On some conjectures on VOAs

Yuji Tachikawa

February 1, 2013

In [1], a lot of mathematical conjectures on VOAs were made. Here, we'll provide a more mathematical translation, along the lines of [2]. I'm sure that I used many notations not common in the VOA literature; please point them out. I'm willing to make this as readable as possible for VOA theorists.

1 Category \mathbb{V}

In the following, a VOA always stands for vertex operator super-algebra $\mathcal{V} = \bigoplus_n \mathcal{V}_n$, $\mathcal{V}_n = \mathcal{V}_{n,+} \oplus \mathcal{V}_{n,-}$. The grading n is over integers and half-integers. The part $V_{\pm} = \bigoplus_n \mathcal{V}_{n,\pm}$ are called bosonic and fermionic, respectively.

Given two VOAs \mathcal{V}_1 and \mathcal{V}_2 , we denote its product by $\mathcal{V}_1 \times \mathcal{V}_2$. We denote the zero mode of a field $\phi(z)$ by ϕ_0 .

Given a VOA \mathcal{V} with a homomorphism $\phi: \hat{\mathfrak{g}} \to \mathcal{V}$, let us denote by $\mathcal{DS}(\mathcal{V}, \mathfrak{g}, e)$ obtained by the quantum Drinfeld-Sokolov reduction of \mathcal{V} with respect to the affine algebra $\hat{\mathfrak{g}}$ and a nilpotent element e of \mathfrak{g} .

Again, given a VOA $\mathcal{V} = \bigoplus_n \mathcal{V}_n$ with a homomorphism $\phi : \hat{\mathfrak{g}} \to \mathcal{V}$, we define its character ch $\mathcal{V}(z)$ for $z \in G$ where G is a simply-connected group for the Lie algebra \mathfrak{g} by

$$\operatorname{ch} \mathcal{V}(z) = \sum_{n} q^{n} \operatorname{Str}_{\mathcal{V}_{n}} z. \tag{1.1}$$

We consider the following category \mathbb{V} :

• Its objects are VOAs of the form

$$\prod_{i=1}^{n} \hat{\mathfrak{g}}_{i,-h^{\vee}(\mathfrak{g}_i)} \tag{1.2}$$

where \mathfrak{g}_i is a simple Lie algebra, $\hat{\mathfrak{g}}_k$ is the affine Lie algebra for \mathfrak{g} regarded as a VOA with k its level, and h^{\vee} is the dual Coxeter number. We allow the case when n=0, which we denote by 1. In the following, we simply denote by $\hat{\mathfrak{g}}$ a VOA of the form (1.2).

• An element in $\operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}}')$ is a triple $(\mathcal{V}, \phi, \phi')$ where \mathcal{V} is a VOA and ϕ, ϕ' are homomorphisms

$$\phi: \hat{\mathfrak{g}} \to \mathcal{V}, \quad \phi': \hat{\mathfrak{g}}' \to \mathcal{V}.$$
 (1.3)

Writing ϕ , ϕ' explicitly is tedious, and we often just denote $\mathcal{V} \in \text{Hom}(\mathfrak{g}, \mathfrak{g}')$.

• Given $\mathcal{V} \in \operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}}')$ and $\mathcal{V}' \in \operatorname{Hom}(\hat{\mathfrak{g}}', \hat{\mathfrak{g}}'')$, its composition $\mathcal{V}' \circ \mathcal{V}$ is defined as a 'VOA version of holomorphic symplectic quotient' as will be defined later.

Before defining the composition, let us discuss easier properties.

- \mathcal{V} is a symmetric monoidal category. Given two objects \mathfrak{g} and \mathfrak{g}' , its product is $\mathfrak{g} \times \mathfrak{g}'$. Similarly, given $(\mathcal{V}_1, \phi_1, \phi_1') \in \text{Hom}(\hat{\mathfrak{g}}_1, \hat{\mathfrak{g}}_1')$ and $(\mathcal{V}_2, \phi_2, \phi_2') \in \text{Hom}(\hat{\mathfrak{g}}_2, \hat{\mathfrak{g}}_2')$, its product is $(\mathcal{V}_1 \times \mathcal{V}_2, \phi_1 \times \phi_2, \phi_1' \times \phi_2')$.
- \bullet \mathcal{V} 'has duality' in the following technical sense. There is a canonical identification

$$\operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}}' \times \hat{\mathfrak{g}}'') \simeq \operatorname{Hom}(\hat{\mathfrak{g}} \times \hat{\mathfrak{g}}'', \hat{\mathfrak{g}}') \tag{1.4}$$

given as follows. Given an element $(\mathcal{V}, \phi, \phi' \times \phi'')$ of the Hom on the left, we assign an element $(\mathcal{V}, \phi \times (\phi'' \circ \pi), \phi')$ on the right, where π is an automorphism of $\hat{\mathfrak{g}}$ obtained by extending the automorphism of $\mathfrak{g} = \prod_i \mathfrak{g}_i$ which sends a finite dimensional representation to its dual.

Now, let us define the composition of morphisms. For this, we define an operation $\mathcal{Q}uot(\mathcal{V},\hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})},\phi)$ which gives a new VOA given a VOA \mathcal{V} with a homomorphism ϕ :

$$\phi: \hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})} \to \mathcal{V}. \tag{1.5}$$

Note that the level here is $-2h^{\vee}(\mathfrak{g})$. To define \mathcal{Q} uot, we first introduce a ghost VOA $\mathcal{BC}(\mathfrak{g})$, generated by fermionic fields b^A in $\mathcal{BC}(\mathfrak{g})_{1,-}$ and c_A in $\mathcal{BC}(\mathfrak{g})_{0,-}$ for $A=1,\ldots,\dim\mathfrak{g}$ with the OPE

$$b^{A}(z)c_{B}(w) \sim \frac{\delta_{B}^{A}}{z-w}.$$
(1.6)

This has a subalgebra $\hat{\mathfrak{g}}_{+2h^{\vee}(\mathfrak{g})}$. Denote by $J_{\mathcal{V}}^{A}(z)$ and J_{ghost}^{A} the affine \mathfrak{g} currents of \mathcal{V} and $\mathcal{BC}(\mathcal{V})$ respectively. We define

$$j_{\text{BRST}}(z) = \sum_{A} (c_A J_V^A(z) + \frac{1}{2} c_A J_{\text{ghost}}^A(z)).$$
 (1.7)

Then $d = j_{\text{BRST},0}$ is nilpotent, thanks to the condition on the level of $\hat{\mathfrak{g}}$ in \mathcal{V} . We take the subspace

$$\mathcal{W} \subset \mathcal{V} \times \mathcal{BC}(\mathfrak{g}) \tag{1.8}$$

defined by

$$\mathcal{W} = \bigcap_{A} (\operatorname{Ker} b_0^A \cap \operatorname{Ker}(J_{\text{total}}^A))$$
 (1.9)

where $J_{\text{total}}^A = J_{\mathcal{V}}^A + J_{\text{ghost}}^A$. We can check that the differential d acts within \mathcal{W} , and finally we define

$$Quot(\mathcal{V}, \hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})}, \phi) = H(\mathcal{W}, d). \tag{1.10}$$

Quot for products $\prod_i \hat{\mathfrak{g}}_{i,-2h^{\vee}(\mathfrak{g}_i)}$ is defined in a completely similar way. This is like a VOA version of (holomorphic) symplectic quotient: (1.9) is like setting the moment map to be zero, and (1.10) is like taking the quotient.

Then, given $(\mathcal{V}_1, \phi'_1, \phi_1) \in \operatorname{Hom}(\hat{\mathfrak{g}}', \hat{\mathfrak{g}})$ and $(\mathcal{V}_2, \phi_2, \phi''_2) \in \operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}}'')$, its composition is given by

$$(\mathcal{V}_{2}, \phi_{2}, \phi_{2}'') \circ (\mathcal{V}_{1}, \phi_{1}', \phi_{1}) = (\mathcal{Q}uot(\mathcal{V}_{1} \times \mathcal{V}_{2}, \hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})}, \phi_{1} + (\phi_{2} \circ \pi)), \phi_{1}', \phi_{2}''). \tag{1.11}$$

Note that this is possible because $\phi_1 + (\phi_2 \circ \pi)$ defines a homomorphism from $\hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})}$ to $\mathcal{V}_1 \times \mathcal{V}_2$.

Now, we have cheated at one point, which needs to be stated as a conjecture here:

Conjecture 1. There is a VOA $\mathcal{I}d_{\hat{\mathfrak{g}}} \in \operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}})$ acting as an identity under the composition defined above.

Most probably, in the decomposition $\mathcal{I}d_{\hat{\mathfrak{g}}} = \bigoplus_{n=0}^{\infty} \mathcal{V}_0$, \mathcal{V}_0 is isomorphic to $\mathbb{C}[G]$ where G is the algebraic group over \mathbb{C} of type \mathfrak{g} . In particular, \mathcal{V}_0 is infinite dimensional.

2 Functor $\eta_{\mathfrak{g}}$

We use another category \mathbb{B} , i.e. the objects are closed oriented one-dimensional manifolds (i.e. disjoint unions of multiple S^1 s) and a morphism from B_1 to B_2 is a two-dimensional oriented manifold C whose boundary is $B_1 \sqcup (-B_2)$. \mathbb{B} is a symmetric monoidal category with duality under the standard operations.

For example, we have

$$U = \bigcirc \qquad \in \operatorname{Hom}(S^1, \varnothing), \tag{2.1}$$

$$V = \bigvee \in \operatorname{Hom}(S^1 \sqcup S^1, \varnothing), \tag{2.2}$$

$$W = \bigvee \in \operatorname{Hom}(S^1 \sqcup S^1 \sqcup S^1, \varnothing). \tag{2.3}$$

Conjecture 2. For each simple, simply-laced Lie algebra g. Then there is a functor

$$\eta_{\mathfrak{q}}: \mathbb{B} \to \mathbb{V}$$
(2.4)

with $\eta_{\mathfrak{g}}(S^1) = \hat{\mathfrak{g}}_{-h^{\vee}(\mathfrak{g})}$, such that the VOAs

$$\mathcal{U}_{\mathfrak{g}} = \eta_{\mathfrak{g}}(\bigcirc), \qquad \mathcal{V}_{\mathfrak{g}} = \eta_{\mathfrak{g}}(\bigcirc), \qquad \mathcal{W}_{\mathfrak{g}} = \eta_{\mathfrak{g}}(\bigcirc))$$
 (2.5)

satisfy the following properties:

- 1. $V_{\mathfrak{g}}$ is the identity $\mathcal{I}d_{\mathfrak{g}}$.
- 2. $\mathcal{U}_{\mathfrak{g}}$ is obtained from $\mathcal{V}_{\mathfrak{g}}$ via the Drinfeld-Sokolov reduction,

$$\eta_{\mathfrak{g}}(\bigcirc) = \mathcal{DS}(\eta_{\mathfrak{g}}(\bigcirc), \hat{\mathfrak{g}}, e_{prin})$$
(2.6)

where e_{prin} is a principal nilpotent element of \mathfrak{g} .

3. $W_{\mathfrak{g}}$ has central charge

$$c = (3 - 2h^{\vee}(\mathfrak{g})) \dim \mathfrak{g} - \operatorname{rank} \mathfrak{g} \tag{2.7}$$

and the following character:

$$\operatorname{ch} \mathcal{W}_{\mathfrak{g}}(z_1, z_2, z_3) = \frac{K_0(z_1) K_0(z_2) K_0(z_3)}{K_{prin}} \sum_{\lambda} \frac{\chi_{\lambda}(z_1) \chi_{\lambda}(z_2) \chi_{\lambda}(z_3)}{\chi_{\lambda}(q^{\rho})}. \tag{2.8}$$

Here, $(z_1, z_2, z_3) \in G^3$ which is the exponential of the action of \mathfrak{g}^3 on \mathcal{W}_n , the sum is over all the irreducible representation λ of \mathfrak{g} , χ_{λ} is the character, K_0 is the character of z in the representation

$$\mathcal{K}_0 = \bigoplus_{m=0}^{\infty} \operatorname{Sym}^m(\bigoplus_{n=1}^{\infty} (q^n \mathfrak{g})), \tag{2.9}$$

and

$$K_{prin} = \prod_{n=1}^{\infty} \prod_{i=1}^{\text{rank } \mathfrak{g}} \frac{1}{1 - q^{d_i + n}}$$
 (2.10)

where d_i is the i-th exponent of \mathfrak{g} plus 1, and the element $q^{\rho} \in G$ is defined as usual by the Weyl vector. For example, $q^{\rho} = \operatorname{diag}(q^{1/2}, q^{-1/2})$ when $\mathfrak{g} = A_1$.

Remark. The generating relations of \mathbb{B} is not very complicated. Therefore, to prove that $\eta_{\mathfrak{g}}$ exists, one just has to do the following.

- Find a VOA $W_{\mathfrak{g}}$ satisfying (2.7) and (2.8).
- Show

$$\eta_{\mathfrak{g}}()) = \eta_{\mathfrak{g}}(),$$
(2.11)

where the VOA on the both sides are understood to be defined from two copies of $W_{\mathfrak{g}}$ by (1.11).

Show

$$\eta_{\mathfrak{g}}()) := \mathcal{DS}(\eta_{\mathfrak{g}}()), \mathfrak{g}, e_{\text{prin}})$$
(2.12)

is the identity of $\operatorname{Hom}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}})$.

Another remark. From the definition of the operation \mathcal{Q} uot, it is not too difficult to show that given $\phi: \hat{\mathfrak{g}}_{-h^{\vee}(\mathfrak{g})} \to \mathcal{V}$ and $\phi': \hat{\mathfrak{g}}_{-h^{\vee}(\mathfrak{g})} \to \mathcal{V}'$, the character of $\mathcal{W} = \mathcal{Q}$ uot $(\mathcal{V} \times \mathcal{V}', \hat{\mathfrak{g}}_{-2h^{\vee}(\mathfrak{g})}, \phi + \phi' \circ \pi)$ is given by

$$\operatorname{ch} \mathcal{W} = \int_{G_{\text{cut}}} \operatorname{ch} \mathcal{V}(z) \operatorname{ch} \mathcal{V}'(z^{-1}) K_0(z)^{-2} [dz]$$
(2.13)

where the integral is taken over the compact simply-connected Lie group G_{cpt} of type \mathfrak{g} , and

[dz] is the Haar measure. From this, it is easy to compute the character of $\eta_{\mathfrak{g}}($

using orthogonality of the irreducible characters, assuming (2.8). More generally, denote by C_n a sphere with n S^1 boundaries. Then we easily see that

$$\operatorname{ch} \eta_{\mathfrak{g}}(C_n)(z_1, \dots, z_n) = \sum_{\lambda} \frac{\prod_{i=1}^n K_0(z_i) \chi_{\lambda}(z_i)}{(K_{\operatorname{prin}} \chi_{\lambda}(q^{\rho}))^{n-2}}.$$
(2.14)

Note also that, from (2.6), we have

$$\eta_{\mathfrak{g}}(C_{n-1}) = \mathcal{DS}(\eta_{\mathfrak{g}}(C_n), \mathfrak{g}, e_{\text{prin}}).$$
(2.15)

This plays nicely with the formula (2.14) due to the following general fact: Given $\phi: \hat{\mathfrak{g}} \to \mathcal{V}$, the character of $\mathcal{W} = \mathcal{DS}(\mathcal{V}, e_{\text{prin}})$ is obtained by

$$\operatorname{ch} \mathcal{W} = K_{\operatorname{prin}}\left(\frac{\operatorname{ch} \mathcal{V}(z)}{K_0(z)}\right)\Big|_{z \to q^{\rho}}.$$
(2.16)

Slightly generalized version of $\eta_{\mathfrak{g}}$. We slightly generalize the definition of $\eta_{\mathfrak{g}}$, by allowing surfaces with points labeled by a nilpotent element e of \mathfrak{g} on the 2d surfaces. More precisely, we consider a category $\mathbb{B}_{\mathfrak{g}}$ where the objects are still one-dimensional manifolds, and the morphisms are 2d surfaces with points each labeled by a nilpotent element of \mathfrak{g} . We do not allow points on the boundary of the 2d surface.

We then extend the functor $\eta_{\mathfrak{g}}: \mathbb{B} \to \mathbb{V}$ to a functor $\mathbb{B}_{\mathfrak{g}} \to \mathbb{V}$ by defining e.g.

$$\eta_{\mathfrak{g}}(\bigcirc \bullet_{e}) = \mathcal{DS}(\eta_{\mathfrak{g}}(\bigcirc)), \hat{\mathfrak{g}}, e).$$
(2.17)

In general, to define $\eta_{\mathfrak{g}}$ for a punctured surface, we replace each marked point by a boundary. We then perform, for each $\hat{\mathfrak{g}}$ associated to the newly introduced boundary, the quantum Drinfeld-Sokolov reduction by the nilpotent e.

We immediately see that a point labeled by e = 0 is equivalent to a boundary. Also, due to (2.6), having a point labeled by e_{prin} is equivalent to having no point at all.

3 Examples

Not much is known about $W_{\mathfrak{g}}$. To state what is known, let us introduce a few VOAs. First, given a symplectic vector space V over \mathbb{C} , denote by $\mathcal{SB}(V)$ a VOA such that

$$\mathcal{SB}(V) = \bigoplus_{n=0}^{\infty} \mathcal{V}_n, \quad \mathcal{V}_0 = \mathbb{C}1, \quad \mathcal{V}_{1/2,+} \simeq V,$$
 (3.1)

and

$$v(z)w(0) \simeq \frac{\langle v, w \rangle}{z}$$
 (3.2)

for $v, w \in V \simeq \mathcal{V}_{1/2}$ where $\langle \cdot, \cdot \rangle$ is the symplectic pairing. This has the central charge $c = -(\dim_{\mathbb{C}} V)/2$.

Let us also define $\mathcal{L}(\hat{\mathfrak{g}}, k)$ to be the VOA based on the irreducible, vacuum representation of the affine Lie algebra $\hat{\mathfrak{g}}$ with level k.

Conjecture 3. • For $\mathfrak{g} = A_1$, we have

$$\eta_{\mathfrak{g}}()) = \mathcal{SB}(V_1 \otimes V_2 \otimes V_3),$$
(3.3)

where $V_i \simeq \mathbb{C}^2$.

• For $\mathfrak{g} = A_2$, we have

$$\eta_{\mathfrak{g}}()) = \mathcal{L}(\widehat{\mathfrak{e}_6}, -3).$$
(3.4)

• For $\mathfrak{g} = A_{n-1}$, we have

$$\eta_{\mathfrak{g}}(\bigvee_{[n-1,1]}) = \mathcal{SB}(V \otimes W^* \oplus W \otimes V^*). \tag{3.5}$$

Here, [n-1,1] is a nilpotent element consisting of two Jordan blocks of size n-1, 1 (i.e. an element on the subregular orbit) and $V,W \simeq \mathbb{C}^n$. Combined with (3.4), we have

$$\mathcal{DS}(\mathcal{L}(\widehat{\mathfrak{e}}_6, -3), \widehat{\mathfrak{sl}(3)}_{-3}, e = [2, 1]) = \mathcal{SB}(V \otimes W^* \oplus W \otimes V^*), \tag{3.6}$$

i.e. a variant of the quantum Drinfeld-Sokolov reduction of the affine E_6 algebra gives a free boson.

Note that to complete the proof of the existence of the functor $\eta_{\mathfrak{g}}$ for $\mathfrak{g} = A_1$ and $\mathfrak{g} = A_2$, we just have to show (2.11) and (2.12), starting from $\mathcal{W}_{\mathfrak{g}}$ given by (3.3) and (3.4). In particular, as for the relation (2.11), we have the following conjecture.

Conjecture 4. For $\mathfrak{g} = A_1$,

$$\eta_{\mathfrak{g}}()) = \mathcal{L}(\widehat{\mathfrak{so}(8)}, -2).$$
(3.7)

Note that $\mathfrak{sl}(2)^4 \subset \mathfrak{so}(8)$, and the outer automorphism of $\mathfrak{so}(8)$ permutes four copies of $\mathfrak{sl}(2)$. Combined with (3.3), we have a free-field realization

$$\mathcal{L}(\widehat{\mathfrak{so}(8)}, -2) = \mathcal{Q}uot(\mathcal{SB}(V_1 \otimes V_2 \otimes V_3) \times \mathcal{SB}(V_3 \otimes V_4 \otimes V_5), \widehat{\mathfrak{sl}(2)}_{-4}, \phi)$$
(3.8)

where $\phi : \mathfrak{sl}(2) \to \mathcal{SB}(V_1 \otimes V_2 \otimes V_3) \times \mathcal{SB}(V_3 \otimes V_4 \otimes V_5)$ comes from the action of SL(2) on V_3 .

Finally, we have the following, as a further generalization of (3.4) and (3.7):

Conjecture 5. • For $\mathfrak{g} = A_1$,

$$\eta_{A_1}(\underbrace{\hspace{1cm}}_{[1,1]},\underbrace{\hspace{1cm}}_{[1,1]}) = \mathcal{L}(\widehat{\mathfrak{so}(8)}, -2).$$
(3.9)

Note that this is equivalent to (3.7).

• For $\mathfrak{g}=A_2$,

$$\eta_{A_2}(\underbrace{}_{[1,1,1]},\underbrace{}_{[1,1,1]}) = \mathcal{L}(\widehat{\mathfrak{e}_6}, -3).$$
(3.10)

Note that this is equivalent to (3.4).

• For $\mathfrak{g}=A_3$,

$$\eta_{A_3}($$

$$\underbrace{(2,2)}_{[1,1,1,1]}) = \mathcal{L}(\widehat{\mathfrak{e}_7}, -4).$$
(3.11)

• For $\mathfrak{g}=A_5$,

$$\eta_{A_5}(\underbrace{}_{[2,2,2]}\underbrace{}_{[1,1,1,1,1,1]}) = \mathcal{L}(\widehat{\mathfrak{e}_8}, -6).$$
(3.12)

Note that the number of points on S^2 , and the Jordan block structures of the nilpotent elements labeling the points, follow the structure of the extended Dynkin diagrams of D_4 , $E_{6,7,8}$, respectively.

References

- [1] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, "Infinite Chiral Symmetry in Four Dimensions," arXiv:1312.5344 [hep-th].
- [2] G. W. Moore and Y. Tachikawa, "On 2D TQFTs Whose Values are Holomorphic Symplectic Varieties," arXiv:1106.5698 [hep-th].