeared in (1.27) is

�(x) = σ(x)†σ(x) = τ(x)τ(x)†. (1.31)

We will need this relation later.
The cohomology Kerτ/Imσ can be identified with Ker∇†(x) using the metric in W⊕V⊕V,

since

∇
†(x) =

(
τ(x)
σ†(x)

)
(1.32)

In this representation, it is obvious that the fiber at x, Kerτ/Imσ varies holomorphically in
x = (z1, z2). We saw that a generic consequence of this holomorphy is that the curvature is of
type (1, 1).

Noticing that R4 can be given a family of complex structures parametrized by S2 and the
above arguments can be done for every one of them, we have shown the curvature of the
bundle Ker∇†(x) is of type (1, 1) in every complex structure. This proves that the curvature
is anti-self-dual.
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Instanton number

We can also check that the instanton number of the connection is k. This can be verified easily
by considering the orthogonal complement of Ker∇†(x). From the property

(a,∇†(x)b) = (∇(x)a, b) (1.33)

for a ∈ V ⊕ V and b ∈ W ⊕ V ⊕ V, the orthogonal complement can be identified as Im∇(x).
It is essentially k copies of two dimensional subbundle in a four dimensional trivial bundle
determined by the map

ι :
(
z1 −z̄2
z2 z̄1

)
(1.34)

since the second Chern class only depends on the asymptotic behavior around infinity of
the bundle considered. Hence the bundle Im∇(x) has k times the second Chern class of the
bundle Imι. The second Chern class of Imι itself can be obtained by studying the transition
function at the equator |x|2 = 1 for the bundle. This is the identity map from |x|2 = 1 ∼ SU(2)
to SU(2). Hence its instanton number is one, more or less by definition. Combining all this,
we see that the bundle Ker∇†(x) has instanton number −k as desired.

Dirac zero modes on the ASD connection

From the Atiyah-Singer index theorem, we expect the existence of at least k zero modes of
fermions coupled to the k-instanton gauge field in the fundamental representation. In fact,
there is a vanishing theorem which guarantees the absence of positive chirality zero modes
in ASD background. Let us first see how this theorem follows[17].

Let ψ be a solution to the equation

D
/
ψ = 0, (1.35)

γ5ψ = ψ. (1.36)

We want to show such a ψ is everywhere zero, once square integrability is imposed. First,
further applying D

/
to the left hand side of (1.35), we obtain

0 = D
/

D
/
ψ = (DµDµ +

1
2

Fµνγµγν)ψ. (1.37)

We have used the Lichnerowicz formula. The second term in the above equation vanishes,
because the positive chirality of ψ means that it is in the ( 1

2 , 0) representation, which in turn
shows that it cannot be multiplied by an ASD curvature on in the (0, 1) representation. Hence
we obtained DµDµψ = 0. Thus we see that

‖Dµφ‖
2 =

∫
d4xDµψDµψ = −

∫
d4xψ̄DµDµψ = 0. (1.38)

This tells us that the ψ is covariantly constant, which is never square integrable unless it is
zero everywhere. Q.E.D.

With this vanishing theorem, we know there must be k fundamental zero modes in the
ASD background. Indeed, we can construct them from the ADHM data. Zero modes are of
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negative chirality from the discussion above. The k solutions are given by composition of
maps

ψ(x) = P(x) ◦ ε ◦ �−1 : V → S− ⊗ Ker∇†(x) (1.39)

where
ε : V ↪→ S−W ⊕ (1 ⊕ 3) ⊗ V ∼ S− ⊗ (W ⊕ S− ⊗ V) (1.40)

is the inclusion onto the direct summand and

P(x) : W ⊕ S− ⊗ V → Ker∇(x)† (1.41)

is the projection onto the kernel.
Take the basis where the chiral Dirac operator D

/
= Dµσµ is given in the complex coordi-

nates by (
−D2 D1
D̄1 D̄2

)
. (1.42)

Decomposed into components, ψ(x) becomes

ψ1̇(x) = P(x)


0

�(x)−1

0

 , ψ2̇(x) = P(x)


0
0

�(x)−1

 . (1.43)

That this gives the solutions to the Dirac equation can be shown with the following ele-
mentarycalculation. For example, let us derive −P(x)∂2P(x)ψ1(x) + P(x)∂1P(x)ψ2(x) = 0. One
useful fact is that since the projector is

P = 1 − σ�−1σ† − τ†�−1τ, (1.44)

and since Pσ = Pτ† = 0 from the definition, the derivative of P under the action of P drastically
simplifies to

P(∂iP) = −(∂iσ)�−1σ†. (1.45)

Secondly, ∂i�−1 can be similarly simplified to

∂i�
−1 = −�−1(∂i(σ†σ))�−1 = −�−1σ†(∂iσ)�−1. (1.46)

Combining these, we obtain

− P∂2(Pψ1) + P(∂1Pψ2) =


0

−(B2 − z2)†�−1

(B1 − z1)†�−1

 −


0
−(B2 − z2)†�−1

(B1 − z1)†�−1

 = 0. (1.47)

The other equation, P(x)∂̄1P(x)ψ1(x) + P(x)∂̄2P(x)ψ2(x) = 0, can be proved by the same way.

1.3 Extension to the non-commutative space

We have seen in the previous section that the hyperkähler quotient of a vector space X at
level zero, µ−1ι(0)/U(k) coincides to the moduli of ASD instantons. Then it is natural to ask
what the quotient at level other than zero describes. An answer has been long known to
mathematicians. It describes the moduli of so-called framed torion-free sheaves onCP2. The
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extra information arising from the change in the level is carried on the line at infinity. A
framed torsion-free sheaf onC2

∼ CP2
\l∞ is essentially the same objects as a ASD connection,

just phrased in fancy mathematical terms.
A more physical answer is obtained by Nekrasov and Schwarz [18]. They realized that

the quotient at non-zero level corresponds to ASD instantons on a non-commutativeR4. We
review their construction in this section. For a more detailed review, we refer the reader to
[19].

1.3.1 Gauge field on Non-commutative R4

Let us first reflect a bit on properties we need to define a quantum field theory. We may take
the path integral formalism as the basic framework. Then, we need the space of functions
to integrate over and the action functional to be integrated. Noticing that the spacetime
manifold itself does not appear in this formulation, we may consider replacing the space
of functions A by some other algebra A ′ and the action functional by a function on the
algebra A ′. A most modest modification seems to be deformation of the product structure
introduced on the space of functions

( f · g)(x) = f (x)g(x) =⇒ ( f ? g)(x) = some other operation. (1.48)

We consider the algebra with such a modified product structure as the function space of
a ‘generalized’ version of a manifold. We call the manifold non-commutative when the ?
product is non-commutative.

For definiteness, let us take R4 as the base space and modify the product structure to

[xi, x j]? ≡ xi ? x j − x j ? xi = iθi j (1.49)

using an real anti-symmetric matrix θ. The underlying space for this ? product is called
the non-commutative R4. The construction may sound very esoteric, but we will see in the
following sections that the non-commutativeR4 naturally arise as a particular kind of closed
string background. Furthermore, from a more pragmatic point of view, we will see that
this non-commutative deformation can effectively be utilized as an ultraviolet cutoff. Let us
pursue the subject for itself for now.

We have seen that the non-commutative space is a ‘space’ such that its function space
is non-commutative. Denote the algebra of functions by A . To consider gauge theory on
the non-commutative space, we need to first find how to represent vector bundles on such
a space. In order to gain insight, we first rephrase the facts on vector bundles on ordinary
commutative space by the language of the algebra A . Then it is possible to generalize the
construction to the non-commutative case.

Bundles in the language of algebras Consider a complex n-dimensional trivial bundle
Cn
×M over M. The space of sections is the direct sum of n copies of the space of functions

on M, that is
Γ(Cn

×M) = A ⊕A · · · ⊕A︸             ︷︷             ︸
n times

= CN
⊗A (1.50)

We have a natural action of algebra A on this space by left multiplication. We call a vector
space with an action of algebra A as an A -module. Hence, the space of sections of trivial
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bundles form an A -module. An A -module with the form A ⊕A · · · ⊕A︸             ︷︷             ︸
n times

is called a free

module. Similarly for any bundle E over M, one can multiply its section by a function on M,
and the result is again a section of E. This means the space of sections of any bundle forms
an A -module. We can see the Whitney sum and product operations of bundles correspond
to the direct sum and the tensor product over A . The sections of a dual bundle forms the
dual of modules, Γ(E∗) = (Γ(E))∗.

Not all of A -modules appear as a space of sections of some bundle, however. It can be
shown that for any complex n-dimensional vector bundles E we can find another bundle F
such that E ⊕ F = CN

×M for some N (for a readable proof, see [20]). We give a brief proof
here. Consider a good covering Ui (i = 1, 2, . . . , r) of M, and using the partition of unity define
functions ψi with properties

ψi ≥ 0 on M, ψi > 0 on Ui,
∑

i

ψi(x)2 = 1 on M. (1.51)

Denote by gi j the transition functions in U(n) between patches Ui and U j. Then the original
bundle E is isomorphic to the subbundle of Cnr

× M cut out by the projector pi j : M →

Hom(Cnr,Cnr)

pi j =

{
ψigi jψ j on Ui ∩U j
0 outside Ui ∩U j

(1.52)

Q.E.D. Translated to a language of algebras, this property can be phrased that for the A -
module L of sections on E one can find another module L′ such that

L ⊕ L′ = CN
⊗A (1.53)

for some N. Such modules are called finite projective. An important theorem of Serre and
Swan is that all projective modules of A arise that way. Indeed, consider a vector space

Ep ≡ L/mpL where mp ≡ { f ∈ A | f (p) = 0} (1.54)

for any such projective module L and a point p in M. This can be shown to be of finite
dimension and forms a vector bundle over M.

Let us proceed to rephrase connections in terms of algebras. The covariant derivative D
constructed from the connection maps sections of E to sections of E⊗TM. Further it satisfies
the Leibnitz rule. These properties can be readily translated in the language of algebras, as a
map from a projective module L

D : L→ Γ(T∗M) ⊗A L (1.55)

which satisfies the condition
D( f a) = (d f )a + f (Da). (1.56)

Bundles on non-commutative spaces After these warm-ups, we can extend these concepts
into the non-commutative case with ease. First we need a non-commutative algebra A of
‘functions of the non-commutative space’. Second we need a projective A module B to be
identified with ‘sections of the cotangent bundle’, and a map ∂µ : A → B satisfying the
Leibnitz rule, Then, a bundle on the non-commutative space is a finite projective A -module
L, and a connection on it is a map D : L→ L ⊗B satisfying the Leibnitz rule.
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1.3.2 ADHM construction

Using the machinery we developed in the previous section, we can now go on to the con-
struction of ASD instantons on non-commutative R4. Firstly, we denote the algebra of the
functions on non-commutative R4 as Aθ and this is generated by elements x1, . . . x4 satis-
fying equation (1.49). We take the underlying set of Aθ as the same space of functions on
commutative R4. Aθ is endowed with a different product structure ?. The sections of the
tangent bundle is taken to be justR4

⊗Aθ, and the derivatives ∂µ are just the ordinary partial
derivatives.

Consider the sequence of maps

V ⊗Aθ
σ
−→ (W ⊕ V ⊕ V) ⊗Aθ

τ
−→ V ⊗Aθ (1.57)

with

σ =


J

B1 − z1
B2 − z2

 , τ =
(
I −(B2 − z2) B1 − z1

)
(1.58)

imitating the commutative version (1.30). For this to be a chain complex, we need the
condition

[B1,B2] + IJ = [z1, z2] (1.59)

This is just µC = ζC, where we denoted ζC = [z1, z2]. Here it is important that the com-
mutator of coordinates, z1 and z2, is now non-vanishing and gives the magnitude of non-
commutativity. Since the module Kerτ/Imσ is projective, it determines a bundle over non-
commutative R4. The construction of the induced connection over the quotient bundle,
which is reviewed in section 1.2.2, can essentially be carried out, hence we see the curvature
is of type (1, 1). This construction goes word-to-word unchanged for any of the three complex
structures one can put onR4 when the ADHM data further satisfy µR = θ11̄−θ22̄. This shows
that the curvature is anti-self-dual.

1.4 Stringy interpretation

We cannot end this chapter without mentioning the beautiful findings of string theorists.
They showed that the ADHM construction in its commutative and non-commutative frame-
work can be understood physically using branes in string theory. The appearance of the
linear ADHM data was first noted by Witten in [21] where he studied the world sheet theory
on the heterotic SO(32) string just before the advent of D-brane revolution. Later, Douglas
and Moore[22] found that the ADHM construction can be reproduced in a system with Dp-
brane and D(p+ 4)-brane. They further showed that the Kronheimer-Nakajima construction
of instantons on the ALE space can be reproduced as well. In view of the S-duality be-
tween the type I string theory and the SO(32) heterotic string, Witten’s original construction
can be thought of as a D1 brane probing the instantons of gauge fields on the ambient 16
D9-branes[23]. Hence we restrict the attention to the D-brane construction.

1.4.1 D-brane construction

Consider a stack of N D7 branes extending in the 0 to 7 direction and another stack of k D3
branes extending in the 0 to 3 direction. The setup is summarized by the table 1.1. Open
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0 1 2 3 4 5 6 7 8 9
D3 − − − − • • • • • •

D7 − − − − − − − − • •

Table 1.1: D3-D7 system. Dot/Dash denotes the object is localized/extended in that particular
direction.

strings which have ends on D7-D7, D7-D3, D3-D3 branes give rise to various massless fields.
The spectrum can be obtained by quantizing the open strings. The result is summarized in
the following data:

Let us view the system from the four dimensional point of view on the D3-branes. When
the extra direction 4, 5, 6, 7 is not compactified, the D7 branes are much heavier or in other
words the coupling constant becomes very small. Thus we can neglect their effect and restrict
our attention to the fields coming from D3-D3 and D3-D7 strings. The dynamics of their
zero-modes is described by the following N = 2 supersymmetric Lagrangian

L =

∫
d4θ(Φ†Φ + B†1eVB1 + B†2e−VB2)

+

∫
d2θtr(IΦJ) +

∫
d2θtr(B1[Φ,B2]) +

∫
d2θtrWαWα + c.c. (1.60)

From the four dimensional viewpoint, V and Φ forms a N = 2 vector multiplet, B1 and
B2 form an adjoint hypermultiplet, and I and J form N hypermultiplet in the fundamental
representation of U(k), with global symmetry U(N). From the string theory point of view, on
the other hand, the gauge fields in V are U(k) gauge fields propagating on the stack of k D3
branes, Φ represent the fluctuation of the D3 branes in the 8,9 directions. B1 and B2 represent
the fluctuation in the 4,5,6,7 directions, i.e. transverse to the D7 branes, and finally I and J
comes from open strings stretched between D3 and D7 branes.

The scalar potential can be straightforwardly computable and the result is

V = |[Φ,B1]|2 + |[Φ,B2]|2 + |IΦ|2 + |ΦJ|2

+
∣∣∣[Φ,Φ†] + [B1,B†1] + [B2,B†2] + II† − J†J

∣∣∣2 + |[B1,B2] + IJ|2 (1.61)

It has, as usual for a supersymmetric theory, manifolds of zero energy configuration, which
is called the moduli space of the theory. The moduli can be divided into two. One is the
Coulomb branch where the hypermultiplets B1, B2, I, J is zero. The other is the Higgs
branch where the scalar in the vector multiplet, Φ, is zero and the vacuum expectation value
of hypermultiplets are generically nonzero. Let us concentrate on the study of the Higgs
branch. The defining equation is

[B1,B†1] + [B2,B†2] + II† − J†J = 0 (1.62)
[B1,B2] + IJ = 0. (1.63)

The U(k) local gauge symmetry in the system means that the true moduli is obtained by
dividing the space = 0 by U(k) action. Surprisingly, this is exactly the same procedure to
obtain the instanton moduli MN,k from the linear ADHM data. The natural question is where
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we should find the anti-self-dual instanton. One thing to note is that φ = 0 in the Higgs
branch. This corresponds to the situation where the D3 branes are stuck just on the D7
branes. Let us see in the next subsection how this observation links to the identification of a
D3 brane and an instanton inside the D7 branes.

1.4.2 Small instanton singularity

One annoying but important feature of the instantons is the presence of the small instanton
singularity. The occurrence of the singularity is most easily seen in the explicit one-instanton
solution of SU(2) gauge theory, which is

Fµν =
2η−µνρ2

|xµ|2 + ρ2 (1.64)

The parameter ρ is undetermined and in the ρ → 0 limit, the gauge field configuration
is almost everywhere pure gauge and the only structure resides very near the center of
the instanton x0. Hence the moduli space has a component which look like R+ and this
becomes non-compact. This reflects the fact that the very theory we are considering, the
Yang-Mills theory or the ASD equation has conformal invariance, hence the solution can be
made arbitrarily small by an application of scale transformation. We can no longer appeal
to conformal symmetry for multi-instantons or instantons on generic four-manifolds but it
is known that one out of k in a k-instanton configuration can be made shrunken to zero
size. The limit configuration is a point-like instanton superimposed on a (k − 1)-instanton
configuration[24].

Now that we have a D-brane interpretation of the ADHM construction, we have a physical
interpretation of these small instanton singularity. Indeed, the D3-D7 system considered
above has Coulomb branch in addition to MN,k. Moreover, the small instanton singularity is
exactly the point where the Coulomb branch touches the Higgs branch. Thus, we can pass
continuously from the Higgs branch to the Coulomb branch. As the Coulomb branch with
φi , 0 corresponds to D3 branes not exactly on the D7 branes, this transition is a transition
from the ASD instanton of the gauge field on D7 branes to a D3 brane outside the D7 branes.
This chain of argument shows that a D3 brane and an instanton in a stack of D7 branes is one
and the same thing. This can be further checked against the coupling to the Ramond-Ramond
fields.

One of the fundamental properties of D-branes is that they are the sources for the anti-
symmetric tensor fields of the type II supergravities. A Dp-brane is the source for (p+1)-form
field, i.e. it couples through the term ∫

C(p+1). (1.65)

Consideration of the consistency under the action of T-duality on D-branes and RR fields,
the coupling above must be extended to include∫

eF
∑

C =
∫

C(p+1) +

∫
C(p−1)

∧ F +
∫

C(p−3)
∧ F ∧ F + · · · (1.66)

From these couplings to the RR fields, we can observe that a D7 brane couples to the four-
form field C(4) when F ∧ F is non-zero. As the F ∧ F measures the instanton charge and
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0 1 2 3 4 5 6 7 8 9
D3 − − − − • • • • • •

D7 − − − − − − − − • •

D(−1) • • • • • • • • • •

Table 1.2: D(−1)-D3-D7 system. Dot/Dash denotes the object is localized/extended in that
particular direction.

C(4) is a gauge potential primarily couples to D3-branes, we can say that an instanton in D7
brane ‘behaves like’ a D3-brane. When the instanton shrinks to zero size and F ∧ F has a
delta-function form, the locus M of the instanton core in the D7 brane couples to C(4) through∫

M
C(4), (1.67)

just as a D3-brane would couple. All this is consistent and rich.

1.4.3 Seeing the gauge field by another brane

We saw in the last two sections that the ADHM data naturally arise from the D3-D7 sys-
tem and further saw that this leads to the identification of a pointlike instanton in the D7
worldvolume and a D3 brane. In fact, we can reproduce in a string theory language the
construction of the gauge bundle in section 1.2.2. Let us very briefly see how this is done[23].

To measure the gauge field on the D7 branes, we need to insert a probe. We need a very
heavy probe. Fundamental strings are not suitable, since the very gauge field we want to
measure is one of the oscillation modes of the fundamental strings. Another D-brane suits
very well to this end.

Consider a D(−1)-brane in the D3-D7 system, with k D3-branes and N D7-branes. The
quantization of open strings result in the following set of states

from D(−1)-D(−1): two complex bosons z1, z2
from D3-D(−1): 2k complex fermions χ1, χ2
from D7-D(−1): N complex fermions λ.

in addition to the states already appeared in (1.60). Calculation of disk three point functions
tells us that there are couplings of the form

(χ̄1, χ̄2)
(
B1 − z1 B2 − z2 I
B2 − z2 B1 − z1 J

) 
χ1
χ2
λ

 . (1.68)

For example, the term χ̄Iλ comes from a disk with insertions of (−13), (37), (7−1) vertices.
Important point to notice is that the mass term for the fermions is precisely the matrix ∇†(x).
Hence we see the N massless fermions are the sections of the bundle Ker∇†(x), that is, they
couple to the ASD gauge field.

There is another way to see the ASD gauge field in the D-brane setup[25]. The authors
showed that, just as boundary states in closed string Hilbert space describe the back reaction
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of D-branes to the closed string background, a D-brane inside another brane can be repre-
sented by a ‘boundary state’ |B〉 in open string Hilbert space, and that the gauge field can be
reconstructed from one-point functions

〈V|B〉 + 〈V|(|B〉 ∗ |B〉) + 〈V|(|B〉 ∗ |B〉 ∗ |B〉) + · · · (1.69)

This approach is interesting in the light of recent works on closed string boundary state and
the ∗ product structure between them[26, 27]. It is the open string version of the higher order
backreaction of a D-brane. For more details, we refer the reader to the original article.

1.4.4 B-field, non-commutativity and modified ADHM constraint

We analyzed anti-self-dual connections and the ADHM construction on non-commutativeR4.
Although non-commutative spacetimes may seem somewhat mysterious, we now know that
they arise naturally within string theory. Originally the appearance of the non-commutative
spacetime is noted in [28] in a BFSS/IKKT matrix model setup. Later the appearance was
derived using T-duality[29] or using directly the open string calculation[30]. Let us first
briefly review the argument in [30].

Consider a string moving in a B-field, with action

S =
1

4πα′

∫
Σ

(
gi j∂aXi∂aX j

− 2πiα′Bi jε
ab∂aXi∂bX j

)
. (1.70)

One of the consistent conditions one can impose on the world sheet boundary is

gi j∂nXi + 2πiα′Bi j∂tX j = 0 at the boundary. (1.71)

Let us take the world sheet as the upper half planeH. The propagator can be calculated with
the method of images and the result is

〈Xi(τ)X j(τ′)〉 = −α′Gi j log(τ − τ′)2 +
i
2
θi jsign(τ − τ′) (1.72)

where

Gi j = (g + 2πα′B)−1
|sym. part, θi j = 2πα′(g + 2πα′B)−1

|anti-sym. part. (1.73)

Hence, scattering amplitudes of open strings in the presence of B-field becomes〈
eip(1)

i Xi(τ1)
· · · eip(k)

i Xi(τk)
〉

G,θ
= e−

i
4 p(n)

i pm
j θ

i jsign(τn−τm)
〈
eip(1)

i Xi(τ1)
· · · eip(k)

i Xi(τk)
〉

G,θ=0
. (1.74)

A Fourier expansion tells us that the factor

e−
i
4 p(n)

i pm
j θ

i jsign(τn−τm) (1.75)

is exactly what appears in the vertex of the Feynman diagram when one changes the action
from ∫

ddxφ1(x)φ2(x) · · ·φk(x) to
∫

ddxφ1(x) ? φ2(x) ? · · · ? φk(x). (1.76)
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0 1 2 3 4 5 6 7 8 9
D3 − − − − • • • • • •

D7 − − − − − − − − • •

B • • • • − − − − • •

Table 1.3: D3-D7 system with B-field. Dot/Dash denotes the object is localized/extended in
that particular direction. For B-field, Dash denotes that the component along that direction
is non-zero.

These calculation reveals that the theory on the D-brane can be thought of as living in a
non-commutative plane with [xi, x j]? = iθi j.

We saw that there is non-commutativity in the presence of B-field. Hence, the ASD
equation in the presence of B-field should be governed by the modified ADHM equation
(1.59). Another stringy miracle is that we can see directly in a D-brane setup that B-field
modifies the ADHM equation just as expected[22]. In order to see this, recall the Lagrangian
(1.60) of the D3-D7 system. Introduce B-field in the 4,5,6,7 directions, that is transverse to
the D3-branes and along the D7-branes. We can check by a disk calculation that there is a
coupling in addition to the equation (1.60) which gives

LB =

∫
d4θ(b11̄ − b22̄)V +

∫
d2θb12Φ + c.c. (1.77)

where we denoted the vacuum expectation value of the B-field by b This is the Fayet–
Iliopoulos term in N = 2 supersymmetry, hence it modifies the scalar potential to

V = · · · +
∣∣∣[Φ,Φ†] + [B1,B†1] + [B2,B†2] + II† − J†J − (b11̄ − b22̄)

∣∣∣2 + |[B1,B2] + IJ − b12|
2 (1.78)

Therefore, the equations describing the Higgs branch change into µC = B12 and µR = b11̄−b22̄.
This is exactly the equation defining the moduli space of non-commutative instantons.
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Chapter 2

The method of localization

2.1 Supersymmetric quantum mechanics and the Witten index

Let us consider a quantum mechanical system with discrete spectrum, with the following
properties:

1. there is a conserved quantity (−)F whose eigenvalues are ±1,

2. there are conserved operators Qi anticommuting with each other and anticommuting
with (−)F, and

3. the Hamiltonian is expressible as H =
∑

i QiQ†i .

We call such a system a supersymmetric quantum mechanics. We sometimes abbreviate it
as a SUSY QM. Consider the following quantity

Tr(−)Fe−βH. (2.1)

Each eigenspace of H forms a representation space for Qi. Even dimensional representations
are non-trivial. Tr(−)F is always zero when traced over such an representation, because a state
|ψ〉with (−)F = +1 is always paired with another state Qi|ψ〉 of (−)F = −1 and thus they cancel
out. An unpaired state should necessarily form a trivial one-dimensional representation.
Such state contributes to the Tr(−)Fe−βH. Since the eigenvalue of H is zero on a unpaired
state because of the condition (2), we see that the quantity (2.1) is independent of β. This is
called the Witten index of the system, which was first introduced in [31]. The relation with
mathematics of index theorems is further presented in [32]. It is often denoted by Ind. From
the independence on β, the index can be calculated both in the β → 0 limit and the β → ∞
limit. The equality of two limits often leads to non-trivial mathematical result.

The above argument also shows that the Witten index has a certain kind of stability, that
is, it does not change under small perturbations preserving supersymmetry. It is because,
since the states should always be paired when the energy of them changes from zero to
non-zero or non-zero to zero, they do not contribute to the Witten index.

These indices are sometimes useful also for Hamiltonians with continuum spectrum. For
such cases, although the range of the fermionic and the bosonic spectra agree, the density of
states are not necessarily equal to each other. Hence the index is no longer independent of β.
It is known that much can be learned in that case in spite of the difficulty. Moreover, although
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the index is stable against small perturbation, it changes its value when a zero energy state
comes in or goes out of the Hilbert space when the Hamiltonian is perturbed drastically.

We can also consider the quantity

Tr(−)Fe−βH g. (2.2)

for a bosonic conserved operator g. This is no longer β-independent for general g and thus
it is difficult to study. However, if g commutes with all of the supercharges Qi, each of
the irreducible component of the representation of Qi becomes the eigenspace of g. Hence,
non-zero contribution for (2.2) comes only from trivial, one-dimensional representation of
Qi, that is, zero energy states. This means that the quantity (2.2) is independent of β. The
number is called the equivariant index of the system and is denoted by Indg. This is generally
a complex number, instead of an integer as the ordinary index is. The equivariant index also
shares the stability inherent in the ordinary Witten index.

Such a conserved quantity g will form a group G. For a conjugate element in g, h−1gh ∈ G
it is easy to see the equivariant index Indg = Indh−1 gh. Hence the equivariant index gives a
character for the group G. It is the character of the representation of G formed by the zero
energy states. Thus, the equivariant index is sometimes denoted by IndG ∈ R(G), where R(G)
is the space of representations of G. For Abelian G, IndG is considered to take the value in
the dual group G∗.

One of the good properties of equivariant indices is that, they sometimes make possible
the information of the system even when the naı̈ve index gives infinity or zero. For a
symmetry group G and its subgroup H, the relation

IndH = ResG
HIndG (2.3)

holds. The calculation of equivariant indices using localization often simplifies for larger
symmetry group G. Hence, it is technically worth while to consider the equivariant index
for some larger group even when one wants to know the index for a smaller group.

Before moving to the next section and seeing various examples, we want to make a
comment on the case when g do not commute with all of the supercharges, but commutes
with some of them, say Q. In that case, the quantity Tr(−)Fe−βH becomes β-dependent.
The argument above shows, however, that the trace only receives contributions from states
annihilated by Q. This makes the calculation tremendously easier and endows the quantity
some stability.

2.2 SUSY QM and the Atiyah-Singer index theorem

Let us move on to the examples. Consider a quantum mechanical particle moving in a spin
manifold M. When only a bosonic degree of freedom is present, the Hilbert space is that
of square integrable functions on M, C2(M). It can be made supersymmetric. We take the
Hilbert space to be the space of square integrable sections Γ(S) of the spin bundle S. The
fermion number is defined by the action of γ5 = γ1γ2

· · ·γd, the Hamiltonian is the square of
the Dirac operator, and the supercharge is the Dirac operator itself. This system satisfies the
criteria listed in section 2.1, hence we can consider the index of the system

Tr(−)Fe−βH (2.4)
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and we know this is β independent. In the β→∞ limit, this calculates

TrDirac zero modesγ
5, (2.5)

i.e. the celebrated Dirac index of the manifold. In physical terms, this number determines
the gravitational chiral anomaly of the free fermion system on M.

Let us now compute the index in the opposite limit, β→ 0[33]. It is useful to introduce a
Lagrangian description of the supersymmetric quantum mechanics and to do a path-integral.
The Lagrangian is

L =
1
2

gi j∂txi∂tx j +
1
2

gi jψ
i(δi

j∂t + Γ
i
jk∂tx j)ψk (2.6)

where ψi are real Grassmann variables. We can check this Lagrangian is invariant under the
supertransformation

δxi = εφi, δψi = ε∂txi. (2.7)

Canonical quantization of the system reveals that the Hilbert space is the space of sections of
the spin bundle. This shows that the index we want to calculate is

Tr(−)Fe−βH =

∫
periodic

[dx][dψ] exp(−
∫ β

0
dtL ). (2.8)

The periodic boundary condition for the fermion corresponds to the insertion of (−)F under
the trace. In the small β limit, x and ψ can not move very far, hence the configurations
with x = x0 and ψ = ψ0 constant dominate the integral. We can approximate the path
integral by the Gaussian integration of fluctuations followed by the integration of zero modes.
Corrections from higher interaction terms drop out in the limit β → 0. The Lagrangian for
quadratic fluctuation around x0,ψ0 is, after taking Riemann normal coordinate system around
x0,

L (2) =
1
2

gi j(x0)∂tξ
i∂tξ

j
−

1
4

Ri jklξ
i∂tξ

jψk
0ψ

l
0 +

i
2
ηa∂tη

a (2.9)

where we denoted the fluctuations by ξi = xi
− xi

0 and ηi = ψi
− ψi

0. The Lagrangian is that
of a particle moving inside the magnetic field Ri jklψ

kψl/2. This can be diagonalized with
eigenvalues ±θ1, . . . ,±θd/2. Thus, the partition function is

Tr(−)Fe−βH = N

∫
ddx0ddψ0

d/2∏
α=1

det
(
∂t θα
−θα ∂t,

)−1/2

(2.10)

where N is an unknown normalization. The determinant can be calculated either by canon-
ical quantization of a particle under the influence of constant magnetic field, or just using
the infinite product representation of the sin function:(

∂t θ
−θ ∂t,

)
=

∏
n,0

(θ2
− (2πn)2) =

(sinθ/2
θ/2

)2
. (2.11)

Here we excluded the constant modes n = 0 because they are accounted by the zero mode
integral

∫
dx0dψ0.
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Considering the Grassmann integration as the integration of differential forms over the
manifold M, we can present the result in a conventional way. The result is,

the index =
∫

M

∏
α

xα/2
sinh(xα/2)

. (2.12)

where xα is the ‘eigenvalues’ of the curvature two-form Ω = Ri jkldxkdxl/(4π). The normal-
ization constant which we will determine in the next section is incorporated in advance. We
need to make some comments on the quotation marks around ‘eigenvalue’. Although an
antisymmetric tensor can be transformed into canonical form, Ω, being a two-form valued
in anti-symmetric tensor, cannot be in general made to the canonical form. However, by first
expanding the integrand into the polynomials in x, we see that the outcome is a symmetric
polynomial, thus they can be expressed as the traces of powers of Ω. The integrand should
be taken as such. The differential form in the integrand is often denoted by Â(TM), and called
the A-roof genus of the tangent bundle.

Things become more interesting when we couple the point particle system to external
gauge field. Mathematically this means the tensoring of the spin bundle S by the vector
bundle E determined by the gauge field. The calculation of the index in the β → 0 limit is
modified to include the effects of the gauge field strength. Consider the following addition
to the Lagrangian (2.6)

Lc = ic†A(δB
A∂t + iAB

Ai∂txi)cB +
1
2
ψiψ jFi j

B
Ac†AcB, (2.13)

where A,B = 1, . . . ,dimE and Ai is the connection on E. Total Lagrangian L + Lc is still
supersymmetric under the transformation

δxi = εφi, δψi = ε∂txi, δcA = 0. (2.14)

The Hilbert space of the system is obtained by the quantization of the fermions cA, and it
leads to

∧
∗ E. Hence to calculate the number of zero-modes of S ⊗ E, we need to extract the

contribution of E to the partition function. The quadratic part of the c fermion is

c†A∂tcA +
1
2
ψi

0ψ
j
0Fi j

B
Ac†AcB. (2.15)

Hence its Hamiltonian is 1
2ψ

i
0ψ

j
0Fi jc†AcB, and can be exponentiated easily. Its trace on E, rather

than on all of
∧
∗ E is

ch(E) ≡ TreF/2π (2.16)

where F = Fi jdxidx j/2. ch(E) is called the Chern character of the bundle. Incorporating this
we obtain the final result

Trzero modesγ
5 =

∫
M

Â(TM) ∧ ch(E). (2.17)

2.3 SUSY QM and the Euler number

As a next example, consider a quantum mechanical particle, moving in a manifold M. Here
we consider a supersymmetrized system with twice as many supercharges as that treated
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in the last section. Its Hilbert space is the space Ω(M) of all square integrable sections
of differential forms on M. For spin manifold M, Ω(M) is the square of the spin bundle
Ω(M) ∼ Γ(S ⊗ S). The Hamiltonian of the system is the Laplace-Beltrami operator (d + ∗d∗)2,
and the fermion number is given by (−)F = (−)degree of differential forms. The operator d + ∗d∗
sends boson to fermions and commutes with the Hamiltonian, hence can be regarded as the
supercharge. The index of the system,

Tr(−)Fe−βH, (2.18)

is equal to
Trzero energy states(−)F. (2.19)

This is none other than the Euler number χ(M) of the manifold M, because

Hp(M) ' Ker(d + ∗d∗)|Ωp(M) (2.20)

from the Hodge theorem.
The calculation in the β→ 0 limit can be done using the result obtained in the last section.

Indeed, viewing
∧
∗ TM as S ⊗ S and using the fact that the ‘eigenvalues’ of the curvature of

the spin bundle is given by

±
x1

2
±

x2

2
· · · ±

xd/2

2
, (2.21)

the index is ∫
M

Â(TM) ∧ ch(S) =
∫

M

∏
α

xα/2
sinh xα/2

∏
α

sinh
xα
2

(2.22)

from the Atiyah-Singer index theorem. This can be further simplified to

=

∫
M

∏
α

xα =
∫

M
Pfaff

Ri j

2π
=

∫
M

e(TM) (2.23)

Moreover, this can be utilized in determining the normalization appearing in equation (2.12)
for example by taking M = S2n, because we know the index should equal to its Euler number,
2.

2.4 SUSY QM and the Lefschetz fixed point theorem

Let us next consider the case where a supersymmetric particle is moving on a manifold
M with a vector bundle L which admits a U(1) action g = eiJ. The Hilbert space of the
supersymmetric quantum mechanical system is the same as in the previous section, and we
consider the equivariant index

Tr(−)Fe−βH g. (2.24)

By assumption the Dirac operator S ⊗ L → S ⊗ L commutes with the action of g, hence the
quantity (2.24) is independent of β. Taking the limit β→∞, we see that they are equal to

Trzero modes(−)Fg, (2.25)

i.e. it is the character of the U(1) action of the represention which the harmonic spinors form.
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Calculating the equivariant index in the limit β→ 0 reveals that it can be given as a sum of
the contributions from each of the fixed points of g action. Indeed, when β→ 0 and passing
to the path-integral representation, it can be represented by∫

[dl] exp(−
∫ β

0
dtL ) (2.26)

where [dl] is functional measure on the space of paths

dl : [0, β]→M with l(0) = gl(β). (2.27)

It is easy to see that paths connecting l(0) , l(β) cost too much action and thus do not
contribute to the index.

Let us compute the contribution from each of the fixed point. Decompose the action of g
to the tangent space and the fiber of E at the fixed point as

iJ
∣∣∣
TMp
=


0 θ1
−θ1 0

0 θ2
−θ2 0

. . .


and iJ

∣∣∣
Ep
=


iw1

iw2
iw3

. . .

 (2.28)

The quantum mechanical system around the fixed point is that of free supersymmetric point
particle. First consider the case where E is a trivial one dimensional bundle. In this case, the
system breaks up into d/2 quantum mechanical systems each coming from the eigenspace of
J
∣∣∣
TMp

. The contribution from one plane is

Tr(−)Fe−βHeiJ, (2.29)

where H = p2
x + p2

y with one massless complex fermion {ψ,ψ†} = 1. To tame the continuous
spectrum, we artificially give the system mass m. Then the trace is calculable and gives

eβm eβm/2−iθ/2
− e−βm/2+iθ/2

(1 − e−βm−iθ)(1 − e−βm+iθ)
m→0
−→

1
eiθ/2 − e−iθ/2 . (2.30)

Collecting all factors, we finally obtain

Indg =
∑
f.p.

∑
eiwi

d/2∏
α=1

1
eiθα/2 − e−iθα/2

. (2.31)

This supersymmetric derivation of the fixed point theorem was long known to experts.
Some of the earliest references are [34, 35] in which the authors discuss the fermion quantum
number after the dimensional reduction on a manifold which admits a symmetry action.

In order to illustrate the power of the fixed point formula, let us show the Weyl character
formula by constructing a representation as a cohomology. Consider a compact semisimple
group G and its maximal torus T. The complexified tangent space of a point on G/T is
spanned by the roots of G. We can make G/T into a Kähler manifold by choosing the
positive roots to span the holomorphic tangent space and the negative roots to span its
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conjugate. Take a highest weight λ and consider the bundle Eλ = G/T ⊗T Vλ, where Vλ is
one dimensional representation of T with character λ. There is an isomorphism H(0,0)(E) = R
between the lowest Dolbeault cohomology and R itself. To see this, first view sections of E
as T-equivariant maps from G to Vλ. Using the Peter-Weyl decomposition of functions on G

L 2(G) ∼
∑

irrep R

R ⊗ R∗ (2.32)

under left and right G×G action, holomorphic sections of E are seen to comprise the subspace
of L 2(G)

ψλ ⊗ R∗ ⊂
∑

R ⊗ R∗ ∼ L 2(G) (2.33)

where ψλ is highest weight vector of weight λ. Furthermore, as can be checked by direct
calculation, the bundle E is positive. Thus, from the Kodaira vanishing theorem, higher
Dolbeault cohomologies of E all vanish. Hence the character can be identified with the
equivariant index

χR(g) =
∑

i

(−)iTrH(0,i)(E)g = Tr(−)Fe−βH g. (2.34)

Here the supersymmetric quantum mechanics is the one which is realized on a Kähler
manifold and has Ω(∗,∗)(TM) as its Hilbert space. The supercharges are ∂ and ∂̄. The fermion
number we are considering is the one for ∂̄. Nevertheless, the fixed point theorem can be
similarly proved for this case and results in

Indg =
∑
f.p.

∑
eiwi

d/2∏
α=1

1
1 − e−iθα

, (2.35)

where d/2 counts the complex dimension of the Kähler manifold.
Let us apply the formula to the present case. The fact that a point p ∈ G/T is fixed by the

left T action translates into p ∈ W where W is the Weyl group of G. The action of g on TM|p
and E|p is immediately calculable, as this is the definition of weights of the representation!
The result is

χR(eiJ) =
∑
p∈W

sign(p)ei〈λ,pJ〉∏
r∈R+(1 − e−i〈r,J〉)

=
∑
p∈W

sign(p)ei〈λ+ρ,pJ〉∏
r∈R+(ei〈r,J〉/2 − e−i〈r,J〉/2)

(2.36)

where R+ is the set of positive roots and ρ =
∑

r∈R+ r/2. This is the character formula of Weyl.
Let us see explicitly the case G = SU(2). Here G/T = CP1 and the bundle En is what

is usually denoted as O(n). We know well that O(n − 1) has n holomorphic sections. They
transform as n under the action of SU(2). The fixed point of left U(1) action is the north and
south poles of CP2, and the Weyl character formula states

einθ + ei(n−1)θ + · · · + e−inθ =
ei(n+1/2)θ

eiθ/2 − e−iθ/2︸         ︷︷         ︸
from the north pole

−
e−i(n+1/2)θ

eiθ/2 − e−iθ/2︸         ︷︷         ︸
from the south pole

. (2.37)
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2.5 Duistermaat-Heckmann theorem

Let us consider again IndeiβJ . This time we take the rotation angle βJ proportional to the time
β. The result is, by the fixed point theorem,

Tr(−)Fe−βHeiβJ =
∑
f.p.

d/2∏
α=1

1
eiβθα/2 − e−iβθα/2

. (2.38)

Hence, we take a non-trivial β→ 0 limit by multiplying the index by (iβ)d/2. The limit with J
fixed gives

(iβ)d/2IndeiβJ =
∑
f.p.

d/2∏
α

1
θα
. (2.39)

In this section we show that this can be cast into the integrated form when M is symplectic
and the action of g respects the symplectic structure:∫

eω+H =
∑
f.p.

d/2∏
α

1
θα
. (2.40)

where ω is the symplectic form and H is the Hamiltonian generating the vector field V for
a. This is the celebrated theorem of Duistermaat and Heckmann. We will make use of this
theorem afterwards in section 4.5.

Introduce first the equivariant differential D acting on differential forms on M:

Dx = dx − ιVx. (2.41)

This operation is an anti-derivation with respect to the wedge product. A basic property is
that D2x = LVx, i.e. it determines a complex on a V-invariant forms. A V-invariant form
α with Dα = 0 is called equivariantly closed. A form of the form Dα with α V-invariant is
called equivariantly exact.

Note that the property that H generates V, i.e. ιVω = dH translates into the condition
D(ω +H) = 0, i.e. ω +H is equivariantly closed. Another basic property is that∫

αDβ = −
∫

Dβα. (2.42)

This means, among other things, that inclusion of equivariantly exact terms into the expo-
nential in (2.40) does not alter the value:∫

eω+H+tDα =

∫
eω+H, (2.43)

because the derivative with respect to t of the right hand side becomes∫
(Dα)eω+H+tDα = −

∫
αDeω+H+tDα = 0. (2.44)

Let us now construct a V-invariant one form α. First, introduce on M a V-invariant metric
g. (This is always possible if the group acting on it is compact. Just taking arbitrary metric
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and averaging with the group action do the job.) Then, define α by α(W) = g(V,W). This is
clearly V-invariant. The equivariant differential of this is

Dα = −g(V,V) + dα. (2.45)

Using this Dα in the equality (2.43) and taking the limit t→∞, the integration concentrates
with the fixed point of the g action. The contribution of each fixed point is easily calculated
by Gaussian integration and gives the desired expression (2.40). We recommend the reader
the review [36] for more about the equivariant cohomology and related topics in physics.
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Chapter 3

Seiberg-Witten theory

We review in this section the celebrated exact solution of N = 2 super Yang-Mills theory
initiated by Seiberg and Witten[8, 37]. It uses holomorphy inherent in supersymmetric theory
and conjectural strong coupling duality, hence the argument involves some amount of hand-
waving. However, the emerged view is highly consistent with each other and enabled us to
reproduce various old conjectures on the strong coupling dynamics of field theory.

3.1 Generic structure of N = 2 supersymmetric gauge theories

3.1.1 Prepotentials

Multiplets in the N = 2 supersymmetry in four dimensions are of two types: one is the
vector multiplet consisting of

a vector Aµ, two Weyl fermion λ1, λ2, and a complex scalar φ. (3.1)

In the language of N = 1 supersymmetry, they comprise

a vector multiplet V = (λ2,Vµ) (3.2)
and a chiral multiplet Φ = (φ, λ1). (3.3)

Another is the hypermultiplet which contains

a Weyl fermion ψ with representation R (3.4)
two complex scalars q, q̃ with representation R ⊕ R∗ (3.5)

a Weyl fermion ψ̃ with representation R∗. (3.6)

They are formed from

a chiral multiplet in representation R Q = (q, ψ) (3.7)

and a chiral multiplet in representation R∗ Q̃ = (q̃, ψ̃). (3.8)

Consider a system with n U(1) vector multiplets Vi and n neutral chiral multiplets ai. The
generic Lagrangian which respects N = 1 supersymmetry can be written as∫

d4θK(ai, a†i ) +
∫

d4θκiVi +

∫
d2θ(

τi j

16πi
(a)WiW j +U(ai)) + c.c. (3.9)

31
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Here

τi j =

(
θ

2π
+ i

4π
g2

)
i j

(3.10)

is the complexified coupling constant. Expanding into components, the Lagrangian is

L = −|Dµai|
2
− gi ̄iψ̄ j̄σµDµψ

i
−

1
2

∣∣∣∣∣∣∂U
∂ak
+
∂τi j

∂ak
λαi λ jα

∣∣∣∣∣∣2 + ψiψ j
∂2U
∂ai∂a j

+
τi j

16πi

(
F+i ∧ F+j + λ̄iσ

µDµλ j

)
+

( τi j

16πi

)−1
(
κi +

∂τik

∂al
(λkψl)

) (
κ j +

∂τ jm

∂an
(λmψn)

)
+

1
2

(λiλ j)(ψkψl)
∂τi j

∂ak∂al
+ (λαi F j,αβψ

β
k)
∂τi j

∂ak
+ c.c. (3.11)

where we abbreviated ψαψα by (ψψ), etc.
Let us determine the condition when this Lagrangian has another supersymmetry. The

gauginos ψ and λ should appear symmetrically in the Lagrangian in order to respect the
extended supersymmetry. This reduces U to be at most linear in ai, that is U = ζiai. Next,

τi j − τ†i j

8πi
= gi ̄ =

∂2K
∂ai∂a†j

(3.12)

is required for the kinetic terms of ψ and λ to be equal. Regarding this as a differential
equation for K, this can be solved if

K(ai, a†j ) =
ai

Da†i − ai
D
†ai

8πi
(3.13)

for some holomorphic functions ai
D of ai, and

τi j =
∂ai

D

∂ai
=
∂a j

D

∂ai
. (3.14)

This is integrable thanks to the symmetry of τi j, hence we have

ai
D =

∂F
∂ai

(3.15)

for some holomorphic function of ai. With such K and τi j, the parameters Reζ, Imζ and κ
transform as a triplet under the SU(2) R-symmetry. Let us recapitulate the result obtained so
far. N = 2 Lagrangian is controlled by a single holomorphic function F called prepotential,
and

L =
1

4π
Im

(∫
d4θ

∂F
∂ai

a†i +
∫

d2θ
1
2
∂F
∂ai∂a j

WiW j

)
(3.16)

in the absence of Fayet–Iliopoulos terms. ai are called the special coordinates.
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3.1.2 BPS multiplets and central charges

Let us recollect here another important implication that extended supersymmetry implies
on the structure of the theory. The extended supersymmetry algebra satisfied by the super-
charges is

{Qi
α, (Q

j
β)
†
} = Pαβ̇δ

i j, (3.17)

{Qi
α,Q

j
β} = εαβZ

i j (3.18)

where Zi j is a complex antisymmetric matrix, i = 1, . . . ,N. Notice that the {Qi
α,Q

j
β} terms

are in general nonzero. They are shown to commute with every other generator in the
supersymmetry algebra, hence the name central charges.

Let us study the representation of supersymmetry in the presence of central charges.
Choose the coordinate frame so that Pµ = (M, 0, 0, 0) and make

Zi j =


0 Z1
−Z1 0

0 Z2
−Z2 0

. . .


(3.19)

by an appropriate U(N) rotation. Then it is easy to see that Qi
α can be reorganized into N

pairs of fermionic oscillators with

{ai, a†i } =M + |Zi|, {bi, b†i } =M − |Zi|, (3.20)

Hence the representation of the supersymmetry algebra drastically changes in the presence
of non-zero central charges. The number of states in a multiplet can be reduced in a power
of two with respect to the ordinary massive multiplet with 22N states when one of the
central charges equals the mass. These states with reduced number of components are called
Bogomolny-Prasad-Sommerfield states, or BPS states for short. The reduced number of
states indicates a certain sense of stability in these BPS states, since a BPS state needs another
BPS state in order to make a non-BPS state which has twice the number of components.
Hence generically the mass is locked proportional to the central charge and cannot receive
corrections.

Finally, restricting the discussion to the N = 2 supersymmetry, let us see the relationship
between the central charges and the special coordinates. For example, consider a hyper-
multiplet with charge n is coupled to the system of the vector multiplets described by the
Lagrangian (3.16). The relevant part of the action for the hypermultiplet is, in N = 1 notation,

Lhyper =

∫
d4θ(Q†eVQ + Q̃†e−VQ̃) +

∫
d2θ(
√

2QaQ̃ +MQQ̃) + c.c (3.21)

The superpotential term is fixed in this form, because this is related by the extended super-
symmetry to the minimal coupling of the multiplet to the gauge field. This reveals that their
mass is nonzero and equal to

√

2n|a +M| (3.22)
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Since the hypermultiplet consists of only four bosonic degree of freedom, it must be a BPS
multiplet in order to be massive. This suggests the identification of the central charges and
the special coordinates, although equation (3.22) alone does not fix the relative phase between
the two. When we further consider a hypermultiplet with charge (m,n) with respect of two
U(1) factors with its special coordinate a and a′, a similar calculation shows that their mass
is equal to

√
2|ma + na′ +M|. This shows that there should be no relative phase between

the special coordinates and the central charges. From now on, we use these two words
interchangeably.

3.1.3 Electromagnetic duality

The Maxwell equation, without the presence of source terms, has a symmetry exchanging
the electric field and the magnetic field. To phrase this in a relativistically invariant way, the
symmetry exchanges

Fµν ←→ ∗Fµν ≡
1
2
εµνρσFρσ. (3.23)

Since this naı̈ve form of electromagnetic duality is difficult to formulate in the presence
of charged matter, and since coupling constants of U(1) gauge fields without any charged
matter are apparently meaningless, it may seem vacuous to discuss the change in the coupling
constant of the gauge theory under the duality. Witten showed [38], however, that quantum
free U(1) gauge theories have a dependence of its coupling constant once they are formulated
on closed compact manifolds of dimension four, and that the electromagnetic duality acts
on the partition function as the modular transformation. Let us first very briefly review this
electromagnetic duality.

duality for abelian gauge fields

Consider n U(1) gauge fields Ai with complexified coupling constants τi j. Put the system on
a closed spin manifold M of dimension four. The action is

S =
∫

1
g2 Fi ∧ ∗F j +

∫
i
θi j

8π2 Fi ∧ F j (3.24)

=

∫
iτ̄
4π

F+ ∧ F+ +
∫

iτ
4π

F− ∧ F−, (3.25)

where we defined F± = (F ± ∗F)/2. Note that the θ term is normalized to have symmetry

θi j ∼ θi j + 2πni j (3.26)

where ni j is a matrix with integral entries, since Fi/(2π) defines an integral cohomological
class and the intersection form of a spin manifold is even.

Consider extending the action by introducing gauge fields Ci and two-form fields Gi to

S′ =
∫

iτ̄
4π
F
+
∧ F

+ +

∫
iτ
4π
F
−
∧ F

−
−

i
2π

∫
FC ∧ G (3.27)

with F = FA − G. This system has a gauge invariance with

A→ A + B, G→ G + FB (3.28)
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where B is the curvature of some line bundle. The addition of two connection should
be interpreted as the tensoring of line bundles. The gauge invariance of the last term is
guaranteed by [FC] ∈ H2(M,Z).

Firstly, this Lagrangian is equivalent to S. It is because we obtain dG = 0 and [G] ∈
H2(M,Z) when C is integrated out. This means G can be gauged away using (3.28). On the
other hand, we can first gauge away A using the gauge invariance (3.28). This gives the
Lagrangian ∫

iτ̄
4π

G+ ∧ G+ +
∫

iτ
4π

G− ∧ G− −
i

2π

∫
FC ∧ G. (3.29)

The action for G is now Gaussian, and the result of integration is

S = −
∫

i
4πτ̄

F+C ∧ F+C −
∫

i
4πτ

F−C ∧ F−C, (3.30)

This is just the original Lagrangian (3.25) with τ replaced by −1/τ. Combined with transfor-
mation (3.26), these generate the symmetry acting on τ by

τ′ = (Aτ + B)(Cτ +D)−1 where
(
A B
C D

)
∈ Sp(2n,Z). (3.31)

There is another way to understand the appearance of the symplectic group. In general,
a particle is labeled by its electric and magnetic charges (ei,mi). Between two such charge
vectors (ei,mi) and (e′i,m′i ), there is a natural symplectic pairing

eim′i −mie′i. (3.32)

This measures the phase acquired by circulating a particle with charge (ei,mi) once around a
particle with charge (e′i,m′i ). The group Sp(2n,Z) can be thought of as acting on the charge
vectors (ei,mi) respecting this symplectic pairing.

action of duality on the scalar fields

Pure N = 2 U(1)n gauge theory is almost free, except the dependence of the coupling constant
to the scalar field. Inspecting the derivation of the electromagnetic duality above, we see
that we can dualize the gauge field in this N = 2 supersymmetric setting. We saw in section
3.1.1 that the coupling constant satisfies the relation τi j = ∂ai

D/∂a j. Since the duality changes
τi j, ai should be transformed accordingly. This is achieved if we introduce new coordinates
a′ and a′D by (

ai
D
′

a′i

)
=

(
A B
C D

) (
ai

D
ai

)
. (3.33)

The new prepotential must be recalculated from the relation

ai
D
′ =

∂F ′

∂a′i
. (3.34)

These relation suggests the variables ai
D as the electromagnetic dual of the special coordi-

nates ai. From the consideration in the previous section, these ai
D should control the masses

of BPS states charged under the dualized U(1), or stated more plainly, the BPS magnetic
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monopoles of the original U(1). Let us see this explicitly in a classical calculation. The energy
of a static configuration is, from the Lagrangian (3.16),

E =
1

4π

∫
d3xDµai(Imτ)i jDµā j +

1
2

Bµi τ
i j(Imτ)−1

jk τ̄
klBµl . (3.35)

This expression can be reorganized as

=
1

4π

∫
d3xDµai

D

(
Im
−1
τ

)
i j

Dµā j
D +

1
2

Bµi

(
Im
−1
τ

)−1
i jBµj (3.36)

≥

√
2

4π

∣∣∣∣∣∫ dx3Bµi Dµai
D

∣∣∣∣∣ = √2
4π

∣∣∣∣∣∮
S

Bµi ai
Ddnµ

∣∣∣∣∣ = √2|miai
D|. (3.37)

This shows that the BPS central charge for a monopole is indeed aD.

3.2 Seiberg-Witten solution

At generic points in the moduli, pure N = 2 SU(N) super Yang-Mills is Higgsed down to
U(1)N−1 by the vacuum expectation value of the adjoint scalar. In 1994, Seiberg and Witten
determined the low-energy prepotential governing this U(1)N−1 gauge theory, by utilizing
the holomorphy of the prepotential and some physical assumptions on the electro-magnetic
duality. We review in this section this achievement.

3.2.1 Pure SU(2)

Classical analysis

For pure SU(2) gauge theories, the potential for the adjoint scalar φ contains a term

∝ [φ,φ†]2.

This means that φ can be diagonalized at vacuum. Let us write

φ = diag(a,−a).

a and−a should be identified because they are related by a Weyl reflection. When a is nonzero,
the gauge group is broken down to U(1) commuting with φ. The prepotential describing the
dynamics of this U(1) is

F =
1
2
τ0a2,

where τ is the complexified gauge coupling.

Perturbative one-loop analysis

In quantum theory, the gauge coupling runs according to the renormalization group equation.
At one loop, they are easily determined by the representation content of various fields and
in this case

τΛ1 = τΛ0 +
2i
π

logΛ1/Λ0 (3.38)
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From this we see the combination
Λ4 = Λ4

0e2πiτΛ0

is renormalization-group invariant. The coupling constant of the unbroken U(1) is obtained
by setting λ0 = a in the above formula, because the running stops when the momentum scale
drops below the mass of charged W bosons ∼ a. To reproduce this coupling, the one-loop
corrected prepotential should be

F =
i

2π
a2 log

a
Λ

(3.39)

The modification of the prepotential from the running of the coupling has another physical
manifestations. Calculating dual special coordinates from the above formula we obtain

aD =
∂F
∂a
=

2ia
π

log
a
Λ
+

ia
π

(3.40)

This signifies, when the phase of a is changed adiabatically from 0 to π, the resulting aD
becomes −aD + 2a in the original variables. The effect is in full accord with the finding
by Witten [39], where he noticed that adiabatically changing the theta angle, a magnetic
monopole becomes a dyon. All these findings can be succinctly summarized by saying that,
when u = trφ2 loops around∞, there is a monodromy

M∞ =
(
−1 2
0 −1

)
(3.41)

acting on (aD, a).

Analysis of the non-perturbative region

Classically, full SU(2) gauge symmetry is restored when a = 0. This is reflected in the
one-loop analysis in that there is a logarithmic singularity F ∼ a2 log a2 in the prepotential.
There is however a serious problem in extrapolating the one-loop prepotential to the deep
non-perturbative region. The problem is that, the gauge coupling for the unbroken U(1),
becomes negative for sufficiently small a. It can be rephrased as follows: the inverse of the
coupling constant 1/g2 should be a harmonic function of a from supersymmetry. However,
a harmonic function, defined on all of a, cannot have a minimum and hence it must be
negative somewhere. In order to escape this argument, we should allow the coupling to be
multivalued.

Here comes the electromagnetic duality to the rescue. U(1) gauge theories have the
duality which exchanges electric field Fµν and its magnetic dual ∗Fµν. This operation reverses
the coupling constant:

S : τ→ −
1
τ
. (3.42)

There is another transformation which does not change the physics:

T : τ→ τ + 1. (3.43)

These two transformations generate SL(2,Z) symmetry group. The argument in the previous
paragraph indicates that, in order to have a positive coupling constant everywhere, there
should be some point in the moduli around which we need S transformation.
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Let us determine how many of these singularities are necessary. First, let us count
the number of global symmetries acting on the moduli space. Taking the gauge invariant
polynomial u = 〈trφ2

〉 rather than the eigenvalue a as the parameter for the modulus, we
see that the Weyl reflection a → −a acts trivially on u. However, there is another unbroken
global symmetry taking u → −u. This is because, as Λ ∼ eiθ/4, changing θ → θ + 2π sends
Λ2
→ −Λ2. All physical quantities are determined by u/Λ2, this translates to the action

u → −u. Hence, a minimum number of singularities are two, one at u = tΛ2 and another at
u = −tΛ2. We take the renormalization prescription such that t = 1.

Let us next compute the monodromy of SL(2,Z) around these singularity. Denote as M±
the monodromy around u = ±Λ2, respectively. These should satisfy the constraint

M∞ =M−M+. (3.44)

Furthermore, as the symmetry u→ −u is generated by θ→ θ + 2π, we have

M− = TM+T−1. (3.45)

These two condition determine the matrices. The results are

M+ =
(

1 0
−2 1

)
, M− =

(
−1 2
−2 3

)
. (3.46)

We now have enough information to determine a and aD, since the three mondromies de-
termine a holomorphic bundle of which a and aD is the sections, and since we know the
asymptotic behavior of a and aD around infinity

a ∼
√

2u aD ∼ i
√

2uπ log u. (3.47)

Let us examine the singularity in more detail. By taking a duality transformation ex-
changing a and aD, M+ becomes

SM+S−1 =

(
1 2
0 1

)
. (3.48)

This suggests an interpretation that there is one hypermultiplet charged with respect to the
dualized gauge field that becomes massless at u = Λ2, and that the monodromies are caused
by the one-loop effect of this hypermultiplet. Indeed, as aD = 0 and a , 0 at u = Λ2, a
magnetic monopole with respect to the original U(1) is becoming massless at that point.

Phrasing the result in terms of curves

The result found above can be summarized beautifully in a geometrical way. Consider a
family of curves Xu parametrized by u:

y2 = (x2
− u)2

−Λ4 (3.49)

and a meromorphic differential

dλ =
2x2dx

y
(3.50)

on the curve. Take two contour A and B as in figure 3.1. Consider following quantities

α =
1

2πi

∮
A

dλ, αD =
1

2πi

∮
B

dλ. (3.51)
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−√u +Λ2
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A cycle B cycle

x

Figure 3.1: Elliptic curve and the contour A, B

We can check that the contours A and B have the same monodromy M± and M∞when u loops
respectively around ±Λ and∞. Hence, α and αD also transforms accordingly. Furthermore,
we can check in the weak coupling regime Λ� u that

α ∼
√

2u αD ∼ i
√

2uπ log u. (3.52)

These properties shows that α and αD are none other than the special coordinates a and aD.
Differentiating these expressions by u, we obtain

∂a
∂u
=

1
2πi

∮
A

dx
y
,

∂a
∂u
=

1
2πi

∮
B

dx
y

(3.53)

Notice the integrand is now a holomorphic differential, that is, it has no poles. For a point p
in the curve Xu, consider a quantity

f : p→
∫ p

p0

ω (3.54)

using a holomorphic differential ω. As the path from p0 to p is determined only up to the
addition of a multiple of the contour A and B, the map f is defined only up to the addition of
∂a
∂u and ∂aD

∂u . Hence f determines a map to C/Λ where Λ is the lattice with bases ∂a
∂u and ∂aD

∂u .
This is another standard representation for an elliptic curve, and we see the complexified
gauge coupling

τ =
∂aD

∂a
=
∂aD/∂u
∂a/∂u

(3.55)

is none other than the complex structure of the elliptic curve. This guarantees that Imτ is
positive, as it should be as the squared coupling constant of gauge theory.

3.2.2 Extension to the gauge group SU(N)

Extension of the above considerations to the SU(N) gauge groups is carried out by Argyres
and Faraggi[40] and by Klemm et al.[41]. At low energy at generic points in the moduli
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Figure 3.2: the curves for SU(N)

space, the vacuum expectation value of the adjoint scalar breaks the gauge groups to U(1)N−1.
The complexified coupling constants τi j should satisfy the constraint that Imτi j is positive
definite. We saw that there is an action of electromagnetic duality Sp(2n,Z) acting on the
central charges ai and ai

D.
All these structures suggest that there is some genus N − 1 Riemann surface governing

the dynamics of the N − 1 U(1) vector multiplets, so that the charge vectors are related to the
integral homology of the surface and the coupling constants τi j comprise the period matrix
of the surface. In view of the fact that the curve for the SU(2) gauge theory is

y2 = (x2
− u)2

−Λ4

a natural guess for the curve is a hyperelliptic

y2 = P(x)2
−Λ2N (3.56)

where
P(x) = 〈det(x − φ)〉 =

∑
upxn−p (3.57)

. It is also natural to suggest the form of the special coordinates:

ak =
1

2πi

∮
Ak

dλ, ak
D =

1
2πi

∮
Bk

dλ (3.58)

where dλ is some meromorphic differential with no residue. Here the placement of the
contours Ak and Bk are depicted in figure 3.2. We can show that by choosing

dλ =
xdP(x)

y
(3.59)

one can obtain satisfying results.
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Firstly, consider the derivative of ak and ak
D with respect to the classical moduli up. They

are given by
∂ak

∂up
=

1
2πi

∮
Ak

∂
∂up

dλ,
∂ak

D

∂up
=

1
2πi

∮
Bk

∂
∂up

dλ. (3.60)

An important property of our choice (3.59) is that the derivatives of the differential dλ are all
holomorphic on the hyperelliptic including the point at infinity. Hence they form the basis
of holomorphic one forms on the curve. As such, the quantity

τi j =
∂ai

D

∂a j
=

∑
p

∂ai
D

∂up

∂up

∂a j
=

∑
p

∂ai
D

∂up

(
∂a j

∂up

)−1

(3.61)

is precisely the period matrix of the curve. The period matrix has two important property[42].
One is that it is symmetric,

τi j = τ ji (3.62)

and another is that the imaginary part is positive definite,

Imτi j > 0. (3.63)

The first condition shows that the dual special coordinates ak
D are integrable and are obtained

as the derivatives of some function, that is

ak
D =

∂F
∂ak

. (3.64)

This is as expected since the system has N = 2 supersymmetry and hence can be described by
a prepotential. The second condition, on the other hand, guarantees that the gauge theory has
positive squared gauge couplings. This is necessary for the stability of the system. We will
see in the next section that the prepotential obtained from the curve has the weak-coupling
expansion of the form just as expected from physical consideration.

3.3 Expansion of the exact prepotential

In the previous section, we obtained a candidate exact prepotential from the consideration
of various strong coupling limits with the help of electro-magnetic duality. The result is,
however, expressed in a very indirect terms using line integrals of a certain meromorphic
differential form over a complex curve. To rephrase the answer in the form that is suitable for
comparison to the weak coupling results, we first need to solve the BPS central charges ad for
magnetic monopoles in terms of a for electrically charged particles. It is not an easy task and
even the verification of the presence of the logarithmic one-loop contribution in the Seiberg-
Witten prepotential necessitates some efforts. As we want to compare the results from the
strong coupling dualities against a straightforward weak-coupling instanton calculation, we
should now attack the problem.

There have been two ways to overcome this, one is the use of Picard-Fuchs equation
which the periods a and aD satisfy. The method is very well suited for gauge groups with
lower rank, but it becomes cumbersome very quickly. In this section, we review another
method developed by D’Hoker and his collaborators.
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3.3.1 Classical and quantum moduli

Firstly, let us see how we can express the central charges ai for electric U(1) by means of
classical moduli ãi appearing in the definition of the curves,

P(x) =
∏

(x − ãi). (3.65)

We follow the exposition by D’Hoker, Krichever and Phong[43]. For the sake of conciseness,
we limit the derivation to the pure SU(N) case. All the argument can be readily extended to
theories with additional hypermultiplets.

Let us expand ak in powers of Λ. To do this, first we fix the contour Ak independent of Λ.
Then we can expand the denominator y in the integrand as

2πiak =

∞∑
m=0

Γ(m + 1
2 )

Γ( 1
2 )Γ(m + 1)

∮
Ak

dx
xP′

P

(
Λ2N

P2

)m

. (3.66)

Rewriting the integrand using

xP′

P

(
Λ2N

P2

)m

= −
d

dx

(
x

2m

(
Λ2N

P2

)m)
+

1
2m

(
Λ2N

P2

)m

, (3.67)

the residue can be easily computed. The result is

ak = ãk +

∞∑
m=1

Λ2m

22m(m!)2

(
∂
∂ãk

)2m−1

Sk(ãk)m, (3.68)

where

Sk(x) =
Λ2(N−1)∏
i,k(x − ãi)2 . (3.69)

3.3.2 Verification of the one-loop terms

Prepotential, in its weak coupling region, will have the form

F =
N
πi

∑
a2

k +
i

4π

∑
i< j

(ai − a j)2 log
(ai − a j)2

Λ2 +

∞∑
m=1

Λ2Nm

2mπi
F (m)(a) (3.70)

with the first and second term being the classical and one-loop contribution, and the rest
the instanton correction. There should be no higher order loop correction. This follows
from consideration based on holomorphy and the shift symmetry for θ. Indeed, n-loop
terms should be accompanied by the factor g2n−2. Holomorphy shows that they should be
augmented to the combination τ(1−n). Perturbation theory should have the symmetry under
the continuous shift of θ = Reτ. Hence perturbative correction is possible only for n = 1. The
power of Λ in the expansion above is also determined by the holomorphic structure and the
anomaly. Firstly from the renormalization group equation, the dynamically generated scale
is proportional to

Λ = Λ0e
π
N iτΛ0 . (3.71)
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Hence, k-instanton contribution, which should be accompanied by the factor eikθ, appears
with the factor Λ2Nk.

Let us see in this subsection that the prepotential calculated from the Seiberg-Witten
curves are of the form expected from this weak coupling analysis. In order to check the
behavior of F , It suffices to directly evaluate the dual special coordinate ai

D in a weak
coupling regime using the line integral representation.

Take the contour Bi as indicated in the figure 3.2. In the weak coupling limit, the cuts
are situated at ã−i ∼ ã+i both very near ãi. The contour Bi goes from ã−1 to ã−i in the upper
patch, then passes through the cut and goes back to ã−1 . It is important to note that ã±i can be
expanded into powers of Λ2N with coefficients rational in ak.

The term to calculate is

2πi
∫

Bi
dλ =

∫
Bi

xP′(x)dx√
P(x)2 − λ2N

(3.72)

= 2
∫ x−i

x−1

xP′(x)dx√
P(x)2 − λ2N

. (3.73)

As the end points of integration themselves depend onΛ, naı̈ve expansion of integrand leads
to apparent non convergence. To circumvent this, we introduce an artificial parameter ξ and
consider

2πiak
D(ξ) = 2

∫ x−i

x−1

xP′(x)dx√
P(x)2 − ξ2λ2N

(3.74)

= 2
∞∑

m=0

Γ(m + 1
2 )

Γ( 1
2 )Γ(m + 1)

ξ2m
∫ x−i

x−1

dx
xP′

P

(
Λ2N

P2

)m

. (3.75)

We take analytic continuation ξ→ 1 afterwards. The integrand can be rewritten as

xP′(x)√
P(x)2 − ξ2Λ2N

=
∑

l

1
x − ãl

1
2πi

∮
Al

dz
zP′(z)√

P(z)2 − ξ2Λ2N
+N +

∑∑
p≥2

O(Λ2N)
(x − ãl)p . (3.76)

First carrying out the integral and then taking ξ→ 1, we obtain

2πiak
D = 2

∑
al log(ã−k − ãl) + 2Ncã−k − 2

∑∑
p≥2

1
p − 1

O(Λ2N)
(x − ãl)p−1

. (3.77)

Since
ã−k = ãk + Λ

2N + O(Λ4N) (3.78)

to first order,we obtain

2πiak
D = 2Nak logΛ −

∑
l,k

(ak − al) log(ak − al)2 + O(Λ2N). (3.79)

Integrating this with respect to ak − a1, we find that the prepotential determined from the
Seiberg-Witten curve indeed has the form (3.70).
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3.3.3 Renormalization group equation

We show in this subsection the renormalization group equation satisfied by the prepotential:

Λ
∂F
∂Λ
=

N
πi

∑
ã2

k . (3.80)

The relation for pure SU(2) theory was originally obtained by Matone[44]. General relation
(3.80) was independently obtained by Eguchi and Yang[45] and by Sonnenschein, Theisen
and Yankielowicz[46].

Let us begin the derivation. First, since the prepotential is of dimension two, it satisfies
the Euler equation (

Λ
∂
∂Λ
+

∑
ak
∂
∂ak

)
F = 2F . (3.81)

Differentiating this by the symmetric polynomials up, we obtain

∂
∂up
Λ
∂
∂Λ

F =
∑ak

∂ak
D

∂up
−
∂ak

∂up
ak

D

 (3.82)

=
1

(2πi)2

∑(∮
Ak

dλ
∮

Bk

∂
∂up

dλ −
∮

Ak

∂
∂up

dλ
∮

Bk
dλ

)
. (3.83)

By using the Riemann bilinear relation[42], this can be further simplified to

=
1

2πi

∑
p: poles of λ

(residue at p)
∫ p

p0

∂
∂up

dλ. (3.84)

Thus, we obtained the relation

2πi
∂
∂up
Λ
∂
∂Λ

F =

{
2N when p = 2,
0 otherwise. (3.85)

Integration of this relation shows the renormalization group equation (3.80). Here, the
integration constant is zero due to the homogeneity of the prepotential.

3.3.4 Linear recursion relation

Following Chan and D’Hoker[47], we derive a linear recursion relation determining the in-
stanton correction in the prepotential determined from the curve. It is obtained by combining
the renormalization group equation derived in the previous section and the weak-coupling
ansatz confirmed in section 3.3.2. There are other recursion relations that the prepotential ob-
tained from the curve satisfy, most notably the Witten-Dijkgraaf-Verlinde-Verlinde formula
(for example, see [48, 49]). Even though they may have more mathematical relevance, the
recursion relation so obtained are quadratic and in reality they are rather cumbersome as the
method to extract the instanton correction.

Firstly, let us calculate (Λ∂/∂Λ)F by substituting the weak coupling ansatz equation
(3.70). Putting this into the renormalization group equation (3.80), we get∑

ã2
k =

∑
a2

k +

∞∑
m=1

Λ2NmF m(a). (3.86)



3.3. Expansion of the exact prepotential 45

A further rewriting the quantum moduli ak by the classical moduli ãk using equation (3.68)
yields

0 =
∑

k

 ∞∑
m=0

Λ2Nm∆
(m)
k (ã)


2

−

∑
k

(
∆

(0)
k (ã)

)2
+

∞∑
m=1

Λ2NmF (m)

 ∞∑
n=0

Λ2Nn∆
(n)
k (ã)

 , (3.87)

where we defined for brevity ∆(0)
k (x) = ãk and

∆
(m)
k (x) =

1
22m(m!)2

(
∂
∂x

)2m−1

Sk(x)m. (3.88)

Since the equation above is expressed in terms of ã alone, we can replace them by a. By
expanding in powers of Λ2 and comparing the term of order Λ2Nm, we now have a recursion
relation defining the instanton coefficient F (m) using the same instanton coefficient F (n) with
lower degree, that is, n < m. Now the functions ∆(m)

k also should be redefined by substituting
ã by a.

We collect here some of the low instanton results:

−F (1) =
∑

2∆(0)
k ∆

(1)
k , (3.89)

−F (2) =
∑

(2∆(0)
k ∆

(2)
k + (∆(1)

k )2) +
∑
∆

(1)
k

∂
∂ak

F (1), (3.90)

−F (3) =
∑

(2∆(0)
k ∆

(3)
k + 2∆(1)

k ∆
(2)
k )

+
∑(
∆

(1)
k

∂
∂ak

F (2) + ∆
(2)
k

∂
∂ak

F (1)
)
+

1
2

∑
∆

(1)
k ∆

(1)
l

∂2

∂ak∂am
F (1). (3.91)

This is matched against direct instanton calculation in the next chapter.
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Chapter 4

Instanton calculation of the
prepotential

We reviewed in the last chapter the works initiated by Seiberg and Witten. Holomorphy
inherent in supersymmetric theories and a few educated guesses enabled us to determine
the effective prepotential which governs the low energy properties of N = 2 SU(N) gauge
theories. Furthermore, we saw in section 3.3.2 that the result so obtained can be expanded
in the weak coupling region in the form

F =
N
πi

∑
a2

k +
i

4π

∑
i< j

(ai − a j)2 log
(ai − a j)2

Λ2︸                                               ︷︷                                               ︸
classical + one-loop

+

∞∑
m=1

Λ2Nm

2mπi
F (m)(a)︸               ︷︷               ︸

instanton effects

. (4.1)

This expression admits a natural interpretation as a contribution of one-loop term plus
instanton effects.

Since we know the moduli space of the multi-instanton thanks to the work of Atiyah,
Drinfeld, Hitchin and Manin[5], we can, in principle, carry out an semi-classical calculation
order-by-order around the instanton solution and compare the result against the coefficients
F (m)(a) in (4.1). Soon after the work of Seiberg and Witten, several groups initiated the study
along that direction. It is, however, rather difficult to carry out the instanton calculation at
high instanton number or higher rank gauge groups. One of the reason behind the difficulty
is the complexity of the topology of the moduli space.

Another important subtlety to mention is that, in the presence of the non-zero vacuum
expectation values for the adjoint scalar fields, an anti-self-dual connection is no longer a
solution of the equation of motion. The proper way of treatment was clarified by Affleck[50]
and the method was called the constrained instanton method. The end result is that a
non-constant potential, called the constrained instanton action, is induced on the instanton
moduli at the leading order in the coupling constant. This reflects the fact that they no longer
satisfies the equation of motion. Higher order corrections can be computed order-by-order.
However when the quantity we want to calculate is protected by holomorphy, we can often
make an argument that guarantees that no higher order correction in the gauge coupling
constant is possible. In these cases, lowest order calculation using the constrained instanton
action should give the exact answer.

47
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The hard work of the construction of the constrained instanton action was pursued by
Dorey and coworkers, and was completed quite recently. The definitive reference is the
review article by Dorey, Hollowood, Khoze and Mattis[51]. Hence, in principle, we are
able to reproduce the prepotential Seiberg and Witten by some straightforward but tedious
integration. However, the formulae for the measure are highly nontrivial and the direct
integration is nearly impossible. A further trick was necessary to carry out the integration.
The trick was the use of localization. Historically, Flume, Poghossian and Storch [10] and
Hollowood[11, 12] were the first to notice that the localization is applicable to the instanton
calculation of N = 2 super Yang-Mills equation. They found this by examining carefully
the action of the constrained instanton and showed that it can be cast into the framework of
cohomological field theory. Later, Nekrasov found[13] that there is an easy way to see that
the localization is applicable to the problem at hand. He also obtained the complete formulae
for the instanton effect. One of the merit of his method is that we only need an understanding
of the geometry of the instanton moduli space and we can bypass the determination of the
constrained instanton action. We follow in this chapter the approach taken by Nekrasov and
calculate the prepotential using the localization. For a more mathematical exposition, we
recommend the reader to consult a good review by H. Nakajima and K. Yoshioka [52].

4.1 Five dimensional supersymmetry

We first review a few basic fact on the five dimensional N = 1 supersymmetry, since
Nekrasov’s method can be most clearly understood from five-dimensional viewpoint. For
the exposition of five dimensional rigid supersymmetry using four-dimensional superfields,
we refer the reader to [53] and references therein.

Let us recall the smallest spin representation S of SO(4, 1) is of complex dimension four,
which can be represented by a four-component Dirac spinor which we are used to with
ordinary γ matrices γ0, . . . , γ3 and γ5. S is isomorphic to its complex conjugate, that is, we
have a conjugate-linear norm-preserving map C : S → S. Its square is, however, equal to
−1. This property is phrased in physics literature as the representation is pseudo Majorana,
or symplectic Majorana. Hence the smallest possible supersymmetry in five dimensions has
eight supersymmetries. It gives after a Kaluza-Klein reduction N = 2 supersymmetry in
four dimensions. It is convenient for our purpose to decompose the supercharge under the
little group SO(4) ∼ SU(2) × SU(2) and write

Qa =

(
Q1
α

εα̇β̇(Q
2
β)
†

)
. (4.2)

The most general commutation relation including central charges is, under this decom-
position,

{Qi
a,Q

j
b} = εabε

i j(Z + iP5), (4.3)

{Qi
a,Q

i
b
†
} = γ

µ
abPµ. (4.4)

Here Z is a hermitean central charge. Comparing these commutation relations with that
of four dimensional N = 2 supersymmetry (3.18), we find that the imaginary part of the
four-dimensional central charge comes from the momentum along the fifth direction.
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There are two kinds of multiplets, vector multiplets and hypermultiplets, in the five
dimensional N = 1 supersymmetry. They descend to multiplets of the same name under
Kaluza-Klein reduction. The spin content of the vector multiplet is slightly different from its
counterpart in four dimensions, since five dimensional gauge field has three on-shell degrees
of freedom. The scalar contained in the multiplet is real, and is combined with the Wilson
line along the fifth direction to become a complex scalar in four dimension.

4.2 Graviphoton background and Ω background

4.2.1 Graviphoton background

Consider an eight-susy field theory on a five dimensional background

ds2 = ηµνdxµdxν + (dx5 + Aµdxµ), (4.5)

where µ, ν = 0, 1, 2, 3, the curvature of Aµ, Fµν = ∂[µAν], is independent of xµ, and the
circumference of the fifth direction is β. That is, circles in the fifth direction is fibered over the
four dimensional Euclidean space, and the circles are glued together with constant curvature.
Let us call this background geometry the graviphoton background, because the field Aµ is
usually called the graviphoton when it is dynamical. We mainly consider the case where Fµν
is self-dual. In that case the background preserves half of the supersymmetry.

A supersymmetric theory on this background, in its low energy limit, contains many
BPS multiplets with various spin. They can be thought of as an outcome of quantization of
solitons in the high energy theory. They can be classified according to the representation of
the little group SO(4) ' SU(2)L × SU(2)R and their central charges related to various U(1)
gauge groups in the theory.

Gopakumar and Vafa showed in [54, 55] that an BPS multiplet with the left spin content

Ir =
(
(
1
2

) ⊕ 2(0)
)r+1

(4.6)

and with central charge a contributes to the prepotential by the amount

Fr(a) =
∑
k>0

1
k

(2 sinh
kF
2

)2r−2 exp(−ka) (4.7)

where F is the magnitude of the field strength. This equation can be proved using the
Fock-Schwinger proper time method. Another convenient basis of the left spin content is

C j =
(
(
1
2

) ⊕ 2(0)
)
⊗ (a state with J3

L = j) (4.8)

In this basis, the contribution to the prepotential becomes

F j(a) =
∑
k>0

1
k

1
(2 sinh kF/2)2 exp(−k(a + 2 jF)) (4.9)

=
∑
n>0

log
(
1 − e−(a+2 jF+nF)

)
. (4.10)
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Since the prepotential is an quantity protected by supersymmetry and receives contribu-
tions only from states annihilated by half of the supersymmetry, i.e. BPS states, the exact
prepotential of the low energy theory is given by

F =
∑
i,r

Ni,r

∑
k>0

1
k

(2 sinh
kF
2

)2r−2 exp(−kai) (4.11)

where Ni,r is the number of multiplets with central charge ai and spin content Ir. Ni,r is called
the Gopakumar-Vafa invariants of the theory. The prepotential has another expansion

F = F−2F (0) +F (1) + F2F (2) + F4F (3) + · · · (4.12)

and the prepotential in the absence of graviphoton should be identified with F (0). A re-
markable prediction of this argument is that the low energy prepotential, when expanded by
the sinh functions as in equation (4.11), will have integer coefficients in the expansion. This
greatly constrains the form of prepotential when we have other means of calculating it. For
more detailed exposition, we recommend the lecture note by R. Gopakumar [56]. We end
this section by mentioning that in order to obtain the genuine prepotential in four dimension
one further needs to take the controlled limit β→ 0.

4.2.2 Ω-background

Nekrasov considered in [13] a five-dimensional geometry

ds2 = (dxµ + Aµdx5)2 + dx5, (4.13)

closely related to the graviphoton geometry (4.5). Here the fifth direction is a circle of
circumference β, and the curvature of Aµ is anti-self-dual and independent of xµ. We denote
the magnitude by F. This geometry can be pictorially described as in figure 4.1. That is,
four dimensional Euclidean space is fibered over a segment of length β, and the edges are
identified using a SO(4) rotation exp(iβFµνJµν), where Jµν are the generators of SO(4).

We consider a supersymmetric field theory on this background. This time we calculate
the partition function of the theory rather than its prepotential. Let us canonically quantize
the theory, considering the fifth direction dx5 as the time direction. Then, in the Hamiltonian
formalism, the partition function can be schematically written as

Z = Tr(−)Fe−βH exp(iβFµνJµν). (4.14)

where H is the total Hamiltonian of the field theory. This is none other than the equivariant
index of the system. exp(iβFµνJµν) commutes with half of the supersymmetry when the
curvature Fµν is self-dual. Thus, the partition function Z receives contributions only from
the states annihilated by those supersymmetry. These states are precisely what contributed
to the prepotential of the theory put on the graviphoton background.

These consideration reveals us that the partition function can be written as the infinite
product of the form

Z =
∏∏

Zr(ai)Ni,r (4.15)

where Ni,r is the same Gopakumar-Vafa invariants we discussed above. This tells us how
to calculate graviphoton-corrected prepotential of the theory. We first somehow calculate
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Ωµν

1

β

R4

1

R
4

1

Figure 4.1: Ω-background

the partition function on the Ω-background. Secondly we read off from the expansion of
Z the Gopakumar-Vafa invariant. We finally get the desired prepotential by putting these
Gopakumar-Vafa invariants into the equation (4.11).

A fortunate coincidence is that the contribution to the partition function from a BPS
multiplet with spin content Ir is just the exponential of the contribution to the prepotential
from the same BPS multiplet, that is

Zr(a) = exp(−Fr(a)) (4.16)

This tells us that
Fgraviphoton-corrected = log Zon Ω-background. (4.17)

We derive the relation (4.16) in the next subsection.

4.2.3 Contribution of a hypermultiplet

We change the basis from Ir to C j and show that the contribution to the partition function
from C j is

Z j(a) = exp(−F j(a)) =
∏
n>0

(1 − e−a−2 jFe−nF)−n. (4.18)

This should be formally equal to the equivariant index

Tre−βHeΩµν Jµν . (4.19)

of the system. The target space of the supersymmetric quantum mechanical system is
the space of square integrable functions on the spatial slice R4. It is, however, a difficult
quantity to calculate, since the Hamiltonian H has a highly continuous spectrum. A bit of
noncommutativity is useful for taming this continuity. Another method is to put the system
onCP2. These two method yield the same result. We take the first path and calculate Z j=0(0).
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Combine the four coordinates into two complex variables z1,2 and introduce non-commutativity
[z1, z̄1] = [z2, z̄2] = iε. The calculation of the spectrum reduces to the well-known Landau
level problem, and we find the decomposition

L
2(C2) = 1 ⊕ (2 ⊕ 2) ⊕ · · · ⊕ (n ⊕ · · · ⊕ n)︸         ︷︷         ︸

n times

⊕ · · · (4.20)

where n denotes complex one-dimensional space with J3
L eigenvalue n. Hence, using the

fixed point formula,

Z j=0(0) =
∏
n>0

( 1
enF/2 − e−nF/2

)n
=

∏
n>0

( 1
1 − e−nF

)n
(4.21)

where we used in the second equality a zeta function regularization

12 + 22 + 32 + · · · = ζ(−2) = 0. (4.22)

Extension to the higher spin representation and inclusion of the central charge is straightfor-
ward.

4.3 Hilbert scheme of points on C2

In the last section we carried out the calculation of the partition function in a second quantized
setup. The same result can be obtained in a first quantized framework. In a first-quantized
framework, the system is thought of as a collection of particles and anti-particles. The
calculation of the partition function is ‘localized’ by the supersymmetry to the configuration
space of BPS states. A BPS configuration is a collection of particles only, since an anti-particle
respects the other half of the supersymmetry and particle-antiparticle pair breaks all of the
supersymmetry. As the particles are indistinguishable from each other, the configuration
space of k particles is

SkC2
≡ (C2)k/Sk. (4.23)

Hence, the partition function should be

Z =
∑

e−kaIndgSkC2. (4.24)

However, the space SkC2 is highly singular and reliable calculation of the equivariant index
is difficult. It is known that there is a good resolution of the space SkC2 denoted by (C2)[n],
called the Hilbert scheme of n-points on C. Let us now collect some relevant fact about the
Hilbert scheme of points.

4.3.1 Definition of (C2)[n]

We should comment that the explanation given here is not very rigorous and we recommend
the reader to consult [57] for mathematically precise expositions. Let us parametrize C2 by
two variables x, y and consider n distinct points p1 = (x1, y1), . . . , p2 = (yn, xn) on (C2). We
associate to the set {p1, . . . , pN} polynomial functions P(x, y) of x and y vanishing at all pi.
The set of such functions form an ideal I{p1,...,pn} of the ring C[x, y] Note that the quotient
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Y = (4 ≥ 2 ≥ 1) YD = (3 ≥ 2 ≥ 1 ≥ 1)

Figure 4.2: Young tableaux

C[x, y]/I is n-dimensional. Hence we have obtained a map from non-singular points in SnC2

to codimension n ideals of C[x, y]. Let us consider all the codimension n ideals in C[x, y], and
denote it by (C2)[n]. It is called the Hilbert scheme of n points on C2.

Now that we have understood the definition of (C2)[n], we go on to the calculation of the
equivariant index of them. As the Cartan torus of SO(4) acts by U(1) phase rotation of x and
y, a fixed point I in (C2)[n] corresponds to an codimension n ideal of C[x, y] which is invariant
under the action x → eiθx and y → eiθ′y. For such an ideal, the representative of C[x, y]/I
consists of monomials xmyn. Let us denote the set of such monomials by Y. Y should satisfy
a condition since I is an ideal, i.e. xI ⊂ I and yI ⊂ I. The condition on the ideal reflects to
the fact that if xmyn is included in Y, then xm′yn′ with m′ < m and n′ < n also is included
in Y. Such a set of pair of integers (m,n) form a Young tableau. We introduce here for later
use some notations for the Young tableaux. We identify a Young tableau with a partition
and write Y = (y1 ≥ y2 ≥ y3 · · · ). We write YD the dual tableau of Y obtained by reflecting
along the diagonal(see figure 4.2). We denote the box in the j-th column of the i-th row as
the box (i, j). We write (i, j) ∈ Y if 0 ≤ j ≤ yi. From a Young tableau T one can construct a
codimension n ideal I by

I = ideal generated by all xmyn where (m,n) < T (4.25)

Thus we established the correspondence between a Young tableau and a fixed points in
(C2)[n].

4.3.2 Another realization of (C2)[n]

In order to calculate the contribution to the equivariant index from each of the fixed points,
we need understand the tangent space of (C2)[n] at the fixed point. The definition using
the ideals we reviewed above is not suitable for this purpose. Hence we develop another
realization of (C2)[n] here.

First let us temporarily introduce a notation

Mn =

 B1,B2 ∈ Hom(Cn,Cn),
I ∈ Hom(C,Cn)

∣∣∣∣ i) [B1,B2] = 0

ii)
there is no proper subspace in
Cn containing ImI and closed
under the action of B1 and B2


GL(n,C)

(4.26)

where GL(n,C) acts on B1 and B2 by conjugation and on I by right multiplication. The
condition ii) is called the stability condition. We now prove that there is a one-to-one
correspondence between Mn and C[n].



54 Chapter 4. Instanton calculation of the prepotential

From C[n] to Mn: for a codimension n ideal I ⊂ C[x, y], consider a vector space V =
C[x, y]/I. The dimension is by definition n, hence V ' Cn. Multiplication by x and y is
well-defined on V since xI ⊂ I and yI ⊂ I from the defining property of an ideal. Thus, x and
y define two elements in Hom(V,V), and the two trivially commutes. Finally, we have a map
sending 1 ∈ C to [1] ∈ V. In order to see that these data comprise just an element of Mn, we
need to check the stability. But this is also trivial as any element of V can be generated by
repeated action of x and y.

From Mn to C[n]: From the stability condition, the image of I is one dimensional. We
consider a map φ from C[x, y] to Cn defined by

C[x, y] 3 P(x, y) 7→ P(B1,B2)I(1) ∈ Cn (4.27)

P(B1,B2) is well-defined thanks to the condition i). The image of φ is closed under the action
of B1 and B2 and includes I(1), Imφ = Cn from stability. Hence the kernel ofφ is a codimension
n ideal in C[x, y].

4.3.3 Yet another realization of (C2)[n]

Let us construct a modified version of the linear algebraic construction of (C2)[n] presented
above. The construction reveals the striking equivalence of the Hilbert scheme of points and
non-commutative U(1) instantons.

Let us denote by Nn the following space:

Nn =


B1,B2 ∈ Hom(Cn,Cn),

I ∈ Hom(C,Cn),
J ∈ Hom(Cn,C)

∣∣∣∣ i) [B1,B2] + IJ = 0

ii)
there is no proper subspace in
Cn containing ImI and closed
under the action of B1 and B2


GL(n,C)

(4.28)

This definition differs from that of equation (4.26) just in the appearance of J. We prove that
nonetheless there is a natural one-to-one map between Mn and Nn.To show this statement, it
suffices to prove that J is a zero map. Notice that from the stability condition, all element of
Cn can be obtained by repeated application of B1 and B2 to I(1). Hence we need only to show
that applying J to an element of the form

Bi1Bi2 · · ·BikI(1) (4.29)

results in zero. We show this in induction on k.
For k = 0: as JI is a map from C to C, hence it coincides with its trace. Hence

JI = tr(JI) = tr(IJ) = tr([B1,B2]) = 0. (4.30)

Suppose that we have shown the claim for k < m. Consider an expression of the form
JBi1 · · ·B2B1 · · ·Bim . Using the condition IJ = −[B1,B2], we can rewrite this as

JBi1 · · ·B2B1 · · ·Bim = JBi1 · · · IJ · · ·Bim + JBi1 · · ·B1B2 · · ·Bim . (4.31)

The first term in the right hand side is zero from the induction hypothesis. Hence we need
to only show that

JBa
1Bb

2I = 0. (4.32)
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This can be proved by an extension of the argument for k = 0. We can rewrite, by using
various identities,

JBa
1Bb

2I = tr(JBa
1Bb

2I) = tr(Ba
1Bb

2IJ) (4.33)

= −tr(Ba
1Bb

2[B1,B2]) = −tr([Ba
1Bb

2,B1]B2) (4.34)

= −
∑

c+d=b

tr(Ba
1Bc

2[B2,B1]Bd
2) = −

∑
c+d=b

tr(Bd
2Ba

1Bc
2[B2,B1]) (4.35)

= −
∑

c+d=b

tr(Bd
2Ba

1Bc
2IJ) = −

∑
c+d=b

JBd
2Ba

1Bc
2I. (4.36)

Since JBd
2Ba

1Bc
2 = JBa

1Bb
2 by applying the identity shown in (4.31), we get JBa

1Bb
2I = −bJBa

1Bb
2I.

Thus JBa
1Bb

2I=0. This completes the proof.
A noticeable fact is that the linear data before taking the quotient with respect to GL(n,C)

is just the linear ADHM data for ‘U(1)-instanton’. Moreover, the condition [B1,B2] + IJ = 0
is just the condition µC = 0. In the next paragraph we digress a little about the relationship
between the two.

4.3.4 On symplectic quotient and holomorphic quotient

Consider a complex manifold M equipped with an action of a compact Lie group G. We can
take two different quotients from M and G. The first one is

M/GC, (4.37)

where we divide the space by the action of the complexified form of G. The second is defined
with the help of the Hamiltonian µ generating the flow of G:

µ−1(a)/G (4.38)

where M is endowed with a symplectic form naturally defined by the complex structure. It
is known that there is a close relationship between the two. Firstly we review the case for
a = 0 and then we state the correspondence for nonzero a.

The relation for the case a = 0 is implicitly known since the earliest work on supersym-
metry. µ is the D-term in the physics language. Hence µ−1(0)/G is the space of vacua for
supersymmetric gauge theory. On the other hand, we know that in the superspace formalism
the gauge group is enhanced to GC. Thus the space of vacua can also be written as M/GC.
For example see chapter VIII of the textbook by Wess and Bagger[58]. For almost all point,
we can make one-to-one map between M/GC and µ−1(0)/G. We may disregard the difference
for the most purpose. However, the fixed points often lie in the subtle, somewhat singular
points, we need to proceed carefully. The precise statement for the case where M is a vector
space is

Theorem There is a bijection between the set

µ−1(0)/G and M//GC (4.39)

where the “geometric invariant theory” quotient M//GC is defined through the equivalence
relation

x ∼ y if and only if GCx ∩ GCy , ∅ (4.40)
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for x, y ∈M. Moreover, for any point x we can find x0 such that GCx0 = GCx.
This can be proved by chasing the behavior of the moment map µ under the complexified

gauge group GC. The reader will find a readable account of the theorem in the work of Luty
and Taylor[59].

In order to state the corresponding result for nonzero a, that is for nonzero Fayet–
Iliopoulos term in the physics language, we need to prepare a little. The moment map
µ(x) determines the Hamiltonian for the G action through the combination

H(g) = 〈µ(x), g〉 (4.41)

where g is some generator of the Lie algebra g of G. Hence µ is a map from M to g∗. Thus,
Fayet–Iliopoulos term a can be seen as a map a : u(1)∗ → g∗. In other words, this determines
a one dimensional representation of G through

z→ ei〈a,g〉z. (4.42)

We endow the space V × C× with G action by

g(x, z)→ (gx, ei〈a,g〉z) (4.43)

where C× = C \ {0}. After these preparation, we can state the correspondence.

Theorem There is a bijection between the set

µ−1(a)/G and (V × C×)//aGC (4.44)

where the quotient M//aGC is defined through the equivalence relation

x ∼ y if and only if GC(x, z) ∩ GC(y, z) , ∅ (4.45)

for x, y ∈ M. Moreover, for any point x we can find x0 such that GC(x0, z) = GC(x, z). The
physical interpretation of this theorem will be discussed somewhere by the author.

We can show that the construction of the space Nn, equation (4.28), is none other than the
quotient µC(0)//aGL(n). The theorem above equates this to µC(0) ∩ µR(a)/U(n). We see that
this is precisely the hyperkähler quotient description of non-commutative U(1) instantons.

4.3.5 Residues at fixed points

Using these linear algebraic description, we can easily work out the residue at the fixed
points. The residue is determined by the action of

(eiθ1 , eiθ2) ∈ U(1)2
⊂ SO(4) (4.46)

on the tangent space at the fixed point.
Let us first study the U(1)2 action on the linear data (B1,B2, I, J). We denote by t1 and

t2 the one dimensional representation of U(1)2 respectively acted by eiθ1 and eiθ2 . From the
correspondence to the codimension n ideal, B1 and B2 transform respectively in t1 and t2.
From the constraint [B1,B2] + IJ = 0, IJ should transform in t1t2. The transformation of I and
J themselves does not make any difference to the result. We take I to transform trivially and
J to transform in the representation t1t2.
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s { 1{

1

aY(s)

1

lY(s)

1

Y = (6 ≥ 5 ≥ 2 ≥ 2 ≥ 1)

1

Figure 4.3: a Young tableau and its hook lengths

Consider a fixed point Y on (C2)[n] and its corresponding linear data (B1,B2, I, J). The fact
that Y is fixed under t ∈ U(1)2 means that there is a GL(n) transformation φ(t) such that

φ(t)B1φ(t)−1 = t1B1, (4.47)

φ(t)B2φ(t)−1 = t2B2, (4.48)
φ(t)I = I, (4.49)
Jφ(t) = t1t2J. (4.50)

This map φ defines a homomorphism U(1)2
→ GL(n) and makes Cn into a representation of

U(1)2. The representation content is determined from the correspondence to the codimension
n ideal, and the result is

Cn =
⊕
(i, j)∈Y

t1− j
1 t1−i

2 . (4.51)

We now move on to the study of the tangent space. We need to introduce some notation
about the Young tableaux to state the results. Define for a Young tableau its arm length and
leg length by

aY(s) = yi − j, (4.52)

lY(s) = yD
j − i. (4.53)

where s = (i, j). The definition is depicted in figure 4.3. The claim is that for a fixed point
labeled by a Young tableau Y,

T(C2)[n]
∣∣∣
Y =

⊕
s∈Y

(
tl(s)+1
1 t−a(s)

2 + t−l(s)
1 ta(s)+1

s

)
. (4.54)

We provide the salient part of the proof. For a data (B1,B2, I, 0) corresponding to a Young
tableaux Y, consider the complex

Hom(Cn,Cn)
p
−→

Hom(Cn, (t1 ⊕ t2) ⊗ Cn)
⊕

Hom(C,Cn)
⊕

Hom(Cn, t1t2C)

q
−→ t1t2Hom(Cn,Cn), (4.55)
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with

p(ξ) =


[ξ,B1]
[ξ,B2]
ξI
0

 , q


b1
b2
i
j

 = [B1, b2] + [b1,B2] + I j. (4.56)

Since p is the differential of the GL(n) action and q is the differential of the constraint [B1,B2]+
IJ = 0, the tangent space at Y can be identified with Kerq/Imp.

Hence, the U(1)2 module structure can be easily written down as a virtual representation

T(C2)[n]
∣∣∣
Y = (t1 ⊕ t2 	 t1t2 	 1)Hom(Cn,Cn) ⊕Hom(C,Cn) ⊕ t1t2Hom(Cn,C). (4.57)

To simplify the expression (4.57) to the desired form (4.54) is a straightforward but tedious
combinatorial exercise. We refer the reader to the lecture notes by H. Nakajima[57].

Nekrasov obtained another suggestive form of the representation content of the tangent
space for diagonal U(1) subgroup U(1) 3 eiθ

7→ (eiθ, e−iθ) ∈ U(1)2. It is

T(C2)[n]
∣∣∣
Y =

⊕
i, j

(tyi−y j+ j−i
	 t j−i). (4.58)

for a Young tableau Y = (y1 ≥ y2 ≥ · · · ). The equivalence of the expression (4.54) and (4.58)
can be proved with some efforts.

4.3.6 Contribution of a hypermultiplet

From the data, one can finally obtain the partition function of a hypermultiplet in the Ω
background. Applying the fixed point theorem using the data obtained in (4.58), the answer
is

Z j=0(0) =
∑

Y

∏
s∈Y

1

1 − tl(s)+1
1 t−a(s)

2

1

1 − t−l(s)
1 ta(s)−1

2

. (4.59)

The equality of the infinite series (4.59) and the infinite product (4.21) can be proved by
utilizing the free fermions[60, 61]. Let us briefly review the derivation. We restrict the
argument for the case when t1 = t−1

2 = q.
Firstly, introduce the vertex operator on a boson Fock space

Γ±(tn) = exp(
∑

n
tnα±n). (4.60)

Γ+ is the conjugate of Γ− and they satisfy the relation

Γ+(tn)Γ−(sn) = exp(
∑

n
ntnsn)Γ−(sn)Γ+(tn). (4.61)

We further introduce the notation

V±(xi) = Γ±(tn =
1
n

∑
xn

i ). (4.62)

They satisfy the commutation relation

V+(xi)V−(yi) =
∏
i, j≥1

1
1 − xiyi

V−(yi)V+(xi). (4.63)
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Secondly, recall that a Young tableau Y naturally define a free fermion state |Y〉. We define
the quantum dimension of a Young tableau Y by the formula

dimqY = 〈Y|V−(xi = q−i+1/2) |0〉 . (4.64)

We can show that the equation (4.59) can be rewritten as

Z j=0(0) =
∑

Y

|dimqY|2 = 〈0|V+(xi) |Y〉 〈Y|V−(xi) |0〉 . (4.65)

Since the bases |Y〉 span a complete orthonormal set, we can evaluate the above equation to

= 〈0|V+(xi)V−(xi) |0〉 (4.66)

=
∏
i, j≥1

1
1 − xix j

〈0|V−(xi)V+(xi) |0〉 (4.67)

=
∏
n≥1

(
1

1 − q−n

)n

. (4.68)

This matches with the equation (4.21).

4.4 Super Yang-Mills on the Ω background

Let us utilize the considerations above to the calculation of the exact prepotential of Yang-
Mills theories with eight supersymmetries. The argument in the previous section tells us
that, in order to calculate the graviphoton-corrected prepotential for the super Yang-Mills
theory, it just suffices to put the theory on the Ω background and evaluate its equivariant
index. Since the super Yang-Mills theory has some moduli and the prepotential is a function
of them, we need to encode the information to the five-dimensional setup.

Four dimensional N = 2 pure SU(N) Yang-Mills theory has N − 1 complex parameters
as its moduli. They correspond to N − 1 real scalars and N − 1 Wilson lines around the
fifth direction when the theory is considered as coming from the Kaluza-Klein reduction
of the five-dimensional theory. These are combined into N − 1 complex variables and the
prepotential is a holomorphic function of them because of the supersymmetry. Thus, it
suffices to introduce only the vacuum expectation values for real scalars or only the Wilson
lines. It turns out to be easier to include the Wilson line to our setup. With Wilson lines
turned on, the partition function we should compute becomes

Z = Tr(−)Fe−βHeiβΩµν Jµνeiβai Ji , (4.69)

where Ji is generators of the Cartan subgroup of the global gauge rotations. We can anticipate
that ai turn out to be the special coordinates, since a hypermultiplet with unit charge in five
dimensions gives a massive hypermultiplet in four dimensions with mass proportional to
the Wilson line. Denote by g = eiβΩµν Jµνeiβai Ji and TN+2

⊂ SO(4) ×U(N) the Cartan torus.
To extract four-dimensional result, we need to take β → 0 with Ωµν and ai fixed. Taking

Ωµν → 0, we should be able to calculate the exact low-energy prepotential of the N = 2 pure
SU(N) Yang-Mills theory. We will see later in this chapter that the outcome exactly matches
with the weak-coupling expansion obtained in (3.3.2) . By a further trick, we can see the
Seiberg-Witten curve directly emerging in the instanton calculation.
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We argued above that in order to obtain the effective prepotential, we have to calculate
the SO(4) ⊗ U(n) equivariant index of the quantum field theory. We now go on to study
the supersymmetric quantum mechanics that calculates the index. Firstly, the configuration
space ⊃ A /G can be divided according to the instanton number. Lowest energy states in
each topological sector is the (anti-)self-dual configuration. Hence, as a first approximation
we take the instanton moduli space as the target space of the quantum mechanical system.
Index theorem tells us that on the k-instanton moduli has real 4Nk dimension and has real
4Nk adjoint fermion zero modes. Thus, the supersymmetric quantum mechanics we consider
has MN,k as the target space and the Hilbert space is the sections of the spin bundle of MN,k.
We can argue that there are no higher order correction to the equivariant index, along the
lines presented in [9, 62].

Hence, the instanton contribution to the partition function is that

ZΩ =
∑

k

e−βτkIndgMN,k. (4.70)

The equivariant index of a manifold can be calculated using the fixed point theorems reviewed
in section 2.4. Thus, the calculation of the instanton correction has been reduced to the study
of the fixed points and the action of g around them.

4.4.1 Enumeration of the fixed points

Let us now study the fixed points and their residues. The manifolds MN,k are obtained by an
hyperkähler quotient construction starting from the vector space X as described in section
1.2.2. First we have to learn how g acts on X.

SO(4) ×U(N) action on X

We concentrate on the action of the Cartan torus U(1)2
×U(1)N. We take U(1)2

3 (eiθ1 , eiθ2) to
act on the coordinates (z1, z2) ∈ R4 as

z1 → eiθ1z1, z2 → eiθ2z2. (4.71)

From the construction of the ASD connection, eq (1.24), we see that B1 and B2 should be
given the transformation

B1 → eiθ1B1, B2 → eiθ2B2. (4.72)

Hence, the combination IJ should transform as IJ → eiθ1+iθ2IJ. The transformation of indi-
vidual parts I and J is immaterial to the final result and hence we could choose arbitrarily.
From the viewpoint of the hyperkähler structure, it seems more natural to assign I and J the
transformation I → ei(θ1+θ2)/2I and J → ei(θ1+θ2)/2J. It is more convenient, however, to assign
J→ ei(θ1+θ2)J and leaves I→ I.

The U(N) action is straightforward. W ∼ Cn transforms as a fundamental representation
under U(N) and V ∼ Ck is left intact. This determines all the transformation properties. We
denote the one dimensional representations in the decomposition of W

W = α1 ⊕ α2 ⊕ · · · ⊕ αN (4.73)

where α = eiβai .
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Fixed points

We study fixed points in MN,k following [15]. A g fixed point in MN,k comes from a U(k) orbit
in X which is fixed by g. Put differently, an element X ∈ X descends to a fixed point in MN,k
only if there is some element φ(g) ∈ u(k) such that

gX = φ(g)X. (4.74)

Further, in order to descend to a fixed point in MN,k, these should satisfy

[B1,B2] + IJ = 0. (4.75)

It is clear that φ(g) defines a homomorphism from U(1)2
×U(1)N to U(k).

Recall that the space V naturally carries an action of U(k). We can introduce an action
of U(1)2

× U(1)N through the homomorphism φ. Let us decompose V into its irreducible
representation, i.e. eigenspaces of g:

V = V0 ⊕
⊕

i

Vi, (4.76)

where where U(1)N acts on Vi as αi. V0 is the part of V where U(1)N acts in some other
representation.

The condition (4.74) means that the operators

B1,B2 : V → V, I : W → V, J : V →W. (4.77)

do not change U(1)N representation. An inspection shows that Vi ⊕Wi for i = 1, . . . ,N and
V0 themselves form a linear ADHM datum for a fixed point in M1,dimVi . That is, B1, B2, I,
J restricted on the respective vector space satisfy the conditions (4.28). From the stability
condition, V0 must be empty. Thus, the analysis is reduced to the classification of the fixed
points for U(1) gauge group. We know that instantons in U(1) gauge theory are all singular.
Hence the fixed points correspond to the singular gauge configurations. We need to introduce
noncommutativity to resolve the singularity.

But notice here that after the resolution of singularities, the fixed point in M1,dimVi '

(C[dimVi]) is none other than the fixed points in (C2)[n], the Hilbert scheme of points on C2.
These were already classified in section 4.3.5 ! Hence we immediately obtain the classification
of the fixed points. A fixed point can be labeled by a N-tuple of Young tableaux (Y1, . . . ,YN).

4.4.2 Residues at Fixed Points; Nekrasov’s Formula

Next, we study the action of g on the tangent space at the fixed point. The tangent space can
be studied just as in section 4.3.5. Let us first express the tangent space as a cohomology of a
chain complex:

Hom(V,V)
p
−→


(t1 ⊕ t2) ⊗Hom(V,V)

⊕

Hom(W,V) ⊕ t1t2 ⊗Hom(V,W)

 q
−→ t1t2Hom(V,V) (4.78)

where

p(ξ) =


[ξ,B1]
[ξ,B2]
ξI
−Jξ

 , q


b1
b2
i
j

 = [B1, b2] + [b1,B2] + I j + iJ. (4.79)
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Note that p is the differential of the U(k) action and that q is the differential of the constraint
µC − ζC = 0 in order to see that Kerq/Imp is indeed the tangent space at the fixed points.
As the actions of U(1)2

×U(1)N on various factors are trivially known, the module structure
of the tangent space is known by adding and subtracting those factors. Firstly, Kerq/Imp is
decomposed according to the U(1)N action as

⊕
i, j(Kerqi j/Impi j), where pi j and qi j are the the

restriction of p and q onto the subspace:

Hom(Vi,V j)
pi j
−→

(t1 ⊕ t2) ⊗Hom(Vi,V j)
⊕

Hom(Wi,V j) ⊕ t1t2Hom(Vi,W j)

qi j
−→ t1t2Hom(Vi,V j). (4.80)

The analysis of Kerqi j/Impi j is a direct extension of the analysis presented in section 4.3.5.
The result is

Kerqi j/Impi j = α jα
−1
i ⊗

⊕
s∈Yi

(t
−lYj (s)

1 t
aYi (s)+1
2 ) ⊕

⊕
s∈Y j

(t
lYi (s)+1
1 t

−aYj (s)

2 )

 (4.81)

Hence, we finally get the complete five-dimensional partition function:

Z =
∑

k

qk
∑

(Y1,...,YN),
∑

#Yi=k

∑
i, j

∑
s∈Yi∪Y j

1

1 − αiα−1
j t
−lYj (s)

1 t
aYi (s)+1
2

1

1 − αiα−1
j t

lYi (s)+1
1 t

−aYj (s)

2

(4.82)

This can be further simplified to the form originally calculated by Nekrasov, for the special
case t1t2 = 1:

Z =
∑

k

qk
∑

(Y1,...,YN),
∑

#Yi=k

∑
i, j

∑
s∈Yi∪Y j

1

sinh β
2 (ai − a j + ε(−lY j(s) − aYi(s) − 1))

1

sinh β
2 (ai − a j + ε(lYi(s) + aY j(s) + 1))

(4.83)

=
∑

k

qk
∑

(Y1,...,YN),
∑

#Yi=k

∑
(i,m),( j,n)

sinh β
2 (ai − a j + ε(yi,n − y j,m +m − n))

sinh β
2 (ai − a j + ε(m − n))

(4.84)

Taking the four-dimensional limit β→ 0 with ai and ε fixed, we get the result

Z =
∑

k

Λ2Nk
∑

(Y1,...,YN),
∑

#Yi=k

∑
(i,m),( j,n)

(ai − a j + ε(yi,n − y j,m +m − n))
(ai − a j + ε(m − n))

(4.85)

4.4.3 Comparison against Seiberg-Witten theory

We have finally obtained the all-instanton result for the prepotential. Let us compare it
against the result obtained from the Seiberg-Witten curves, section 3.3.4. Firstly we have to
extract the prepotential from equation (4.85). As is argued in section 4.2.1, the answer is

F = lim
ε→0

ε2 log Z. (4.86)



4.5. Integral representation on the ADHM data 63

We can calculate the instanton correction explicitly. Up to two instantons, the answers are

F (1) =
1
2

∑
l

∏
k,l

1
(ak − al)2 , (4.87)

F (2) =
1
4

∑
l

∑
k,l, m,l

1
ak − al

1
am − al

∏
k,l

1
(ak − al)2

+
3
8

∑
l

∑
k,l

1
(ak − al)2

∏
k,l

1
(ak − al)2

+
1
4

∑
l,m

1
(al − am)2

∏
k,l

1
(ak − al)2

∏
k,m

1
(ak − am)2 . (4.88)

These expressions exactly agree with the result obtained in section 3.3.4, equation (3.91).We
will see in the following sections that they agree to each other to arbitrarily high order by
extracting the curve from the Nekrasov’s formula.

4.5 Integral representation on the ADHM data

There is another method of computation of the graviphoton-corrected prepotential. We
review in this section the method pioneered by Moore, Nekrasov and Shatashvili[63]. For a
mathematically precise exposition, we refer the reader to [64].

First, take the four-dimensional limit and express the partition function as

Z4 dim.
Nekrasov =

∑
k

Λ4Nk
∑
f.p. p

∏
weights wi of g action on TM|p

1
wi

(4.89)

=
∑

k

Λ4Nk
∫

MN,k

eω+H (4.90)

=
∑

k

Λ4Nk
∫

MN,k

dxdψeω+H (4.91)

In the second line we used the Duistermaat-Heckmann theorem. Recalling that MN,k =
µ−1ι(ζi)/U(k), we can enlarge the domain of integration to the entire µ−1ι(ζi):∫

MN,k

dxdψeω+H =

∫
µ−1ι(ζi)

dxdψ
∫

dφ
volU(k)

dφ̄dη e+(w+Hφ)+H (4.92)

Here φA and φ̄A takes value in the Lie algebra u(k), VA is the vector field of actions of U(k)
on µ−1ι(ζ), and Hφ is the Hamiltonian generating VAφA. That this equality holds can be seen
from the expansion

D(gµνψµVν
Aφ̄

A) = gµνφAVµ
AVν

Bφ̄
B + gµνψµVν

Aη
A. (4.93)

The first term quadratic in φ and φ̄ can be trivially integrated out. The second term serves to
eliminate extra fermions ψ along the symmetry direction Vν

Aη
A.
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Secondly, let us express the integration over the inverse image of the moment mapµusing
the delta functions. By further rewriting the delta functions using Fourier transformation,
we get the representation for the equivariant index as an integral over all of X:

RHS of (4.92) =
∫

dφ
volU(k)

∫
X

dxdψ
∫

dφ̄dηd~χd~HeD(~χ·(~µ−~ζ))+D(gψVφ̄)+ω+Hφ+H (4.94)

where ~χ are triplets of fermions taking value in u(k) and ~H is their superpartners. This
equation can be proved by inspecting that the first term of

D(~χ · (~µ − ~ζ)) = ~H · (~µ − ~ζ) + ~χ ·D~µ (4.95)

gives the Fourier transformation of the delta functions and the second term provides the
associated Fadeev–Popov determinant. We rewrite the result (4.94) a little by decomposing
various vectors as ~a = (aC, aR). Then, the quartet φ̄, η, χR,HR can be trivially integrated out
by the introduction of the mass term tD(χRφ̄) with t very large.

Inspecting the last expression, we see that when ζC = 0, the Duistermaat-Heckmann
theorem can be applied to the integration over the supermanifold spanned by X and χC. As
the supermanifold is a vector space and the action of the U(k) and g are linear, the only fixed
point is at the origin. Hence the contribution from the origin can be readily evaluated with
the result

RHS of (4.94) =
∫

u(k)
dφ

detχC(φ + J)
detX(φ + J)

(4.96)

Finally, noticing the integrand is invariant under the conjugation by U(k) acting on φ, we
can reduce the region of integration onto the Cartan subalgebra Rk. The Vandermonde
determinant appears in the integrand to ensure the size of the orbit passing through a point
in Rk. Combining all these consideration, we get

Z4.dim
Nekrasov =

∑
k

Λ4Nk
∫ ∏

I

ε1 + ε2

ε1ε2

dφI

P(φI)P(φI + ε1 + ε2)

∏
I,J

φIJ(φIJ + ε1 + ε2)
(φIJ + ε1)(φi j + ε2)

, (4.97)

where we introduced the notation φIJ ≡ φI − φJ. We can evaluate the integral using the
generalization of Cauchy’s integration formula, and it reproduces the fixed points and the
residues described in section 4.4.2. However, we follow another path from here, inspired by
an interpretation of the result (4.97) as a grand canonical ensemble of particles, with position
φi, are interacting with each other inside a external potential. We will see that the Seiberg-
Witten curves arise naturally from the consideration of the classical limit in the expression
(4.97).

4.6 Dynamics of eigenvalues

This section reviews the solution of the dynamics of the particle system described by the
equation (4.97). We follow closely the original article[14]. First, let us rewrite the equation
(4.97) using the eigenvalue density

ρ(φ) =
1
ε

∑
i

δ(φ − φi). (4.98)
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Y = (4 ≥ 2 ≥ 1)

1

x

1

fY(x)

1

Figure 4.4: Definition of fY(x)

In the limit ε→ 0, the result is

Z4dim
Nekrasov =

∫
[dρ] exp(−Einst[ρ]/ε2) (4.99)

where

Einst[ρ] =
∫

dxdy
ρ(x)ρ(y)
(x − y)2 + 2

∫
dxρ(x) log

(
P(x)2

Λ2N

)
. (4.100)

This action describes a grand canonical ensemble of particles on a one-dimensional line
interacting with themselves by a two-body potential

−
1

(φ1 − φ2)2 (4.101)

in an external potential
log P(φ)2/Λ2N. (4.102)

The dynamical scale Λ corresponds to the chemical potential for an eigenvalue in this de-
scription.

As argued in section 4.2.1, the prepotential of the system in the absence of graviphoton
correction is given by

F0 = − lim
ε→0

ε2 log Z4dim
Nekrasov. (4.103)

Combined with the equation (4.99), we see that F0 is equal to E[ρmin] for a density profile
ρmin which minimizes the energy. This can be solved by utilizing a Riemann surface as usual
for such a saddle point equation.

Energy functional from the residues at fixed points

Before solving the minimization problem, let us check that the same energy functional can
be obtained from the Nekrasov’s formula (4.85) which uses N-tuples of Young tableaux.

Firstly, introduce a function fY(x) for a Young tableau Y = (y1 ≥ y2 ≥ y3 ≥ · · · ) by

fY(x) = |x| +
∑

i

(|x − εki + ε(i − 1)| − |x − εki + εi| + |x + εi| − |x + ε(i − 1)|) . (4.104)
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The function describes the shape of the Young tableau as depicted in figure 4.4. For an
N-tuplet of Young tableaux ~Y = (Y1, . . . ,YN), we define

f~Y(x) =
∑

fYi(x − ai). (4.105)

Then, the contribution of the fixed point specified by ~Y can be rewritten as

ZpertZ~Y = exp
(
−

1
4

∫
dxdy f ′′(x) f ′′(y)γε(x − y)

)
(4.106)

where we define the function γε by

γε(x + ε) + γε(x − ε) − 2γε(x) = log
x
Λ

(4.107)

having asymptotic expansion

γε(x) = ε−2γ0(x) + γ1(x) + ε2γ2(x) + · · · . (4.108)

We further defined

Zpert = exp

∑
k,l

γε(al − an)

 . (4.109)

Calculating the limit ε→ 0, we can check

ε2 log(Z~Y) = Einst[ρ] (4.110)

after the identification f (x) = ρ(x) +
∑
|x − al|. We define for convenience

E[ f ] ≡ lim
ε→0

ε2 log(ZpertZ~Y) (4.111)

= Einst[ρ] +
1
2

∑
(ak − al)2 log

((al − ak

Λ

)
−

3
2

)
. (4.112)

As the additional term is independent of ρ, we can consider the minimization problem for
E[ f ] rather than Einst[ρ].

Solution of the minimization problem

We found in the previous sections that the instanton calculation of prepotential can be reduced
to the minimization of the functional E[ f ]. E[ f ] can be expressed as

E[ f ] = −
1
8

∫
dxdy f ′′(x) f ′′(y)(x − y)2

(
log

(x − y
Λ

)
−

3
2

)
(4.113)

where f (x) = ρ(x) +
∑
|x − al| is the shape of Young tableaux. We show below that

FSW(a) =Min f E[ f ], (4.114)

that is, the prepotential obtained by minimization is equal to the prepotential obtained from
the Seiberg-Witten curve.
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For convenience, we first Legendre-transform E with respect to variables a and define

S = E −
∑

l

ξlal. (4.115)

S can be defined as a functional of f by introducing a function

ξ(x) =
{
ξl x is near al
smoothly interpolating otherwise (4.116)

since ∑
l

ξlal =

∫
ξ(x) f ′′(x)dx. (4.117)

We need to use basic relations ∫
x|x − a|′′dx = a (4.118)∫

xρ(x)′′dx = 0 (4.119)

to show this. Thus, after the Legendre transformation, what to minimize is the functional

S[ f ] = −
1
8

∫
dxdy f ′′(x) f ′′(y)(x − y)2

(
log

(x − y
Λ

)
−

3
2

)
+

1
2

∫
ξ(x) f ′′(x)dx (4.120)

We want to show that the value at the minimum is equal to

F D
SW(ξ) =Min f S[ f ] (4.121)

under the identification

al
D = ξl, al =

∂F D
SW

∂ξl
. (4.122)

Let us take the variation of S with respect to f . It results in equation∫
dy(y − x)

(
log

(
|x − y|
Λ

)
− 1

)
f ′′(y) = ξ′(x). (4.123)

Denote the left hand side by g(x) and consider

ϕ(x) = f ′(x) +
g′(x)
πi

. (4.124)

We can depict the function ϕ(x) as in figure 4.5 from the definition of ξ(x) . Furthermore, by
differentiating the both sides of equation (4.124) by x, we obtain

ϕ(x)′ = Imϕ(x)′ + i
∫

dy
x − y

Imϕ′(y). (4.125)

Notice that the right hand side is none other than the Hilbert transform of the real func-
tion f ′′(x), hence the relation is automatically satisfied if and only if ϕ(x) can be extended
holomorphically to z ∈ H the upper half plane and ϕ(x) for x ∈ R is the boundary value of
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ϕ(x)

1

−N

1

−N + 1

1

N

1

N − 1

1

· · ·

1

· · ·

1

Figure 4.5: function ϕ(x)

ϕ(z). The behavior of boundary value of ϕ(z) described in figure 4.5 and the fact that it is
holomorphic is sufficient to determine ϕ(z) completely. Firstly, any holomorphic function
with the behavior depicted in figure 4.5 can be expressed using a polynomial Q(x) and the
solution to the equation

w +
1
w
=

Q(z)
ΛN (4.126)

as
ϕ(z) =

2
πi

log w. (4.127)

This is the same Seiberg-Witten curve we encountered before. To make this look more like
that in equation (3.56), we need to change variables to y = w +Q(x). We have

y2 = Q(x)2 + Λ2N. (4.128)

The mapping among z, w, ϕ as well as its value for z ∈ R is described in figure 4.6.
Then, ξl can be read off from φ using the relation

ξl − ξl−1 =

∫ a−l

a+l−1

(−π)Imϕdx =
∮

Bl−Bl−1

x
dw
w
. (4.129)

The derivative of Min f S[ f ] with respect to ξl is

∂
∂ξl

Min f S[ f ] =
1
2

∫ a+l

a−l

x f ′′(x) =
1

2πi

∮
Al

z
dw
w
. (4.130)

Since
z

dw
w

(4.131)
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w

1-1

2-2

Q(z)

1

Figure 4.6: Mappings

is none other than the Seiberg-Witten prepotential, we have shown that

F D
SW(ξl) =Min f S[ f ]. (4.132)

This is the desired result.

4.7 Effect of the five-dimensional Chern-Simons terms

This part is based on my paper [65].

4.7.1 Relation to the topological string amplitudes

Recently we saw a tremendous achievement in the calculation of all genus topological string
amplitudes on local toric Calabi-Yau threefolds. The development was based on the obser-
vation that the toric Calabi-Yau and the worldsheet configuration in it can be cut using pairs
of branes and anti-branes to C3. Closed string instantons wrapping holomorphic cycles can
be cut into open string instantons. Then the amplitudes for open string worldsheet in C3

is calculated using the geometric transition and its relation to the three dimensional Chern-
Simons theory. The method is called the topological vertex[66]. For a detailed account, we
recommend the reader to consult the master thesis by R. Nobuyama[67] in Japanese.

As is argued almost ten years ago in Antoniadis et al.and in Bershadsky et. al.[68, 69],
the topological string amplitude on a Calabi-Yau M can be physically interpreted as the
graviphoton-corrected prepotential of the type IIA string theory compactified on M. Here
the string coupling in the topological string side should be identified with the square of
the field strength of the graviphoton. Using a non-compact Calabi-Yau, four-dimensional
gravity can be decoupled from the gauge theory. However, as the type IIA string theory
inherently contains eleven-dimensional phenomena, just compactifying the system on a local
toric Calabi-Yau with finite Kähler parameters does not produce genuine four-dimensional
theory. Rather it gives a certain five-dimensional theory, obtained by compactifying M-theory
on local toric Calabi-Yau M. In order to reproduce the four dimensional result, we need to
take some controlled limit of various Kähler parameters of M.
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From extensive works of Vafa and collaborators on the geometric engineering of N = 2
gauge theory in four dimensions, we know the toric Calabi-Yau X that should be used to
produce pure four-dimensional U(N) N = 2 supersymmetric gauge theory[70, 71]. There
are several of them, labeled by a integral parameter m. We denote them Xm

N. In the original
works of Vafa et.al., the authors showed that taking suitable limits the topological amplitudes
reproduce the celebrated prepotentials of Seiberg and Witten.

Now, we are in a rare situation that using the method of topological vertex, we can obtain
the all-genus topological A-model amplitudes for the local Calabi-Yau manifolds Xm

N with
Kähler parameters being finite, and compare them to the exact result of five dimensional
gauge theory. On the topological string side, the calculation was originally carried out by
Iqbal and Kashani-Poor with some simplifying mathematical hypothesis. Later Eguchi and
Kanno [60, 61] proved the hypothesis and extended the calculation to more general toric
Calabi-Yau manifolds. On the gauge theory side, we have the conjecture made by Nekrasov.
His calculation was carefully reviewed in the previous sections.

The outcome was somewhat surprising. Of the topological amplitudes for Xm
N , only

one of them, that for X0
N, coincided with the result by Nekrasov. This naturally leads to the

question: how do the five dimensional theories obtained by compactifying M-theory on Xm
N

differ from each other, and how can we reproduce the topological A-model amplitudes in
the gauge theory side, à la Nekrasov?

The first part of the question is, in fact, already answered in the literature. The answer to
the second part is our original contribution. After reviewing the answer to the first part, we
will see that by slightly extending the analysis by Nekrasov we can obtain the graviphoton-
corrected prepotential of five-dimensional gauge theory corresponding to Xm

N. The results
exactly match with those obtained by Iqbal and Kashani-Poor.

4.7.2 Triple intersection and the Chern-Simons terms

Firstly we recall the generic structure of five dimensional N = 1 supersymmetric Yang-Mills
theory[72]. This will tell us how the M-theory compactification gives us different gauge
theories with the same gauge group.

Since a five dimensional N = 1 gauge theory yield a four dimensional N = 2 gauge
theory by a simple dimensional reduction, the five dimensional U(1)n theory can also be
summarized by a holomorphic prepotential F . We saw in section 3.1.1 that this leads to the
following scalar dependent gauge coupling

∝
∂2F

∂ai∂a j
F+i ∧ F+j (4.133)

This in particular includes the scalar dependent θ-term(
Re

∂2F

∂ai∂a j

)
Fi ∧ F j. (4.134)

In five dimension, however, part of the scalar comes from a component of gauge field along
the fifth direction. Thus the term above is of the form

f (Ak,5)Fi ∧ F j, (4.135)
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thus it is seldom gauge invariant since it contains the gauge potentials A directly. Only
when f (Ak) is linear in the gauge potential it becomes gauge invariant, since the term forms
a five dimensional Chern-Simons term in such cases. This means that the prepotential is a
polynomial of degree up to three, F = ci jkaia jak + τi jaia j. This gives the Chern-Simons term∫

ci jkAi ∧ F j ∧ Fk (4.136)

for the five dimensional N = 1 U(1)n gauge theories.
Secondly let us see how the coefficients ci jk is determined from the geometric data, when

the theory is realized by a M-theory compactification. When M-theory is ‘compactified’ on
a Calabi-Yau manifold, it should yield a theory with eight supersymmetries. This is because
the Calabi-Yau geometry breaks three fourths of original thirty-two supersymmetries. Fur-
thermore, we need a non-compact manifold in order to decouple the field theory from the
gravity. For this reason we put a quotation marks around the word ‘compactified’ above.
In this setup, five dimensional vector fields Ai come from the three form field C(3) of the
eleven dimensional supergravity reduced along two cycles Ci in the Calabi-Yau, Ai =

∫
Ci

C(3).
The five dimensional Chern-Simons term (4.136) comes directly from the eleven dimensional
Chern-Simons coupling ∫

C(3)
∧ (dC)(4)

∧ (dC)(4). (4.137)

Thus we see that the coefficient ci jk is none other than the triple intersection of (the Poincaré
duals of) two cycles Ci.

Calabi-Yau space can develop singularities when the Kähler parameters are suitably
chosen. When the Calabi-Yau space develop an ADE singularity through the collapse of two
cycles, there appears enhanced non-abelian gauge symmetry corresponding to the ADE type
of the singularity. The W-bosons corresponding to the roots of the gauge group is provided
by the M2-brane wrapped around the collapsed cycles. In such cases, the Chern-Simons
coupling (4.136) should be likewise enhanced to the non-abelian version CS(A,F) which is
defined through the decent construction

dCS(A,F) = tr(F ∧ F ∧ F) (4.138)

where F is the non-abelian field strength. Moreover, Intriligator et. al. [73] studied the
geometry of general Calabi-Yau manifolds which give rise five dimensional SU(N) theory
and showed that the triple intersection is determined up to the coefficient of this non-abelian
Chern-Simons terms.

Iqbal and Kashani-Poor studied M-theory compactification on local toric Calabi-Yau
manifolds Xm

N. We collect here relevant facts on those manifolds without proof. For more
detailed account please refer their article [71].

Xm
N is a fibration of AN−1 singularity over the base CP1. It contains a sequence of compact

divisors

Si(m) ∈ {Fm+2−N,Fm+4−N, . . . ,Fm+N−2} (4.139)

Here Fn denotes the Hirzebruch surface. The Hirzebruch surface Fm is a CP1 fibration over
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the CP1 with the intersection pairing

CP1
base · CP

1
base = m, (4.140)

CP1
base · CP

1
fiber = 1, (4.141)

CP1
fiber · CP

1
fiber = 0. (4.142)

An AN−1 singularity contains at the tip N − 1 CP1’s C1, . . . ,CN−1 with intersection pairing
Ci · Ci+1 = 1. The divisor Si of Xm

N is the fibration of Ci over the base CP1.
The prepotential is given by the formula

Fm =
1
2

∑
i, j

|ai − a j|
3 +m

∑
a3

i (4.143)

where
F =

∑
i, j,k

(ai+1 + · · · + aN)(a j+1 + · · · + aN)(ak+1 + · · · + aN)(Si · S j · Sk). (4.144)

From these expressions we see that the label m of Xm
N is exactly proportional to the magnitude

of the five dimensional Chern-Simons term.

4.7.3 Calculation à la Nekrasov

Let us now investigate what are the effect of five-dimensional Chern-Simons terms on the
calculation à la Nekrasov. The setup is essentially the same as in section 4.4. We put the
theory on theΩ background and we encode the moduli of the theory by introducing Wilson
lines along the fifth direction. The determination of the Q-fixed configuration is also the
same; it localizes the calculation to that on trajectories in the moduli of ASD instantons.
The calculation is now reduced to that of supersymmetric quantum mechanics on the ASD
instanton moduli space. The difference lies in the Hamiltonian of the quantum mechanical
system. The Lagrangian of the quantum mechanical system is obtained by substituting the
gauge field in the five-dimensional action by corresponding anti-self-dual configurations
specified by the trajectory in the moduli space. The Yang-Mills action gives the kinetic term
for the point particle moving on the ASD moduli, and the Chern-Simons term gives a phase
depending on the trajectory:

em
∫

CS(A,F) = eim
∫

dxµAµ (4.145)

The point particle is now coupled with an external vector potential on the instanton moduli.
Therefore, the exact partition function of the theory put on the Ω background is

Z =
∑

k

qNkIndg(MN,k,L
⊗m) (4.146)

where L is the complex line bundle determined by the phase from the Chern-Simons term
with coefficient one. In view of the fixed point theorem reviewed in section 2.4, the precise
understanding of the line bundle L gives the answer.

The line bundle L has, in fact, long been known to physicists. It is the so-called de-
terminant bundle DetD

/
. The determinant line bundle is defined on the space of connec-

tions A /G and the fiber at a configuration A is defined by (detKerD
/

A
)∗ ⊗ detKerD

/
†

A
where
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DA : Γ(S−⊗E)→ Γ(S+⊗E) is the chiral Dirac operator coupled to the connection A. When the
base space is restricted on the ASD moduli space, it can be simplified to (detKerD

/
A

)∗ because
we know that there are no positive chirality zero modes. Close relation between the deter-
minant line bundle and the Chern-Simons terms is known from the work of Alvarez-Gaumé
and Ginsparg [74] on the geometric reinterpretation of non-abelian anomalies. For the direct
construction of the hermitian metric and connections on the determinant line bundle we
refer the reader to the exposition of Bismut and Freed[75]. In reality we need to blow up the
small instanton singularity in the ASD moduli using spacetime non-commutativity. Hence
we need the non-commutative extension of all these familiar facts. Fortunately every detail
we need is already worked out by various groups following the seminal work of Seiberg and
Witten on noncommutativity[30]. We refer the reader the work [76, 77] for noncommutative
extension of the relation of non-abelian anomalies and the index theorem in six dimesions,
and the work [78] for the study of the Dirac zero modes in the non-commutative instanton
background.

Now that we have clear understanding on the nature and the structure of the line bundle
L , we can complete the calculation. Using the Atiyah-Bott-Lefschetz fixed point formula, or
the localization to the supersymmetric quantum mechanics if we prefer the physics language,
we can rewrite the equivariant index as

Indg(MN,k,L
⊗m) =

∑
f.p. p

eimw
∏

gi

1

sinh β
2 gi

(4.147)

where gi denotes the eigenvalue of g on the tangent space TMN,k|p and w denotes the eigen-
value of g action on the fiber L ⊗m

|p. As seen in the previous subsection, L is none other than
the determinant line bundle of the Dirac operator coupled to the ASD connection. Recalling
that generically there are no wrong chirality zero-modes in the ASD background, the fiber
at p is the highest exterior power of the kernel of the Dirac operator. Thus, to determine the
weight w, we have to determine the action of g on the Dirac zero-modes.

Fortunately, we know already the location of the fixed points on the instanton moduli
space, and we know how to construct the Dirac zero-modes from the ADHM data. As seen
in section 4.4.1, the ADHM data Xp itself is not invariant under the action of g, it maps Xp to
a datum equivalent under U(k) transformation φ:

gXp = φ(g)Xp. (4.148)

We know from the analysis in section 1.2.2 that U(k) acts on the 4k Dirac zero-modes on the
k-instanton background in the fundamental representation. These arguments show that the
action of g on the zero-modes can be traded to the action of φ(g). Moreover, the action of
φ(g) is already determined in section 4.4.1 and the weight w can be readily computed

w =
∑

k

∑
(i, j)∈Yk

(ak + ε(i − j)) ≡
∑

k

(
lYkak + κk

)
(4.149)

where (Y1, . . . ,YN) is the N-tuplets of Young tableaux specifying the non-commutative in-
stantons invariant under the action of g. We denoted by li the number of boxes in Yi and∑

(i, j)∈Yi

(i − j) (4.150)
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by κi.
Finally we get the partition function for the five-dimensional theory with non-abelian

Chern-Simons term on the Ω-background:

Z =
∑

Y1,...,YN

φ
∑

i lie−mβ
∑

(liai+κi)
N∏

l,n=1

∞∏
i, j=1

sinh β
2 (aln + ε(yl, j − yn,i + j − i))

sinh β
2 (aln + ε(yl, j − yn,i))

. (4.151)

We defined ai j = ai − a j for brevity.

4.7.4 Comparison with the topological A-model amplitudes

Let us compare what we have obtained à la Nekrasov against the topological A-model
amplitudes for local toric Calabi-Yau manifolds Xm

N. Combining the equations (67,68,69,78)
in the article by Iqbal and Kashani-Poor[71], the amplitude is

Ztopological =
∑

Y1,...,YN

2−2N
∑

lYi (−)(N+m)
∑

lYi q
1
2
∑N

i=1(N+m−2i)κiQ
∑

li
B ×

b
N+m−1

2 c∏
i=1

Q(N+m−2i)(l1+···+li)
i

N−1∏
i=bN+m+1

2 c

Q(2i−m−N)(li+1+···+lN)
i

N−1∏
i=1

Q−(N−i)(l1+···+li)−i(li+1+···+lN)
bi

× q−
1
2
∑N

i=1(N−2i)κi

N∏
l,n=1

∞∏
i, j=1

sinh β
2 (aln + ε(yl, j − yn,i + j − i))

sinh β
2 (aln + ε(yl, j − yn,i))

(4.152)

where QB and Qi = e−β(ai−ai+1) are respectively the exponential of the Kähler parameters of the
base divisor and the divisors Si. Define aN by

e−βaN = −

QB

b
N+m−1

2 c∏
i=1

Q−i
i

N−1∏
i=bN+m+1

2 c

Q−(N−i+m)
i


1
m

. (4.153)

Then, after reshuffling the various factors with some effort, one finds that

Ztopological =
∑

Y1,...,YN

(−4)N
∑

lie−mβ
∑

(liai+εκi)
N∏

l,n=1

∞∏
i, j=1

sinh β
2 (aln + ε(yl, j − yn,i + j − i))

sinh β
2 (aln + ε(yl, j − yn,i))

. (4.154)

Now we can see this exactly matches with the calculation of the gauge theory side à la
Nekrasov. This is the desired result.
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Conclusion

In this master thesis, we reviewed the development in the last two years on the instanton
calculation of prepotentials using localization. The calculation consisted of three main points.
The first is the identification of the (graviphoton-corrected) prepotential with the logarithm
of the partition function on the Ω background. The second ingredient is the rephrasing of
the partition function as the equivariant indices of the instanton moduli. The third one is
the detailed understanding of the instanton moduli and fixed points on it using the ADHM
description. We saw that the resulting formula precisely matched with the prepotential
obtained from the Seiberg-Witten curves. This presented a good consistency checks for both
the strong coupling holomorphy calculation à la Seiberg and Witten and the weak coupling
instanton calculation à la Nekrasov.

In hindsight, the mathematical machinery needed for the Nekrasov formulae was well
prepared already twenty years ago. Hence, the first two preparatory chapters consisted of
somewhat old materials. These works were done mainly by M. Atiyah and his collaborators.
It is fun to imagine what would have happened if they calculated the equivariant index
of the ADHM moduli spaces. They could have found the integrable structures in the K-
theory of those spaces. Of course people would not do anything without a good motivation.
However, the author personally thinks that the recent development tells us that there may be
more physically interesting topics to be uncovered, which is hidden in the well-understood
mathematical tools and machineries.

A few natural extension of these works come to our mind. One is the generalization to
more general gauge groups and matter representations. Extension for the classical gauge
groups with fundamental or adjoint hypermultiplets have essentially been done in the orig-
inal works. The extension to the exceptional groups is a more challenging task. It will be
interesting to study its relation with the Seiberg-Witten geometry for the exceptional groups.
Another is the generalization of the geometry of the spacetime. In this review we treated
the case of R4. In order to apply the localization theorem we need manifolds with two
commuting isometries. If we further assumes the spacetime to be Kähler, it means that we
should deal with toric two-folds. For CP2 and its one-point blowups, the analysis was done
by Nakajima and Yoshioka [15] and they showed the WDVV equation from these considera-
tion. The study of more generalization and its relation to the integrable structure seem very
fruitful.

An exciting development concerning the Nekrasov’s formula that we could not fully cover
in the thesis is the relation to the topological strings. The point is that the five dimensional

75
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extension of the Nekrasov’s formula and the all-genus partition function of the topological
strings completely agree for cases which can be computed on both sides. It will be worth while
to establish the equality for M-theory compactifications on general local toric Calabi-Yau
manifolds. For that purpose, it will be necessary to understand the topological vertex directly
in the four-dimensional gauge theory side, and to calculate them using the localization. From
the works of Ooguri and Vafa [79], we know that the topological vertex should correspond
to the N = 1 gauge theory in four dimensions. Hence we must first extend the localization
calculation to the N = 1 gauge theory. This suggests strong relation with the Dijkgraaf-Vafa
method[80, 81]. It will be very interesting to compare the approach of Nekrasov and that
of Dijkgraaf and Vafa. Moreover, we need to understand the propagator of the topological
Feynman rules in the four-dimensional gauge theory. This also is worth while to pursue.
Finally, we would like to note that in the toplogical Feynman rules we construct closed string
amplitudes from open string amplitudes. If this can be translated to physical strings naı̈vely,
it should mean that we could construct a N = 2 gauge theory by sewing several N = 1
gauge theories. This sounds very intriguing and we hope that the study in these directions
will yield a better understanding of the restoration of supersymmetry after brane-antibrane
annihilation.
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