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Abstract
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1 Andrei Okounkov (Jul 08)

These lectures will be auxiliary to lectures of Nikita. The goal is to introduce important concepts and talk
a little bit about them. The important concept for today is Nakajima quiver varieties. Nakajima quiver
varieties are algebraic symplectic reductions, of some particular representations of a product of general linear
groups GL(V ). These representations are of the form

T ∗Rep(framed quiver).

A quiver is a graph: a bunch of vertices with directed edges, possibly with loops. The idea is that in
the end these will act like Dynkin diagrams. A representation of a quiver is an assignment

vertices↦ vector spaces Vi

arrows↦ operators.

There is a natural action of GL(V ) ∶= ∏GL(Vi), acting on each vertex. The corresponding action on
operators is the induced one, i.e. by pre- and post-composition.

A framing is a new set of vertices, denoted by squares. Maybe the main technical contribution of
Nakajima is the contribution of these framings. Associated to each framing vertex is a new vector space Wi,
along with a map Wi → Vi of corresponding vertices.

V1 V2 V3

W1 W2 W3

While there is an action of GL(W ) ∶= ∏GL(Wi) on these new framing vertices, we will not quotient by it
later. It will continue to act on the resulting algebraic symplectic reduction.

There is a trick due to Crawley–Boevey that says we can introduce one extra vertex V0 (of dimension 1)
instead of introducing a framing.

V1 V2 V3

V0

The arrows from framing vertices can be replaced by dimWi maps from V0 to the Vi vertex. The group
GL(V ) becomes

GL(V ) = SL(⊕
i>0

Vi ⊕ V0) .

A framed representation of a framed quiver is then

M ∶= ⊕
Vi→Vj

Hom(Vi, Vj) ⊕⊕
i

Hom(Wi, Vi),

as a representation of GL(V ). This is essentially a sum of three kinds of representations: the defining
representation Vi, the adjoint representation Hom(Vi, Vi), and the bifundamental representation Hom(Vi, Vj).
Then we consider T ∗M , and use that

Hom(V1, V2)∨ = Hom(V2, V1).
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This is because given A ∈ Hom(V1, V2) and B ∈ Hom(V2, V1), there is a natural pairing

⟨A,B⟩ ∶= trAB = trBA.

Hence we can write

T ∗M = ⊕
Vi→Vj

Hom(Vi, Vj) ⊕Hom(Vj , Vi) ⊕⊕
i

Hom(Wi, Vi) ⊕Hom(Vi,Wi).

In particular, after we take T ∗, the original orientation of the quiver is not important anymore.

Definition 1.1. A Nakajima quiver variety is an algebraic symplectic reduction of T ∗framed rep(Q) of
a quiver Q.

To explain algebraic symplectic reduction, we will look at the simplest non-trivial example of a quiver
with one vertex and no arrows. A framed representation is therefore given by

V W .

If dimV = k and dimW = n, then we get T ∗ Gr(k,n). Recall that the Grassmannian can be written

Gr(k,n) = {subspaces L ⊂ Cn ∶ dimL = k} = Hom(Ck,Cn) open set
of rank=k

/GL(k).

We have to be careful when taking quotients in algebraic geometry. Let’s look at the example k = 1.
Then Gr(1, n) = P(Cn) is the space of lines (through the origin) in Cn. The action of GL(1) = C× on Cn
has some closed orbits, and some open orbits. Namely, the only closed orbit is {0}, and all other orbits are
open. The closure of all these other orbits intersect at 0. The naive quotient will not be Hausdorff because
of this. The first attempt to fix this is to take G-invariant functions and form

M/G ∶= SpecC[M]G.

The points of such a quotient will be closed G-orbits. However in the case of P(Cn) this leaves only a single
point, which is undesirable. Instead, we want to remember local coordinates xi/xj on P(Cn), which are all
scaled the same way by the action. For Grassmannians, in general, the coordinates are Plücker coordinates,
which again are scaled homogeneously. Hence when we construct P(Cn) or Gr(k,n), we should take ratios
of functions that transform with the same character of G, instead of invariant functions. Equivalently, these
are sections of some line bundle L on M . The action of G on M can be lifted to an action of G on this line
bundle L. Sections of such an L will be functions that transform by the same character of G. We can use
such sections to define coordinates on the quotient M/G. A point x ∈M is semistable if there exists such
a section f such that f(x) ≠ 0. So such coordinates only exist on semistable points. Orbits which do not hit
0 determine the semistable locus. Note that every orbit has a point which is closest to 0; there is a function
∥gx∥2 which has a minimum there. Let K ⊂ G be the maximal compact subgroup preserving ∥ ⋅ ∥2. Then
∥gx∥2 is really a function on K/G, which is like a Lobachevsky plane. One can check the function is convex.
Exercise: the condition that this is a minimum at x is exactly the condition µR(x) = 0, where µR is the real
moment map for the action on the total space of L−1. Hence the condition for the moment map on M is

µMR (x) = constant.

For the Grassmannian, the conclusion of this whole discussion is that

Gr(k,n) = Hom(Ck,Cn)/GL(k) = Iso(Ck,Cn)/U(k).

The point is that many important equations in mathematical physics can be interpreted as solving the
real moment map equations for some infinite-dimensional group. Instead of really trying to solve them, it is
much better to think about the corresponding complex stability condition.
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Suppose we’ve constructed M/G in the nicest possible situation, e.g. we’ve already thrown out non-
semistable points. How do we construct T ∗(M/G) (because in the end we want a symplectic object)? This
means we must identify cotangent vectors to spaces of G-orbits in M . Let tangent spaces to orbits be
spanned by ξ ∈ g. Then cotangent vectors p at x ∈M must be perpendicular, i.e.

⟨p, ξx⟩ = 0 ∀ξ ∈ g.

So we should first take T ∗M , impose this equation, and then quotient by G. This equation is just the
Hamiltonian for the flow generated by ξ. This is the complex moment map.

The basic feature of Nakajima quiver varieties is that one can just take

(T ∗M ∩ eq.) �θ G

and this suffices. Here �θ is a GIT quotient, like we discussed above. The scientific way to phrase this is
that a Nakajima quiver variety is the cotangent bundle to the stack, and then we take the semistable locus
inside there.

2 Nikita Nekrasov (Jul 08)

This course will be on the BPS/CFT correspondence. We will study certain integrals over moduli spaces of
instantons. Today we will discuss in what sense such integrals can be viewed as correlation functions in 4d
susy gauge theories (BPS side). Later we will interpret them as (conformal blocks of) correlation functions
in 2d conformal field theories (CFT side).

We begin with a brief introduction to supersymmetric field theory as intersection theory. Some people
may say it is a very skewed viewpoint on susy gauge theory, but in some sense it is both a restriction and
generalization. Intersection theory roughly counts solutions to equations/conditions. It is intersection theory
because we can interpret the equations as defining some subvarieties in an ambient variety. If we impose
enough equations they will have isolated intersections, and so in the end we are counting intersection points.
If the ambient variety is compact and we can represent the varieties as cohomological cycles, we can compute
in cohomology and the answer is automatically stable under small deformations of the cycles. However in
practice, quite often the ambient variety is not compact. So we first compactify by adding some set of “ideal”
points, compute the corresponding intersection index, and subtract the undesired intersection points among
the “ideal” points.

The physics approach to this problem is straightforward. Instead of counting solutions to the equations
sa(x) = 0, we integrate over X a smeared version of a delta function:

Iε ∶= ∫
X
e−

1
ε ∥s∥

2

.

When ε is small, for any reasonable measure the integral will be supported near the zero locus of the
equations. So the integral knows about the intersection points. It must also know a way to compactify the
space, dictated by the convergence of the integral.

The supersymmetric version of the theory is one where the integral is set up in such a way that it is
independent of ε, i.e.

d

dε
Iε = 0.

Then one can potentially benefit from investigating the other limit ε→∞, where the integral is smeared all
over the space X and may be easier to work with.

There is an additional complication to the story where sometimes we may have a group action G. What
we are really counting then are not points, but rather orbits. Then these integrals are defined using equiv-
ariant cohomology. There is the additional benefit that then we can compute many of these integrals using
localization on the ambient space X.
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To make this discussion more concrete, let’s introduce coordinates. The slogan of this part of the story is
sometimes called the “holy trinity”: fields, equations and symmetries. Fields is what we are given, initially.
The equations are conditions on sections s of some vector bundle E → X. Symmetries are a group action
of G on both X and E, and we are interested in counting solutions to s = 0 modulo the action of G. The
output is a moduli space

M ∶= s−1(0)/G,

and some integrals

∫
M

Ω.

From this definition M need not be compact, and almost never is. Since we want to integrate on it, we
compactify it to get M ↪M . Then we go back and ask whether the compactification M can be interpreted
as solutions to some enhanced equations, or some enhanced space. In other words, whether M is itself a
moduli space is sometimes an interesting question.

Start with usual de Rham cohomology Ω●(X). Here X is the space of fields. For example, on a 4d
theory, X is typically the space of functions on a 4-fold, or the space of sections on some bundle over a
4-fold. Introduce local coordinates xm on X. Forms can be written as

ωi1⋯ik(x
m)dxi1 ∧⋯ ∧ dxik .

It is better to think of these not as differential forms, but as functions on the super-manifold version of TX.
We write this as

Ω●(X) = Fun(ΠTX).

So we write forms as
ωi1⋯ik(x)ψ

i1⋯ψik

and view x as bosonic coordinates and ψ as fermionic coordinates. The usual de Rham differential becomes
a vector field on ΠTX, given by

d = ψm ∂

∂xm
.

Note that d2 = 0 precisely because of the anticommutation ψmψn = −ψnψm. In conclusion, the space of fields
becomes not X, but rather ΠTX.

Now incorporate the action of the symmetry group. What we will do is called the Cartan model of
equivariant cohomology. For a compact Lie group G, there is a space EG, which is a contractible topological
space with free G-action. Its quotient by the G-action is the classifying space BG. It classifies principal
G-bundles in the sense that given any space Y and principal G-bundle P → Y , there is a map Y → BG such
that P is induced by the universal bundle EG→ BG. For example,

BU(1) = CP∞, EU(1) = S∞ ∶= {(z1, z2, . . . ,0,0, . . .) ∶ ∑
i

∣zi∣2 = 1}.

The action of U(1) on S∞ is by multiplying the zi by a phase, and this action clearly has no fixed points.
If we imagine S∞ as an S2 glued to an S3, glued to an S4, etc., then to contract it we can contract the S2

along the S3, along the S4, etc. This is like Hilbert’s hotel, where we can always push guests into the next
room.

Given any space X with a G-action, the quotient X/G may be bad even set-theoretically. For example,
the G-orbits on X may be of different dimension. Instead, we can replace X with X×EG. Then the G-action
is free, but topologically we haven’t changed anything. Hence we should replace

X/G↝ (X ×EG)/G

and study the cohomology of the latter space instead. This is the topological definition of equivariant
cohomology H∗

G(X) of X.
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For practical purposes this is not a very good definition, because, as we saw, even for U(1) the space
BG is infinite-dimensional. Luckily we don’t need differential forms on BG or EG; there is some kind of
minimal construction which effectively replaces differential forms on EG by the so-called Weyl complex.
It is similar to functions on ΠTX, but now X is the Lie algebra g of the group G. We can further simplify
our lives by observing that if G acts freely on X, then forms Ω●(X/G) can be pulled back to Ω●(X) and sit
inside there as the subspace of basic forms:

Ω●
G-basic(X) ∶= {ω ∈ Ω●(X) ∶ ιV ω = 0 ∀V ∈ Vect(X) generates G-action}

= ⋂
V ∈g⊂Vect(X)

ker(ιV ) ∩ ker(LieV ).

The operation of contraction is given in coordinates by

ιV ∶= V m(x) ∂

∂ψm
,

and is an odd operation with ι2V = 0. The Lie derivative is

LieV ∶= {d, ιV } = V m ∂

∂xm
+ ∂nV mψn

∂

∂ψm
.

If ω ∈ Ω●(X) is such that ιV ω = LieV ω = 0, then there exists a form ω̃ ∈ Ω●(X/G) such that ω = π∗ω̃, where
π∶X →X/G is the projection.

So if we want to integrate over the quotient X/G, it is the same to integrate basic forms over X. However
note that basic forms cannot be forms of top degree, because they are annihilated by lots of vector fields.
We need to supply additional forms µ:

∫
X/G

ω̃ = ∫
X
ω ∧ µ.

The form µ should be a “volume form along G-orbits”, and is just there to eat up the orbit of the group.
We will give a construction of such a form using auxiliary variables, which will enhance our space of fields.

But first let’s deal with the problem that the quotient X/G usually does not exist. We typically do not
have a space of basic forms on X, but we can discuss basic forms on X × EG. We will not go through
the construction because we will not need much of it; it suffices to say that basic forms on X ×EG can be
modeled on

(Ω●(X) ⊗ Fun(g))G .

Equivalently, one can think of this as G-equivariant functions

FunG (g→ Ω●(X)) ∶= {α ∶ α(σ) ∈ Ω●(X), α(g−1σg) = g∗α(σ)}.

We call this the space of G-equivariant differential forms on X.
A grading on usual differential forms is the same as a U(1)-action on ΠTX. This action is generated by

another vector field

U ∶= ψm ∂

∂ψm
.

Now on the space of G-equivariant differential forms on X, the grading is by

U ∶= ψ ∂

∂ψ
+ 2σ

∂

∂σ
.

Hence our space of fields has been enhanced to ΠTX × g. It carries an odd vector field

Q ∶= dX + ιV (σ)
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where V ∶g→ Vect(X) is a homomorphism. In components, this is

Q = ψm ∂

∂xm
+ V m(σ) ∂

∂ψm
.

One can check Q2 = 0. This Q is part of the physical supersymmetry, called a supercharge or scalar
supersymmetry or topological supersymmetry. For example, in a textbook on 4d N = 2 susy gauge
theories, there will be many supercharges Q, and one of them will have this form.

What is the form µ? It turns out it is beneficial to multiply ΠTX × g by ΠTg. This extra factor makes
it so that we are able to integrate. Typically the notation for coordinates on that space are σ, an even
coordinate on g, and η, an odd coordinate. In some sense we should think

Fun(g ×ΠTg) = Ω0,●(gC).

For analysis this is sometimes a good perspective, but for other purposes we should view σ,σ as independent
real variables. We extend Q by

Q ∶= dX + ιV (σ) + ∂σ + ι[σ,σ] ∂∂σ

= ψ ∂

∂x
+ V (σ) ∂

∂ψ
+ η ∂

∂σ
+ [σ,σ] ∂

∂η
.

If we explicitly write coordinates σA, σA, and ηA, then the bracket [σ,σ] is

ηA
∂

∂σA
+ fCABσAσB

∂

∂ηC
.

If the G-action on X is free, there exists a connection form Θ ∈ Ω1(X) ⊗ g such that

ιV (σ)Θ = σ, LieV (σ) Θ = 0.

Let ⟨−,−⟩ be an invariant bilinear form on g. Using this form, define

µ ∶= exp (i (⟨η,Θ⟩ + ⟨σ,σ + F ⟩))

where F ∶= dΘ+Θ2 is the curvature. One checks that Qµ = 0. The point of this form is as follows. Consider

∫
ΠT (X×g)

ω ∧ µ = ∫ [dxdψ dσ dη]ωµ.

Let’s assume ω has no η’s. The only way to saturate the η’s in the integral is to bring down as many Θ’s as
possible. So the part which takes care of the orbits of G in X comes precisely from a top-degree product of
Θ, which thanks to the condition LieV (σ) Θ = 0 will basically give the volume form of G. Hence

∫
ΠT (X×g)

[dxdψ dσ dη]ωµ ≈ ∫
X/G

ω̃. (1)

In general, to pass from an integral on ΠTZ to an integral on Z, we have

∫
ΠTZ

f Berezindz dψ = ∫
Z
f.

On the lhs f is viewed as a function, and on the rhs f is viewed as a differential form.
An interesting feature of this construction is that even if the G-action is not free, we can still use it after

relaxing the condition ιV (σ)Θ = σ. The relaxation is the condition that it is equal to σ almost everywhere
but not everywhere, i.e. up to a non-degenerate pairing. For example, suppose G has a G-invariant metric
g. Then take

Θ ∶= g(V (−),−),
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where we are identifying g with Vect(X).
In general, we need to take the result of (1) and integrate further over σ. This will produce something

like

∫
dσ

volG
∫
X×g

ω(σ) ∧ µ = ∫
‘X/G’

ω(σ)dσ
σ + F

= ∫
‘X/G’

ω̃(−F ). (2)

Here “X/G” is in quotes because it need not exist. If it exists, we can remove the quotation marks and the
equality is literally true.

Note that Q2 = 0. Elements of the cohomology of Q are G-invariant polynomials P ∈ (S●g∨)G, i.e.
P (σ) = P (g−1σg). If we plug in P for ω in (2), the result is

∫
‘X/G’

P (−F ),

which is some characteristic class.
Now we need to discuss equations. Our setting will be gauge theories on 4-manifolds, e.g. M4 = R4 and

its various compactifications
S4 = R4 ∪ {∞}, CP2 = C2 ∪CP1.

We will also consider quotients R4/Γ by discrete subgroups Γ ⊂ SU(2).

1. A-type: take Γ = Z/` with action

(z1, z2) ↦ (e
2πi
` z1, e

− 2πi
` z2).

2. D-type: take Γ = Z/` ⋊Z/2 with action of the Z/2 as

(z1, z2) ↦ (−z2, z1).

3. E-type: something.

These quotients can be desingularized to give R̃4/Γ. Such desingularizations can be described using quivers,
cf. Andrei’s lectures. The McKay correspondence tells us these quivers will be ADE-type Dynkin diagrams.

We are not interested in these spaces themselves, but rather in solutions of PDEs defined over these
spaces. Fix a principal G-bundle P →M4. The space X which we discussed so far will be

X ∶= AP ∶= {G-connections on P}.

The gauge group G will be the group of gauge transformations

G ∶= ΓC∞(M4, P ×Ad G)∣
→1

at ∞

which tend to 1 at ∞. These are called framed gauge transformations. Locally, these gauge transformations
are

A↦ g−1Ag + g−1dg, g(x) → 1 as x→∞.

The equations we are interested in are
FA = − ⋆ FA

where ⋆∶Ω2(M4) → Ω2(M4) is the Hodge star. It satisfies ⋆2 = 1 and therefore has a +1 (self-dual) and a −1
(anti-self-dual) eigenspace; we want the −1 eigenspace. The moduli space we want to work with is

MP ∶= {A ∶ A ∈ AP , F +
A = 0}/G.

This is a very abstract space and is hard to work with unless we have a model for construction. Fortunately
we do have one: it is given by a quiver recipe when G is unitary. So we will focus on this case.
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Our notation will differ slightly from Andrei’s. The gauge group will be G = U(n) for n ≥ 2. Then
G-bundles on S4 are classified topologically by k ∈ Z as follows. View S4 as two disks D4

+ ⊔S3 D4
− glued along

the equator, and trivialize
P ∣D+

≅ G ×D+, P ∣D−
≅ G ×D−.

Then the remaining data is an isomorphism

P ∣D+

∼Ð→ P ∣D−
,

given by a clutching function ρ∶S3 → G. Such maps are classified by [S3,G] = π3(G) = Z.
Note that tr is a negative-definite form for g. Hence we have

−∫
S4

trFA ∧ ⋆FA ≥ 0.

By anti-self-duality, the lhs is

−∫
S4

trFA ∧ ⋆FA = ∫
S4

trFA ∧ FA = 8π2k,

and therefore we only have anti-self-dual instantons for k ≥ 0. We can now categorify these two numbers n
and k, to get

N ∶= Cn, K ∶= Ck,

using which we will construct a moduli space M(k,n).

3 Saebyeok Jeong (Jul 08)

We will discuss a connection between 4d N = 2 theory and some symplectic geometry on the moduli of flat
connections, first conjectured by Nekrasov–Rosly–Shatashvili.

Take a 4d N = 2 theory of class S. Such theories arise from 6d N = (2,0) theories, for which there is an
ADE classification. Restrict to An−1; for simplicity, take A1. Compactified on a Riemann surface (possibly
with some punctures) and twisting, we get a 4d N = 2 theory. We can further compactify on S1 and look at
the Coulomb branch. It is an integrable system, and in fact is a Hitchin moduli MH . Recall that

MH(SU(N),C) ∶= { FA + [ϕ,ϕ] = 0

DAϕ =DAϕ = 0
}/SU(N).

It is known that this space is hyperkähler. The main example is C = P1 − {0,1,∞, q}. In this case, the
resulting theory is SU(2) gauge theory with 4 fundamental hypermultiplets.

The partition function Z(a,m, ε1, ε2, q) we want is an equivariant integral over this moduli space. For
example, when ε1, ε2 → 0, the asymptotic behavior is

exp(F (a,m, q)
ε1ε2

+⋯)

where F (a,m, q) is the Seiberg–Witten prepotental. This is not the limit we will consider; instead, we’ll do
just ε2 → 0. This leaves us with a 2d N = (2,2) theory. A twisted superpotential W̃ governs the dynamics of
this theory.

There is a Hitchin mapMH →⊕N
k=1H

∗(C,Kk
C) given by mapping to the coefficients of the characteristic

polynomial.
We will think about complex Lagrangian submanifolds inside M. Let O be the space of opers, defined

as a space of differential operators

D̂ ∶= ∂Nz + t1(z)∂N−2
z +⋯ + tN(z),
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where we allow the coefficients ti(z) to be meromorphic of up to order N at punctures. To describe O,
choose Darboux coordinates. This means we can express ΩJ ∶= ∑dαi ∧ dβi. Since O is complex Lagrangian,

ΩJ ∣O = 0.

This means there exists a local function S(α) such that

βi =
∂S

∂αi
.

Conjecture 3.1 (Nekrasov–Rosly–Shatashvili). There exists a certain Darboux coordinate system where

W̃ = S.

The lhs is a purely gauge theoretic quantity governing low-energy dynamics, but the rhs is a purely
geometric object.

Example 3.2. Take C = P1 − {0,1,∞}. Then

Mflat = {(gi) ∈ SL(2) ∶ g1g2g3 = 1, tr gi = fixed}/SL(2).

A dimension count gives dimM= 0. There is an oper representation of this element, given by

∂2 + δ∞
z
+ δ0

(z − 1)2
+ δ∞ − δ0 − δ1

z(z − 1)
,

called the hypergeometric oper. The partition function of the resulting 2d N = (2,2) theory satisfies this
differential operator.

Example 3.3. Take C = P1 − {0,1, q,∞}. Then

Mflat = {(gi) ∈ SL() ∶ g1g2g3g4 = 1, tr gi = fixed}/SL(2).

Here the complex dimension is 2. We want a coordinate system on here. Define

A = tr gqg0

B = tr g0g∞

C = tr gqg∞.

There is a relation
0 = G(A,B,C) ∶= A2 +B2 +C2 − 4 +⋯.

In particular this space is some hypersurface in C3. The Poisson structure induced by ΩJ is given by

{A,B} = ∂G
∂C

.

The result is very similar to the hypergeometric case

When we write a perturbative expansion of Z(a,m, ε1, ε2, q), we have chosen a particular region of
convergence. How do we analytically continue to other punctures? It turns out Z can be written as a
contour integral with auxiliary variable x. There is one row of poles distributed horizontally, going toward
+∞. There are in addition n rows of poles going toward −∞. Our contour separates these kinds of poles.
When ∣z∣ > 1, we can choose the contour on the right encircling all the poles. When ∣z∣ < 1, we can choose
the contour on the left encircling all n rows of left-ward poles.
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4 Pavel Etingof (Jul 08)

How do we construct quantizations of ordinary finite simple Lie algebras? We have the powerful notions
of Drinfeld double and reconstruction, which not only constructs the quantization but also the universal
R-matrix.

Let’s begin with sl2, where we saw before Drinfeld’s mysterious formula for the universal R-matrix.
Let g = n+ ⊕ h⊕ n− be a simple Lie algebra. For sl2, these are spanned by e, h, f respectively. Let

b± ∶= n± ⊕ h

be the positive/negative Borel. Define

Uq(b+) ∶= ⟨K,e⟩, KeK−1 = q2e

where K is a group-like element, i.e.
∆K =K ⊗K,

and e is a skew primitive element, i.e.
∆e = e⊗K + 1⊗ e.

Such elements are important, because group-like elements correspond to 1-dimensional comodules and skew
primitive elements represent Ext1 between such comodules.

Say q =
√̀

1. In this case we have a Hopf ideal

I ∶= ⟨K` − 1, e`⟩

which means ∆I ⊂ I ⊗H +H ⊗ I. Then we can form the quotient

uq(b+) ∶=H/I,

which is a small quantum group. This appeared in a problem set and is called the Taft algebra, with basis
Kiej for 0 ≤ i, j ≤ `− 1. This is the simplest Hopf algebra which is not co-commutative. Its quantum double
can be computed as

D(uq(b+)) = uq(b+) ⊕ uq(b+)∗.

The fact is that the Hopf algebra uq(b+) is self-dual, i.e. invariant under interchanging product and co-
product. There are very few such Hopf algebras. We will write instead

D(uq(b+)) = uq(b+) ⊕ uq(b−).

The Hopf algebra uq(b+) is generated by K and f , with

KfK−1 = q−2f, ∆K =K ⊗K, ∆f = f ⊗ 1 +K−1 ⊗ f.

Note now that we have two K’s, which we will call K+ and K−. Then one checks that c ∶=K+K
−1
− is central.

The object D(uq(b+)) is too big: it has dimension `4, whereas we want something of dimension `2. So
we should kill something. The thing to kill is exactly this element c. The algebra

D(uq(b+))/⟨c = 1⟩

then has commutator

[e, f] = K −K−1

q − q−1
,

and hence we have verified that
D(uq(b+))/⟨c = 1⟩ = Uq(g).

11



So we do not have to guess this relation; it arises for free. It also automatically equips Uq(g) with an
R-matrix. The R-matrix for the Drinfeld double is supposed to be

R = ∑
i

ai ⊗ a∗i

for bases {ai} of H and {a∗i } of Hop. To compute this pairing we need to know the pairing between uq(b+)
and uq(b−). This is computed as

(Ki,Kj) = q2ij , (e, f) = 1

q − q−1
.

This is a Hopf pairing, so all other pairings arise from these two. The result is

R = q
h⊗h
2 (

`−1

∑
n=0

(q − q−1)n

[n]q!
q
n(n−1)

2 (en ⊗ fn)) .

This is exactly the Drinfeld formula. So we do not need to manually guess it and check it satisfies Yang–
Baxter.

We can do the same for generic q, with completions. In this case we will not have relations K` = 1 and
e` = 0, and the algebra will become infinite-dimensional. The only difference for the R-matrix is that the
finite sum becomes an infinite one:

`−1

∑
n=0

↝
∞
∑
n=0

.

Hence the category of all reps will not be a braided tensor category, due to convergence issues. However we
don’t care about arbitrary reps. Usually we want only finite reps, or category O. So as long as V,W are
locally nilpotent under e, then R∣V ⊗W makes sense and such reps form a braided tensor category.

For general g, we start with a Cartan matrix A = (aij). There must be numbers di such that

diaij = djaji,

and we let qi ∶= qdi . Simple Lie algebras are generated by sl2 with relations. Similarly, quantum groups are
generated by Uq(sl2) with relations. We first define

Ũq(b+) ∶= Uq(sl+2) ×⋯ ×Uq(sl+2).

In other words, it is generated by Ki, ei, with sl2 relations and

KiKj =KjKi, KiejK
−1
i = qaiji ej .

Then we define the actual algebra
Uq(b+) ∶= Ũq(b+)/I

where I is the largest Hopf ideal not containing ei for all i. A theorem of Gabber and Kac says that when
q = 1 this kills exactly the Serre relations.

Theorem 4.1 (Lusztig). The Hopf ideal I is generated by q-Serre relations

1−aij
∑
k=0

(1 − aij
k

)
qi

eki eje
1−aij−k
i = 0.

Now we take the double

D(Uq(b+)) = Uq(b+) ⊗Uq(b−), (ei, fj) =
1

qi − q−1
i

δij .

12



Using this Drinfeld inner product, we can identify the ± algebras. The central element is still

ci ∶=K+
i (K−

i )−1,

and we should take
Uq(g) ∶=D(Uq(b+))/⟨ci = 1⟩.

In this generality we still have an R-matrix R = ∑ai ⊗ a∗i , but now there is no simple basis so a priori this
sum is not so easy. There is a PBW basis, however, the formula is nice, due to Koroshkin–Tolstoy.

In physics we often do perturbation theory, and so we do this in quantum groups as well. We take q = eh̵/2
over C[[h̵]] and define the algebras in the same way. This results in the quantum universal enveloping algebra
(in the sense of Drinfeld), which is a formal deformation of Ug. This just means we get a Hopf algebra A
over C[[h̵]] in the topological sense, such that A/h̵A = Ug. The coproduct in Ug is co-commutative, so

∆(x) −∆op(x) = O(h̵),

and we can look at

δ(x) ∶= lim
h̵→0

∆(x) −∆op(x)
h̵

.

This is a map
δ∶Ug→ Ug⊗Ug

measuring the first-order failure in co-commutativity.

1. δ∗∶ ∧2g∗ → g∗ is a Lie bracket.

2. δ is a derivation, i.e.

δ([x, y]) = [x⊗ 1 + 1⊗ x, δ(y)] + [δ(x), y ⊗ 1 + 1⊗ y].

Definition 4.2. A pair (g, δ) with these properties is called a Lie bi-algebra. This naming is because both
g and g∗ have Lie brackets.

This particular Lie bi-algebra we constructed is called the quasi-classical limit of the Hopf algebra A.
Exercise: for Uq(sl2), compute that

δ(e) = e ∧ h, δ(f) = f ∧ h, δ(h) = 0.

Also, A is called a quantization of (g, δ). While quasi-classical limit is an easy procedure akin to taking
the derivative, quantization is a much harder procedure akin to integration. In particular, given a first-order
prescription, one has to construct all higher-order structure. It is not even obvious that such higher-order
structure exists, and ordinary deformation theory does not give an answer.

Theorem 4.3 (Etingof–Kazhdan). Any Lie bi-algebra has a quantization.

Let G be a simply-connected algebraic group. Then

U(g)∗G = O(G).

Then δ∗∶O(G) ⊗O(G) → O(G) yields a Poisson bracket

δ∗(f, g) = {f, g}

such that multiplication m∶G × G → G is a Poisson map. Such a pair (G,{−,−}) is called a Poisson
algebraic group. In a similar way one can define a Poisson Lie group and a Poisson formal group.

Corollary 4.4. Any Poisson group (in any of these three settings) can be quantized.

13



Let A be a quantum universal enveloping algebra (Drinfeld) over C[[h̵]], and suppose A has an R-matrix.
Recall that this means

R∆ = ∆opR, (∆⊗ 1)(R) = R13R23, (1⊗∆)(R) = R23R12. (3)

Then we can take the first derivative
R = 1 + h̵r +O(h̵2).

This is a bad way of writing it; it is only good when we trivialize the deformation. A better way is to say

r = lim
h̵→0

R − 1

h̵
∈ g⊗ g.

It satisfies some properties, coming from taking linear parts of (3). In particular,

δ(x) = [x⊗ 1 + 1⊗ x, r].

The Yang–Baxter equation is tautological in linear order, but at h̵2 order we get

r12r23 + r12r13 + r13r23 = 0.

This is called the classical Yang–Baxter equation.

Definition 4.5. A quasi-triangular structure on a Lie algebra g is an element

r ∈ g⊗ g

such that the Casimir tensor
r + r21 =∶ t

is g-invariant, and r satisfies the classical Yang–Baxter equation.

Theorem 4.6 (Etingof–Kazhdan). Any quasi-triangular Lie bialgebra can be quantized and the quantization,
as an algebra, is isomorphic to the undeformed algebra tensor C[[h̵]].

In particular, Uq(g) ≅ Ug[[h̵]] as algebras! The difference is in the coproduct. Actually this is not very
hard to prove by classical deformation theory, since H2(Ug, Ug) = 0 by Weyl–Kac theorem. But to explicitly
construct the isomorphism is very hard; only recently was it done for sl2.

If r is skew-symmetric, i.e. t = 0, then we get a triangular structure instead of just a quasi-triangular
one. The reason this is nice is that the classical notion of Drinfeld double, i.e. a classical double, is related
to Manin triples, and somehow this gives a way to construct many Hopf algebras.

5 Andrei Okounkov (Jul 09)

In geometry we have manifolds X and maps X → Y . In physics we typically have vector spaces, operators,
formulas, and variables. If we have a group G acting on a manifold X, then there are continuous parameters
for the action, which are variables. Variables can be separated into equivariant ones and topological ones.
When Nikita was talking about instantons, which are very special connections on R4, we saw the topological
charge which is a topological variable, and we also saw an SO(4) action on R4 which provides equivariant
variables.

What are the spaces? We should work within algebraic geometry whenever possible, because it is very
suitable for analysis of singular spaces. The main object we want to associate to a space X with a G-action is
the equivariant K-group KG(X). An element in KG(X) is a virtual equivariant vector bundle. Equivariance
means we can lift the G-action to the total space of the vector bundle, such that in fibers it acts by linear
operators. One can imagine that X is a moduli of vacua, and the vector bundle over it has fibers all vacua
for that particular background. Given two vector bundles, there are many operations on them: ⊕, ⊗, ∧2, S2,
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etc. This makes the K-group a ring with additional structure, called a Λ-ring. Equivariant K-theory should
be thought of as a generalization of the representation ring of G. This is because

KG(pt) = Rep(G).

There are two ways to define KG(X): topological and algebraic. In one case we consider complex vector
bundles, and in the other we consider algebraic vector bundles. Within algebraic K-theory we can consider
either the K-group of vector bundles, or the K-group of coherent sheaves. These are the same if the variety
is smooth. In fact, for instanton moduli spaces, all these notions coincide.

What is a coherent sheaf? It is a “vector bundle” whose fibers are allowed to “jump”. Take X = Pn.
This is the moduli of lines in Cn+1. On it is a tautological bundle O(−1), whose fiber over a point [`]inPn
is the line ` itself. It is called O(−1) because it has no sections. Its dual O(1) has sections, because it is the
line bundle of linear functions. The coordinates

[x0 ∶ ⋯ ∶ xn] ∈ Pn

form n + 1 sections of O(1). This produces a map

O⊕n x1,...,xnÐÐÐÐ→ O(1).

It is surjective everywhere except at [1 ∶ 0 ∶ ⋯ ∶ 0]. Hence the cokernel has zero fibers everywhere except at
that point, where it has a 1-dimensional fiber. This is “jumping” behavior.

In algebraic K-theory, if we have three vector bundles forming a short exact sequence

0→ V1 → V → V2 → 0,

we impose the relation
[V ] = [V1] ⊕ [V2].

So in particular if we have a resolution, e.g. of the coherent sheaf we discussed above, then we get an
alternating sum in algebraic K-theory. In fact by Hilbert’s syzygy theorem, on a smooth algebraic variety
of dimension d, any resolution terminates after at most d terms.

If we work with algebraic K-theory of vector bundles, then we have to be careful about tensor multipli-
cation. On a smooth variety we can resolve coherent sheaves into vector bundles, and therefore the tensor
product of a coherent sheaf with a vector bundle is well-defined.

Theorem 5.1 (McGerty–Nevins). For Nakajima quiver varieties X, the equivariant K-theory KG(X) is
generated (in the sense of Λ-rings) by tautological bundles.

Now we discuss some properties of algebraic K-theory. Suppose X̃ → X is a G-bundle. If G ×H acts on
X̃, then H still acts on X. For example,

KPGL(n)(Pn−1) =KGL(n)(Cn − 0).

Operations like this are the origin of all integral formulas in this business. This is because we are effectively
computing G-invariants, which is done by averaging over the group G. The Weyl integration formula says it
is equivalent to average over the maximal torus T ⊂ G with weights. The choice of contour is related to the
choice of stability condition for GIT quotient.

Let Y ↪X be a closed embedding. Given a coherent sheaf on Y , we can extend by zero to get a coherent
sheaf on X. There is an exact sequence

KG(Y ) →KG(X) →KG(X ∖ Y ) → 0.

This is the analogue of excision in K-theory. There is some higher K-group K1 that goes in the kernel, etc.
For example,

KGL(n)(Cn − 0) =KGL(n)(Cn)/KGL(n)(0).
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We knowKGL(n)(Cn) = Rep(GL(n)), because Cn is affine. The quotient kills some particular representations.
What are they? For n = 2, we can phrase this in boxcounting language. The inclusion of 0 is the structure
sheaf O0 of the origin 0 ∈ C2, drawn as

We need a resolution of O0 in C2. Of course C[x1, x2] = O → O0 is a surjection. The kernel is everything
not covered by the red square:

.

This is generated by x1O and x2O, as drawn. However now we have counted the shaded region twice.

This corresponds to a kernel x1x2O. In conclusion, we have produced a resolution

0→ x1x2O → x1O ⊕ x2O → O → O0 → 0.

We see that for C2 this resolution stopped after two steps. It is not hard to imagine that in d dimensions
such resolutions stop after d steps; this is actually the proof of Hilbert’s syzygy theorem.

Now we move this sequence to Pn−1. The first termO0 disappears, andO becomesOP(V ). The coordinates
x1, x2 generate the dual V ∨, so we can rewrite x1O ⊕ x2O as V ∗ ⊗OP(V )(−1). Finally the x1x2 generates
∧2V ∨. In conclusion, we get

0→ ∧2V ∨ ⊗O(−2) → V ∨ ⊗OP(V )(−1) → OP(V ) → 0.

If we denote L ∶= O(1), then this exact sequence says L satisfies a relation

1 −L−1V ∨ +L−2 ∧2 V ∨ = 0

in K-theory. If we write the weights as

⎛
⎜⎜⎜
⎝

a1

a2

⋱
an

⎞
⎟⎟⎟
⎠
∈ GL(n)
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then the character of V is a1 + ⋯ + an, and ∧2V = e2(a) where e2 is the second elementary symmetric
polynomial, and so on. Hence the relation can be written

n

∏
i=1

(1 −L−1a−1
i ) = 0.

In general, there is a map KG(pt) →KG(X). If we Spec everything, this yields

SpecKG(X) → SpecKG(pt) = G/conj.

For Pn−1, this means that KG(Pn−1) sits over symmetric functions in a⃗. The scheme SpecKG(Pn−1) can be
plotted over a⃗/Sn as

L

a⃗/Sn

L = a−1
1

L = a−1
2

L = a−1
3

There is something amazing about this picture. Namely we can ask: what is the fiber over a point?
Of course this depends on whether some of the ai are equal or not, i.e. dependent on some hyperplane
arrangement in the base. In fact given g ∈ G/conj, the fiber is exactly the non-equivariant K-theory

K(Xg) → g.

For a very generic g, we will just get n copies of KG(pt). On the hyperplane ai = aj , we will get the relation

(1 −L)2 = 0,

which is a relation in the non-equivariant K-theory of P1, which is the fixed locus.
Take an inclusion KT (XT ) → KT (X). By the excision sequence earlier, we can complete this inclusion

as
K1(⋯) →KT (XT ) →KT (X) →KT (X −XT ) → 0.

The term KT (XT ) is interpreted as what happens if we take all the branches L = a−1
i and take them apart,

i.e. remove all relations. Then these two schemes are isomorphic except on the hyperplane arrangement. A
general theorem of Thomason says K1(⋯) and KT (X −XT ) are torsion! So we don’t care about them so
much, because in the end we want to compute a character, which is usually a polynomial or rational function.
If we know such functions outside of some positive codimension subvariety, we know it everywhere. Hence if
we argue modulo torsion, KT (XT ) →KT (X) becomes an isomorphism.

Let V ∈ KG(X) be an equivariant vector bundle. We’d like to find a specific representative on XT that
pushes forward to V . Let ι∶XT → X be the inclusion. If X is smooth, there is a pullback map ι∗. We can
compute something like

ι∗ι
∗OY = ∧●N∨

X/Y

via Koszul resolution. Hence a representative for V , as a pushforward from the fixed locus, is

V = ι∗
⎛
⎝

ι∗V

∧●N∨
X/Y

⎞
⎠
.
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6 Nikita Nekrasov (Jul 09)

Today we add equations into the picture. In physics jargon this is called χ-H multiplet, also known as Koszul
complex. Then we will discuss global vs local symmetry groups, or how to compute using symmetries. Then
we’ll return to the discussion of the moduli M(k,n) of instantons, and their compactifications, symmetries,
and fixed points. From this we’ll get instanton partition functions, and finally we’ll talk about Y-classes, or
Y-observables in gauge theory.

Let Q be the supercharge, with Q2 = 0. We had Qx = ψ and Qψ = V (σ). Let G be a group. The objects
on which Q acts should be G-invariant. We also introduced objects

Qσ = η, Qη = [σ,σ].

We consider functions Γ(x,ψ, σ, σ, η) which are G-invariant, so that Q2 = 0 on them.
Now we want to impose constraints sa(x) = 0 on the variables x. To do so, we can either try to solve the

equations or we can work on a bigger space and impose these equations homologically. In other words, we
introduce additional variables in the form of a new multiplet χa and H. If the equations are bosonic, χa will
be fermionic, and vice versa. The transformation by Q extends to these new variables in the following way:

Qχa =Ha, QHa = R(σ)`aχ`.

We want to be able to impose these equations while preserving G-invariance, so we view them as sections of
a G-bundle E . This R(σ) is the G-action on E . This is of course not the global formula because it assumes
E is trivial. We should take into account the choice of some connection on E , e.g. we should extend to

Qχa =Ha −Abmaψmχb

where A is some connection 1-form for E .
Last time we discussed integrals of some form. Now we need to add in the integration over χ and H, to

get

∫
g

dσ

volG
∫

ΠT (ΠE×g)
dxdψ dσ dη dχdH ωµeiQ(χasa(x)).

Here eiQ(χasa(x)) is new, and imposes for us the equations, as follows. We can compute

exp i (Q(χasa(x))) = exp i (Has
a(x) − χaψm∇msa) .

Integrating over H gives a delta function for s, and integrating over χ gives a fermionic delta function for
ψm∇ms, which constrains the tangent directions in the base to be those which are in the kernel of ∇s. In
other words, the former constrains bosonic coordinates s, and the latter constrains tangent vectors to those
actually tangent to s.

This would not be very useful unless there is some way to deform the integral to make it less sharp as
far as the equations are concerned. This is because we don’t really want to solve the equations; we want to
integrate over the zero locus without really solving. We need to somehow smear the zero locus. The idea is
to use the fact that ω is Q-closed and that ∫ Q(⋯) = 0. The trick is to add a term:

exp i (Q(χasa(x) + itGabχaHb))

where Gab is an invariant metric on the fibers. Applying Q gives

exp (−t∥H∥2 −Gχ∇χ +Rχχψψ) .

Integrating out H now gives

exp(−∥s∥2

2t
−Gχ∇χ +Rχχψψ)
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instead of a delta function. If we send t →∞, we effectively forget about s, and we are left with a bunch of
curvature terms forming some sort of Pfaffian. This is like the Chern–Weil representation of Euler classes.

If we spell out what it means to integrate H out in the formulas, we see that it is like finding a critical
point. On the critical locus, we have

Ha =
1

t
Gabs

b.

Physicists call this “going on-shell”. Substituting this into the differential,

Qχ = s(x),

which yields exactly the Koszul complex.
Now let’s forget about equations, and suppose we are in the simplest case where all equations are already

solved. How do we use equivariance to compute things? Suppose X is a G-space, and suppose

ω ∈ Fun(g→ Ω●(X))G

is a G-equivariant form. Moreover suppose Qω = 0, i.e.

(d + ιV (σ))ω = 0.

Then we can compute

Z(σ) ∶= ∫
X
ω(σ),

called the partition function. Note that here we are only integrating the top-degree component. The
result is a function on the Lie algebra, holomorphic in σ since σ doesn’t enter. We can slightly generalize
this and introduce σ dependence:

Z(σ,σ, η) = ∫
X
ω(σ,σ, η)

where ω is still Q-closed, with
Q = dX + ιV (σ) + ∂σ + ι[σ,σ] ∂∂σ .

What can we say about Z? Firstly, it is G-invariant:

Z(g−1σg) = Z(σ).

This is because ω itself is G-invariant. So Z(σ) is determined by its restriction to the maximal torus t ⊂ g,
where it is Weyl-invariant. So we should think of Z as some sort of character of the group G.

The great thing about these functions is not only are they W -invariant, they are computable. We can
use the same trick of modifying the integrand by Q-exact insertions:

Z(σ) = ∫
X
ω(σ) = ∫

X
ω(σ)eQ(R)

for some choice of R. Choose a G-invariant metric ⟨−,−⟩ on X and choose an element σ ∈ g such that

⟨V (σ), V (σ)⟩ ≥ 0

where V ∶g→ Vect(X). Then we should let

R = −tgmnψmV n(σ) = −t⟨ψ,V (σ)⟩

Then Z(σ) becomes

Z(σ) = ∫
X
ω(σ) exp (−t⟨V (σ), V (σ)⟩ − tgmnψkψm∇kV n(σ)) .
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The beautiful thing is that Z(σ) is independent of t. Now we send t→∞, so that the resulting integrand is
highly localized around V (σ) = 0.

Assume V (σ) has only isolated zeros. Let p ∈X be one of these zeros. Then TpX is a linear representation
of the maximal torus T ⊂ G, and it will therefore split as a sum of irreps

TpX =⊕
i

R2
i .

In formulas, since V m(σ)∣p = 0, its first derivative is defined and we get a matrix

∂mV
n(σ)∣p

representing σ ∈ End(TpX). These irreps are invariant subspaces of this matrix, which can be written
in block-diagonal form consisting of 2 × 2 blocks. If X is not even dimensional, by thinking about this
block-diagonal form we see that not all zeros can be isolated. The 2 × 2 blocks are of the form

( 0 w(σ)
−w(σ) 0

)

where w(σ) are linear functions called weights. This is the only data we need to know, for localization!
The final formula is

Z(σ) = ∑
p

(ω(σ))(0) ∣p
∏wi(σ)

.

This is the fixed point formula for localization.
The famous example of this formula is for a symplectic manifold X, with Hamiltonian action of a torus

T . Then each vector field V n(σ) is of the form

V n(σ) = Ωnm∂mH(σ)

where H ∶X → t∗ is a linear function called the moment map. The differential form we will take is

ω(σ) = exp (Ω −H(σ)) .

The corresponding partition function is

Z(σ) = ∫
X

Ωn

n!
exp (−H(σ))

which is commonly considered in statistical mechanics for X the phase space. The fixed point formula says

Z(σ) = ∑
dH(σ)=0

±
e−H(σ)∣p√
det∂2H

which is exactly the stationary phase approximation for the phase space. The equality of these two expressions
for Z(σ) is known as the Duistermaat–Heckmann formula.

The slogan is that there are two kinds of groups: those we quotient out, and those that remain and act
on the quotient. We used the latter.

Take X = LY to be the loop space of a Riemannian manifold Y . Then tangent vectors in X are vector
fields on a loop. Let t be the coordinate on the loop, and define a symplectic form on X by

Ω(ξ, η) = ∫ dt g(ξ,∇∂tη).

In coordinates we would write

Ω = 1

2
∫

1

0
dt gmnψ

m(∂tψn + Γn`kẋ
`ψk).
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There is a U(1) action on X rotating the loop. The moment map for this action is the usual kinetic energy

H = 1

2
∫ dt gmnẋ

mẋn.

Now consider the fixed point formula. If we formally compute the lhs, we get the index of the Dirac operator
on Y (if it is spin). The rhs will be the Atiyah–Singer index formula. Fixed points are constant loops
Y ⊂ LY . Note that Ω is not non-degenerate, but this is OK.

Now we apply this whole discussion to M(k,n), i.e. the study of the anti-self-duality equation F +
A = 0

on R4 where A is a U(n)-connection. We said last time that

∫
M4

trFA ∧ ⋆FA = 8π2k

where k is the first Pontryagin class of the bundle P extended to the compactification M
4
. For M4 = R4, the

compactification is M
4 = S4. An important observation is that on 4-folds, ⋆ only depends on the conformal

class of the metric. So it does not change when we switch from R4 to S4.
We want to study ASD connections modulo gauge equivalence. The gauge equivalences we consider are

ones where g(x) → 1 as x→∞. There is a sort of “Fourier transform” which does not solve the equations ex-
plicitly, but maps them to matrix equations. This is the Fourier–Nahm–Mukai–Corrigan–Goddard–ADHM–
etc. transform:

A↔ (B1,B2, I, J).

Recall that last time we ended with two spaces K = Ck and N = Cn. These linear maps B1,B2, I, J are
summarized in the diagram

N

K

IJ

Suppose /DAψ
± = 0, where ψ± ∈ Γ(S± ⊗ (N ×G P )). For irreducible A, the spinors ψ± satisfy

ψ− = {0}, ψ+ = {K}.

Choose complex coordinates z1, z2 ∈ C2 = R4. The metric is dz2
1 + dz2

2 = ds2. The ASD equation says

F12 = F12 = 0, F11 + F22 = 0.

The first two equations are equivalent to

[D1,D2] = 0 = [D1,D2].

Let ψ+ = (ψ1 ψ2). The Dirac equation /DAψ
+ = 0 becomes

D1ψ2 −D2ψ1 = 0

D1ψ1 +D2ψ2 = 0.

As x → ∞, we have A → 0. So these equations should become the ordinary Dirac equation, without any
gauge field. If we write

ψ1 = ∂1φ, ψ2 = ∂2φ,
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then this automatically solves the first equation. The constraint for φ to solve the second equation is

∆φ = 0.

This means φ ∼ 1/r2. If we choose another ansatz

ψ1 = ∂2χ, ψ2 = −∂1χ,

then again this automatically solves the second equation. The constraint for χ to solve the first equation is

∆χ = 0.

This means χ ∼ 1/r2 as well. Combining them together, we get that

(ψ1

ψ2
) ∼ 1

r4
(I

�z1 + Jz2

I�z2 − Jz1
) .

Here I and J are recovered from the large-r asymptotics. To recover the matrices B1 and B2, we take any
such solution and multiply it by the coordinate functions and project back to the space of solutions:

B1 = ∫
R4

(ψ+)∗z1ψ
+

B2 = ∫
R4

(ψ+)∗z2ψ
+

The operation of multiplication by coordinate functions commute, but if instead of looking at all sections
we look at the ones annihilated by /D, then out of commuting operators we get something which need not
commute. In fact,

[B1,B2] + IJ = 0.

This condition arises from the boundary term in the calculation. In addition to this equation, we can also
compute

[B1,B
�
1] + [B2,B

�
2] + II

� − J�J = 0.

These are the celebrated ADHM equations, written in terms of the quiver

with one vertex and one loop.

7 Pavel Etingof (Jul 09)

The goal is to get to Yangians and q-characters. Yesterday we discussed Lie bialgebras and Poisson Lie
groups. Recall that G is Poisson if it is equipped with a Poisson bracket such that the product G ×G→ G
is a Poisson map. The Poisson bracket is determined by a Poisson bivector π ∈ Γ(G,∧2TG):

{f, g} = ⟨df ⊗ dg, π⟩.

Because we have a Lie group, TG is trivial and there are two canonical ways to trivialize it, by left or right
translations. We use right translations. Then we can view π as a function Π∶G → ∧2g. We say Π is a
Poisson–Lie structure. We have

Π(xy) = Π(x) + xΠ(y)x−1 Ô⇒ Π(1) = 0.
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The differential of Π is a map
dΠ∶g→ ∧2g,

and this is exactly the δ, the co-bracket, which we discussed yesterday. Then δ makes g a Lie bi-algebra,
meaning that

δ∗∶ ∧2g∗ → g∗

is a Lie bracket.
The following can be viewed as a Poisson enhancement of Lie’s third theorem.

Theorem 7.1 (Drinfeld). The functor G↦ Lie(G) is an equivalence of categories between simply-connected
Poisson Lie groups and finite-dimensional Lie bi-algebras.

Recall the notion of quasi-triangular Lie bialgebra. This is when the cobracket is given by commutator
with some element r ∈ g⊗ g:

δ(x) = [x⊗ 1 + 1⊗ x, r].

This means the 1-cocycle δ ∈ Z1(g,∧2g) is actually a co-boundary. The element r also solves the classical
Yang–Baxter equation

r12r13 + r12r23 + r13r23 = 0.

In general it seems hard to construct cobrackets to produce Lie bialgebras. We can use a tool called
Manin triples. This is a triple of Lie algebras (g,g+,g−) such that

g = g+ ⊕ g−

as vector spaces, and there is a non-degenerate invariant inner product on g such that g+,g− are isotropic.
In particular this means they are Lagrangian.

Given a Manin triple, we can construct a Lie bialgebra in a very simple way. Because of the pairing,
g+ ≅ (g−)∗. This gives a Lie coalgebra structure, because g− is a Lie algebra. Hence g+ is a Lie bialgebra,
and g− turns out to be the dual Lie bialgebra. Recall that Lie bialgebras are self-dual: in the dual, bracket
and cobracket are exchanged.

Proposition 7.2. The Lie coalgebra and Lie algebra structures on g+ are compatible.

There is an inverse operation called the Drinfeld double of a Lie bialgebra. Namely given a Lie bialgebra
g+ we can define

g− ∶= (g+)∗

which is another Lie bialgebra, and then we take g = g+ ⊕ g− with standard pairing ⟨−,−⟩. Then there exists
a unique bracket on g which extends the bracket on g± such that ⟨−,−⟩ is invariant. This is the classical
analogue of the quantum double construction. Note that g itself is a bialgebra, given by

δg = δg+ − δg− .

The minus sign corresponds to taking opposite coproduct in the quantum double construction.

Proposition 7.3. The Drinfeld double D(g+) is quasitriangular, with

r = ∑ai ⊗ a∗i

where {ai}, {a∗i } are bases of g±.

Manin triples really occur in nature. For example, let g be a simple Lie algebra. Then it has subalgebras
b+ and b− which almost form a Manin triple. The issue is that they intersect in the Cartan, and they are
not quite isotropic (they are too big dimensional). So we just define

g̃ ∶= g⊕ h,
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with Killing form
⟨−,−⟩g̃ ∶= ⟨−,−⟩g − ⟨−,−⟩h.

Then we can take the “Borel” subalgebras of g̃

b̃+ ∶= n+ ⊕ ⟨x,x⟩
b̃− ∶= n− ⊕ ⟨x,−x⟩

to get a Manin triple. The quasitriangular structure is given by

r = 1

2
∑xi ⊗ xi + ∑

α>0

eα ⊗ fα

where {xi} is an orthonormal basis of h. That this satisfies the classical Yang–Baxter equation follows from
the whole discussion and does not need to be checked. One checks that

r + r21 = ∑xi ⊗ xi +∑ eα ⊗ fα +∑ fα ⊗ eα

is exactly the Casimir of g.
There is a similar story for infinite-dimensional Lie algebras. There we have to be careful by taking

graded duals. The cobracket will be given by formulas like

δ(ei) = diei ∧ hi, δ(fi) = difi ∧ hi, δ(hi) = 0.

TOOD: the Yangian Lie bialgebra. In this case, we get

r(z) = Ω

z

and the classical Yang–Baxter equation becomes

[r12(z1 − z2), r13(z1 − z3)] + [r12(z1 − z2), r23(z2 − z3)] + [r13(z1 − z3), r23(z2 − z3)] = 0

in g⊗3 ⊗ C(z1, z2, z3). This is the classical YBE with spectral parameter, called a pseudotriangular
structure. Note that we can expand

1

t − u
= 1

t
+ u

t2
+⋯, 1

u − t
= 1

u
+ t

u2
+⋯,

and hence
1

t − u
+ 1

u − t
= ∑
n∈Z

tn

un+1
= δ(u − t).

The fact that the middle expression is not zero is why the structure is not triangular.
Now we discuss representation theory. Start with Uq(g) where g is Kac–Moody (e.g. finite-dimensional

or affine) and consider generic q. For usual g, we have category O. Reps in O are required to have the
following properties:

1. h is diagonalizable;

2. ei are locally nilpotent.

Then there are integrable representations Oint ⊂ O, where we additionally require

3. V is locally finite with respect to each sl2 triple ei, fi, hi.

Theorem 7.4 (Kac). This category Oint is semisimple and simple objects are Lλ for λ ∈ P+. The character
of Lλ is given by the Weyl–Kac formula.
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Theorem 7.5 (Lusztig). Kac’s theorem also holds for quantum groups.

Theorem 7.6. Repfin(Uqg) as a tensor category determines q up to q↔ q−1.

This shows the subtlety of the notion of monoidal category.
It is more interesting to see what happens in category O. There we have Verma modules Mλ, and also

simple modules Lλ. There is a surjection
Mλ↠ Lλ.

O is already not semisimple, and characters of Lλ are already hard to compute. They are computed using
Kazhdan–Lusztig polynomials. But it turns out in the quantum case the characters are the same.

Theorem 7.7 (Etingof–Kazhdan). For generic q,

chLqλ = chLλ.

The idea is to use Lie bialgebras, using the quantization functor.
Finally we should discuss finite-dimensional reps of affine Lie algebras. This will lead to Yangians and

quantum affine algebras. In the affine case, besides these categories, we also have a very interesting category
of finite representations.

Consider ĝ. The beauty of affine Lie algebras is that they have two realizations: one through Kac–Moody
generators ei, fi, hi, and the other through the loop realization g[t, t−1] ⊕Cc. In finite-dimensional reps of ĝ,
the central element c acts by zero. This is because we compute

[ht, ht−1] = 2c.

Hence they form a Heisenberg algebra. In finite-dimensional reps of Heisenberg algebras, c must be nilpotent.
But also we have sl2-subalgebras. Finite-dimensional reps of such algebras have the property that hi are
semisimple. So c is simultaneously semisimple and nilpotent, which means it acts by zero. So this seems
uninteresting, because one might think that all the interesting stuff comes from non-zero values of c.

Given z ∈ C×, define the evaluation homomorphism

phiz ∶ ĝ→ g, a(t) ↦ a(z).

Given a rep V of g, there is a pullback V (z) of ĝ called the evaluation representation. These are the
building blocks for finite-dimensional reps.

Theorem 7.8.

1. If V1, . . . , Vn are non-trivial irreps of g and z1, . . . , zn ∈ C× are distinct, then

V1(z1) ⊗⋯⊗ Vn(zn)

is irreducible.

2. Any irreducible finite-dimensional representation has this form in a unique way (up to permutation).

Note that when we talk about finite-dimensional reps we do not use the derivations discussed earlier.
Otherwise finite-dimensional reps do not exist. If we have zi = zj , then the following lemma kicks in.

Lemma 7.9. Let V,W be non-trivial irreps of g. Then V ⊗W is reducible.

Proof. There is a one-line proof:

Hom(V ⊗W,V ⊗W ) = Hom(V ⊗ V ∗,W ⊗W ∗),

but V ⊗ V ∗ and W ⊗W ∗ both contain C,g.

Hence we see that to get interesting finite-dimensional representations we need to consider reducible reps.
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8 Andrei Okounkov (Jul 10)

Let G be a compact Lie group. Suppose we have an infinite dimensional representation of G, e.g. L2(G). It
was understood a long time ago that the way to think about the character χV of such a representation V is
via distributions: If ϕ is sufficiently nice, like in C∞(G), then

⟨χV , ϕ⟩ = tr∫ ϕ(g)πV (g)dg.

Here dg is a Haar measure. The averaging makes the operator πV (g) trace-class, and then we can take its
trace. In general, suppose πV (ϕ) is an integral operator, i.e.

[πV (ϕ)f](g) = ∫
G
K(g, h)f(h)dh

for some kernel K(g, h). For the regular representation, the kernel is K(g, h) = ϕ(gh−1). Then the trace
becomes

tr∫
G
K(g, g)dg,

which is nothing more than ϕ(1). This is a sort of localization, because the answer only depends on (functions
supported at) 1 ∈ G.

We can view a kernel K(g, h) as a correspondence on G ×G. Similarly one has correspondences in K-
theory. Given a K-theory class Φ ∈KT (X × Y ), we get an operator KT (Y ) →KT (X) using the exact same
formula:

F ↦ πX∗(Φ ⋅ π∗Y F).

Let’s do an example of equivariant localization on P1. It has two fixed points 0 and ∞. Let the action on
P1 be denoted by q. An equivariant vector bundle over P1 has fibers V0, V∞ over 0,∞, and being equivariant
means V0, V∞ carry actions by q as well. Take charts

U0 = P1 ∖∞, U∞ = P1 ∖ 0,

with U0∞ ∶= U0 ∩U∞. We can compute cohomology of V using

Γ(U0) ⊕ Γ(U∞) s0−s∞ÐÐÐ→ Γ(U0∞),

whose kernel is H0 and cokernel is H1. So if we want to compute H0 −H1, we may as well compute using
this sequence.

1. Note that Γ(U0∞) is a number of copies of the regular representation. If z is a coordinate, then
multiplication by z is an invertible operator on Γ(U0∞). Hence (1 − q−1)Γ(U0∞) = 0, so Γ(U0∞) is
torsion and we can forget about it.

2. The equivariant vector bundle is trivial in a neighborhood of 0 and ∞. So for example

Γ(U0) = Γ(V0 ⊗C[z]).

Hence the character of Γ(U0) is exactly
trq V0

1 − q−1

because the function z ↦ z has character q−1, not q.

Hence we get

trq(H0 −H1) = trV0

1 − q−1
+ trV∞

1 − q
.
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This is a special case of the general K-theoretic localization formula we stated last time, which said that

V = ∑
components F
of fixed locus

V ∣F
∧●−1(NFX)∨

.

Exercise: take X = G/B. If λ is a character of B there is an associated line bundle Lλ. Compute
χ(G/B,Lλ) using localization to get the Weyl character formula.

Theorem 8.1 (McGerty–Nevins). Let X be a Nakajima quiver variety. Then Ktop(X) = Kalg(X) is gen-
erated by tautological vector bundles (in the sense of Λ rings). Consequently, classes of the form ci(Taut)
generate integral cohomology.

Proof. Take X = Gr(k,n). This is not an actual Nakajima quiver variety. Over X there is the tautological
bundle L. Let’s look at X ×X, with tautological bundles L1, L2. Then there is a map

Hom(L1,Cn/L2) ∋ L1 → Cn → Cn/L2.

This canonical section s vanishes exactly when L1 = L2, i.e. on the diagonal ∆. Note that codim ∆ =
dimX = k(n−k), which is exactly the rank of the Hom bundle. Hence the diagonal ∆ has a resolution. The
corresponding operator in K-theory is the identity, but the resolution allows us to rewrite it as

id = ∑αi ⊗ βj

where the αi are some expressions in L1, and the βj are some expressions in L2. Hence the image of the
operator id is spanned by expressions in L1, which is what we wanted to prove.

For a general Nakajima quiver variety, this proof breaks because they are not compact. In that case we
can only pushforward if there is some condition on the support. The actual proof requires a compactification.
One can think of a Nakajima quiver variety as a moduli of representations of the path algebra of the quiver
modulo relations coming from the moment map. This is very useful, e.g. in proving there are no strictly
semistable points. A priori we have

⊕
i

gl(Vi)
actionÐÐÐ→ T ∗(framed repr) dµÐ→⊕

i

gl(Vi)∗.

But knowing that it is a moduli of representations means T ∗ is Ext1(R,R) over a representation R, and this
sequence becomes

Hom(R,R) → Ext1(R,R) → Ext2(R,R).

Based on this, we can write a resolution of the diagonal for any Nakajima quiver variety. The principle is that
if have two stable representations R1,R2 of the same dimension, then there is no room for non-trivial Homs
unless they are equal. This is the beginning of the general argument; then we need some McGerty–Nevins
type classification which we will not discuss.

Now let’s discuss fixed points. Suppose we have a framed quiver. Take the maximal torus

⎛
⎜
⎝

a1

⋱
awi

⎞
⎟
⎠
⊂ GL(Wi).

What are the fixed points of this torus acting on the Nakajima quiver variety? This action induces a grading
on the GL(Vi), but does not act on the actual quiver data. Hence the quiver maps must preserve the weight
spaces of Vi’s. It follows that fixed loci are products of the same quiver, but with 1-dimensional framings.
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For example, fixed loci in

Cn

Ck

are products of

Hilb(C2, k) =

C

Ck
.

9 Nikita Nekrasov (Jul 10)

Last time we talked about the moduli of framed instantons of charge k on R4 ≅ C2, and its relation to the
quiver

N

K

IJ

.

For reasons that will be delegated to the exercises, we will work with a slightly modified spaceM(k,n). The
original M(k,n) arises from imposing the equations

µC∶ [B1,B2] + IJ = 0

µR∶ [B1,B
�
1] + [B2,B

�
2] + II

� − J�J = 0.

This produces a non-compact space. Since we want to integrate, we want to get as close to a compact space
as possible.

The simplest approach is to solve these equations µR = µC = 0 and mod by U(k), to get the Uhlenbeck
partial compactification. Such a compactification has a scaling symmetry and therefore a conical singularity.

To smooth this singularity, we add a scalar to “smooth out” this singularity. This is the Gieseker–
Nakajima compactification, and arises by solving

µC = 0, µR = r1k (4)

for (wlog) r > 0. Then the conical singularity is replaced by some non-trivial geometry, with cycles of size
r. This partial compactification happens to be the moduli space of something, but we will not discuss this
today. Note that solving the equations (4) is equivalent to solving just µC = 0 and then imposing stability
conditions (and then modding by GL(k)).
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We would like to set up the theory of integration over this partial compactification. Instead of solving the
equations explictly, we will integrate over the linear space of (B1,B2, I, J), and then introduce χ-H multiplets
to impose equations. This will yield a practical tool for evaluating integrals of closed differential forms over
M(k,n) in terms of equivariant cohomology classes of this vector space of matrices. But vector spaces
are affine, so their equivariant cohomology is just invariant polynomials on LieU(k), which are Sk-invariant
polynomials in x1, . . . , xk, i.e. elements of

C[x1, . . . , xk]Sk .

Concretely, we have

∫M(k,n)
ω = ∫(B1,B2,I,J)

ω̃µ ⋅ (additional multiplets σ,σ, η, χ,H).

In order to be efficient with these calculations, it is useful to have a global symmetry which we do not divide
by and instead keep in the toolbox. The global symmetry allows us to express this integral as a sum over
fixed points.

The global symmetries of these equations include changing basis of CN . An element h ∈ U(N) can act
by

(B1,B2, I, J) ↦ (B1,B2, Ih
−1, hJ).

There is also an SU(2) action on B1,B2 rotating them:

( α β

−β α
) ⋅ (B1,B2, I, J) = (αB1 + βB2,−βB1 + αB2, I, J).

Finally, we can multiply B1,B2 by an overall phase eiφ ∈ U(1):

(B1,B2, I, J) ↦ (eiφB1, e
iφB2, e

2iφI, J).

Equivariant parameters are generators of the ring H∗
G(pt) =H∗(BG) = C[t]W . For the problem at hand,

they consist of:

1. eigenvalues a1, . . . , an of a generic element in u(n);

2. eigenvalues
ε1 − ε2

2
,

ε1 + ε2
2

for su(2) × u(1).

We make this strange choice for su2 so that the action generated by such parameters in general is

(B1,B2, I, J) ↦ (ε1B1, ε2B2,−Ia⃗, (a⃗ + ε1 + ε2)J).

We want to find fixed points of the global symmetry group on M(k,n). This means that on the cover
{(B1,B2, I, J)}, we want to find points where the orbit of the global symmetry group is contained in the
orbit of the local symmetry group. In physics jargon, we say that the global symmetry transformation can
be undone by a local symmetry transformation.

The space K becomes a representation of the torus T ∶= U(1)N ×U(1)2 → GL(k). Every rep of an abelian
group splits into characters, so we can write

K =⊕
γ

Kγ

for 1-dimensional irreps Kγ . On these, a generic σ ∈ T acts by multiplication by a phase

exp (⟨w,a⟩ + n1ε1 + n2ε2) .
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The question is to find this integral data. This is actually pretty easy. The choice of the torus U(1)N ⊂ U(N)
corresponds to a decomposition

N =
n

⊕
α=1

Nα

into eigenspaces, so that aNα = aαNα. Acting by I, we get I(Nα) ⊂ K. This line is an eigenline for σ, so
that

σI(Nα) = I(aNα) = aαI(Nα).

Hence w = (0,0, . . . ,1, . . . ,0) with the 1 at position α. The corresponding n1, n2 are zero. Acting on this line
I(Nα) by C[B1,B2] generates some subspace

Kα ∶= C[B1,B2]I(Nα),

and stability says ⊕αKα =K. It follows from commutation relations that

σ(Bi−1
1 Bj−1

2 I(Nα)) = (ε1(i − 1) + ε2(j − 1) + aα)I(Nα). (5)

By genericity of the aα, we get Kα ∩Kβ = ∅.
If N = C1, then it follows from the moment map equations that J = 0, and therefore [B1,B2] = 0. Hence

the case of (5) will be the only possibility. First we show im I ⊂ kerJ , i.e. JI = 0. This comes from moment
map equations

JI = tr(IJ) = − tr([B1,B2]) = 0.

Then we show that J acting on any polynomial in B1,B2 applied to I is zero. By stability such polynomials
generate the entire space K. Hence J = 0.

The space K therefore splits into Young diagrams given by the action of B1 and B2 on the image of I.
The action of B1 moves to squares below, until we hit zero; similarly, B2 moves to the right:

I(Nα)

B1

B2

For α = 1, . . . , n, we denote

λ(α) =
⎧⎪⎪⎨⎪⎪⎩
(i, j) ∶ 1 ≤ i ≤ λ(α)t

j

1 ≤ j ≤ λ(α)
i

⎫⎪⎪⎬⎪⎪⎭
.

The action of σ is diagonal, with eigenvalues

trk e
σ =K =

n

∑
rank=1

eak ∑
(i,j)∈λ(α)

qi−1
1 qj−1

2 , qi ∶= eεi .

There is a tautological complex given by

K
d1Ð→K ⊕K ⊕N d2Ð→K (6)
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with differentials given by

d1x ∶= (B1x,B2x, Jx)
d2(x1, x2, ξ) ∶= −B2x1 +B1x2 + Iξ.

The exactness of this complex is equivalent to µC = 0. So we can look at the cohomology of this complex.
Suppose H2 ≠ 0. Then there exists η ∈K which is orthogonal to the image of d2. Then

η�(−B2x1 +B1x2 + Iξ) = 0

for all x1, x2, ξ. For this to hold for all x1, x2, ξ, we must have

B�
1η = B

�
2η = I

�η = 0,

and therefore by stability η = 0. So H2 = 0.
For H0 and H1, denote

S ∶= (trH1 − trH0 − trH2)(eσ).
By the usual argument, this can be computed on chains. Here we have to be a little careful, because the
complex (6) is not equivariant. The map d1 and d2 carry non-trivial weights. The equivariant version of the
complex is

q1q2K
d1Ð→ q2K ⊕ q1K ⊕N d2Ð→K.

It follows that
S = N + (q1 + q2)K − q1q2K −K = N − P12K, P12 ∶= (1 − q1)(1 − q2).

This is called a virtual character, because we are formally “subtracting” characters. It is easier to compute,
because when we multiplyK by (1−q1)(1−q2) there are lots of cancellations. Carrying out these cancellations,
we get

S =
n

∑
α=1

eaα
⎛
⎝ ∑
◻∈∂+λ(α)

ec◻ − q1q2 ∑
◻∈∂−λ(α)

ec◻
⎞
⎠

Here ∂+λ is the outer boundary: all squares which can be added to the jagged edge of a Young diagram
such that it remains a Young diagram. Similarly, the inner boundary is all squares which can be removed
from the jagged edge. The content c◻ is given by

c◻ at (i,j) ∶= ε1(i − 1) + ε2(j − 1).

Note that there is exactly one more square in the outer boundary than the inner boundary. If I is the ideal
corresponding to the partition λ, boxes in the outer boundary ∂+λ correspond to generators of I and boxes
in the inner boundary ∂−λ correspond to relations of I. Taking the difference ∂+λ − ∂−λ corresponds in
K-theory to the relation given by the SES

0→ I → OX → OZ → 0

where Z is the subscheme cut out by I.
We can introduce an observable given by

Y (x) ∶=
n

∏
α=1

∏◻∈∂+λ(α)(x − aα − c◻)
∏◻∈∂−λ(α)(x − aα − ε1 − ε2 − c◻)

This is related to the S object by
Y (x) = E[exS∗]

where E[−] is the plethystic exponential. If χ = ∑±ew± , then the plethystic exponential is

E[χ] ∶= ∏w−

∏w+
, χ = ∑±ew± .
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This is an operation which takes sums to products. When we write χ∗ we mean

χ∗ ∶= ∑±e−w± .

In addition to the tautological complex there is of course also the tangent complex. To do things with
the fixed point formula we also need to understand the character of that. The tangent space TλM(k,n) to
a fixed point λ = (λ(1), . . . , λ(n)) is realized by a complex as follows. Infinitesimal deformations must satisfy

[B1, δB2] + [δB1,B2] + δI ⋅ J + I ⋅ δJ = 0.

Because these are infinitesimal deformations, we set the following things to be trivial:

(δB1, δB2, δI, δJ) = ([ξ,B1], [ξ,B2],−ξI, Jξ) = 0.

We can view the first equation as a differential

d2(δB1, δB2, δI, δJ),

and the first equation as a differential d1(ξ). Hence we get the tangent complex

C ∶= [End(K) d1Ð→ End(K) ⊗C2 ⊕Hom(N,K) ⊕Hom(K,N) → End(K)] .

One sees that the only cohomology here is H1(C), and everything else vanishes. Using this, the character
of the tangent space is therefore

trTλM(k,n)(e
a, q1, q2) = NK∗ + q1q2N

∗K − P12KK
∗.

Even though this looks like a virtual character, it is actually a pure character. This reflects the fact that
H0 =H2 = 0.

Now we are in position to define the instanton partition function of pure super Yang–Mills theory.
Tomorrow we will define more interesting things. This will be

Z ∶=
∞
∑
k=0

qk ∫M(k,n)
expQR

where R is a universally-defined 1-form on M(k,n) given by

R ∶= g(⋅, V (a⃗∗, ε∗1, ε∗2)).

Here Q is the T -equivariant de Rham differential and depends on the parameters a⃗, ε1, ε2. This R depends on
some auxiliary parameters, but as long as they are such that the integral converges the answer is independent
of the parameters. So

Z = Z(a⃗, ε1, ε2).
By the arguments from yesterday, we can use the fixed point formula to get the formula

Z = ∑
λ=(λ(1),...,λ(n))

q∣λ∣
1

∏w∈TλM(k,n)w
.

Finally, we can study expectation values of the observable Y (x). In addition to the partition function
we can study the correlators

⟨Y (x)⟩ ∶= 1

Z

∞
∑
k=0

qk ∫M(k,n)
Y (x) expQR

= 1

Z
∑
λ⃗

q∣λ⃗∣
1

∏w∈Tλ⃗M(k,n)w
∏
α

∏◻∈∂+λ(α)(x − aα − c◻)
∏◻∈∂−λ(α)(x − aα − ε1 − ε2 − c◻)

.
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This function now depends on an auxiliary variable x, and in general will be rational in x. The poles of
this function in x are very interesting, because they reveal certain hidden structure of the partition function.
Namely, different terms of the sum are related to each other in an interesting way, because the terms can be
organized along a Young graph

ÐÐÐÐ→ ÐÐÐÐ→
×××Ö

×××Ö

ÐÐÐÐ→
×××Ö

×××Ö

.

The poles of this ⟨Y (x)⟩ function correspond to the ways to “go back” along this graph. The residue at
the poles of ⟨Y ⟩ corresponding to inner boundary boxes can be related to the residues at the poles of ⟨1/Y ⟩
corresponding to outer boundary boxes in the previous partition. Tomorrow we will see how to take advantage
of this to produce combinations that actually have no poles, which yields very interesting identities.

10 Noah Arbesfeld (Jul 10)

Start with a single vector space V over a field k. An R-matrix is an element

R(u) ∈ GL(V ⊗ V, k(u)).

The quantum Yang–Baxter equation is essentially a Reidemeister relation:

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2).

These operators should live in
End(V ⊗3, k(u1, u2, u3)).

This is a pretty complicated equation. If dimV = n then these are n6 equations and n4 variables. That
there is a solution at all indicates something special is going on. Once we have a solution to this, we get a
braiding on some tensor category, from which we can produce a quantum group.

How do we use geometry to find solutions? Maulik–Okounkov have two ways to do this. The first is
to let V = H∗(X1) where X1 is a Nakajima quiver variety with exactly one 1-dimensional framing node.
Then R(u) acts on V ⊗2. As we’ve seen, X1 sits as a part of a fixed locus of the same quiver but with a
2-dimensional framing node. Let X2 denote this Nakajima variety. A GL(2) acts on the framing of X2, so
that for a maximal torus A ⊂ GL(2),

XA
2 =X1 ×X1.

After suitably localizing, there will be two maps

H∗
T (X1)⊗2 =H∗

T (XT
2 ) Stab+ÐÐÐ→

Stab−
H∗
T (X2).

These maps will depend on some cocharacter of the torus. The R-matrix will then be

R ∶= (Stab−)−1 ○ Stab+ .

Applying this picture to a bigger picture with three Nakajima varieties shows that R satisfies the quantum
YBE. The element u, geometrically, is some u ∈H∗

A(pt).
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If we take X = Hilbk(C2), which is a Nakajima variety for the quiver

1 k

The definition of the Hilbert scheme of points on an arbitrary surface S is that it parameterizes 0-dimensional
length-k subschemes of S:

Hilbk(S) ∶= {Z ⊂ S ∶ dimZ = 0, dimCH
0(OZ) = k}.

We think of it as parameterizing “k points on S”. For example,

Hilb1(S) = S.

A more interesting example is Hilb2(S). There is a locus consisting of two distinct points p, q ∈ S. When the
two points coincide, something interesting can happen. In this case, we have

H0(OZ) = ⟨1, ax + by⟩

for coordinates x, y ∈ C2 and scalars a, b ∈ C up to rescaling. Hence there is a P1, which remembers the
direction along which the two points collided. In other words,

Hilb2(S) = Bl∆(S × S)/S2.

The second way of producing an R-matrix produces one for Hilb(S) for any surface S, for the vector
space V = H∗(Hilb(S)). The construction involves a Virasoro action on H∗(Hilb(S)). Here when we write
Hilb(S) we mean ⊔k Hilbk(S). When S = C2, Maulik–Okounkov showed that we recover the same R-matrix
as in the first construction. For general S we get something new.

Let’s discuss the representation theory associated to H∗(Hilb(S)). We put a mild assumption on S: it
is a smooth quasiprojective surface over C which is either proper or equivariantly proper, i.e. there is some
action of a torus T whose fixed locus is proper. This is desirable so that we can integrate over S. Then
H∗
T (S) has the structure of a Frobenius algebra. The pairing is

⟨γ1, γ2⟩S = −∫
S
γ1 ∪ γ2.

As Andrei explained this morning, one way to get interesting actions of algebras on varieties is via
correspondences. The Hilbert scheme of points is a particularly rich source of correspondences. Given S[k]

and S[k+n], we can define a correspondence

Y [k,k+n]
γ ⊂ S[k] × S[k+n]

indexed by some γ ∈H∗
T (S). This correspondence is

Y [k,k+n]
γ ∶= {(Z1, Z2) ∶ Z1 ⊂ Z2, supp(Z2/Z1) = n[p], p ∈ cycle(γ)}.

By push-pull, this yields an operator

α−n(γ)∶H∗
T (S[k]) →H∗(S[k+n]),

defined by p2∗ ○p∗1 where pi are projections from Y
[k,k+n]
γ . These are creation operators. Their counterparts

are given by the same correspondence in reverse:

αn(γ) ∶= (−1)n(transposed correspondence).

The sign comes from the minus sign in the pairing. For α0, which must act by a scalar, we introduce a new
variable u and say that α0 acts by

u∫
S
γ.
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Theorem 10.1 (Grojnowski, Nakajima). These operators α±n(γ) form a Heisenberg algebra labeled by
H∗
T (S), i.e.

[αm(γ), αn(γ′)] = δm+nm⟨γ, γ′⟩S ⋅ id .

We want to know what this action looks like on the module

VS ∶=H∗
T (⊔

k

S[k]).

This turns out to be a lowest weight representation, also known as a Fock space. If we let

∣∅⟩ ∈H0(S[0]) =H0(pt),

then αm(γ) ∣∅⟩ = 0 for m > 0, so that ∣∅⟩ acts as a vacuum. For S = C2, a basis over Frac(H∗
T (pt)) for

H∗
T (Hilb(S)) is given by elements

∏
i

α−λi(1) ∣∅⟩

ranging over all partitions λ.
In general, given a Heisenberg module, the Feigin–Fuchs construction makes it a Virasoro module. One

can write this purely algebraically. First introduce a formal parameter κ. The Virasoro elements will be
functions of κ, and are defined by

Ln(γ, κ) ∶= ∑
m

∶αm(γ′i)αn−m(γ′′i )∶ −nκαn(γ) − δnκ2 ∫
S
γ.

Here we are using Sweedler notation ∆γ = ∑i γ′i ⊗ γ′′i . The dots ∶∶ denote normal ordering, which means we
move all annihilation operators to the right. There is also a way to produce these operators geometrically,
using c1 of tautological bundles.

Proposition 10.2. The Ln form a Virasoro algebra decorated by cohomology classes in H∗
T (S):

[Lm(γ, κ), Ln(γ′, κ)] = (m − n)Lm+n(γγ′) + δm+n
m3 −m

12
(∫

S
γ′γ′′(e(S) − 6κ2))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
central charge

id .

Again, VS is a lowest weight representation for the Virasoro. So

Lm(γ, κ) ∣∅⟩ = 0, ∀m > 0.

One can compute, from definition, that

L0(γ) ∣∅⟩ = (u2 − κ2)∫
S
γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conformal dimension

∣∅⟩ .

Note that both the central charge and conformal dimension are purely quadratic in κ. More precisely, they are
invariant under κ↔ −κ. It is a fact that lowest weight Virasoro representations are classified by their central
charge and conformal dimension. So we can make the Virasoro act by either Lm(γ, κ) or Lm(γ,−κ), but
this classification means we get isomorphic representations. In other words, there exists some isomorphism

R1∶∏
i

L−λi(γ, κ) ∣∅⟩ ↦∏
i

L−λi(γ,−κ) ∣∅⟩ .

This is an isomorphism of vector spaces over C(u,κ).
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To produce R(u) ∈ End(V ⊗2
S ), first write the tensor square in a different way. Replace the generators by

V ⊗2
S = V +

S ⊗ V −
S

{generators} ↦ {symmetric words} ⊗ {antisymmetric words}.

The stable envelope construction for S = C2 guides us to the following construction. We get

R(u) = idV +

S
⊗R1

−

where R1
− acts on the second factor, and is constructed by the same formulas as R1 but every time we see

an αm we replace it with the antisymmetric version αm ⊗ 1 − 1⊗ αm, up to some scaling.

11 Pavel Etingof (Jul 10)

Today we will do some computations which will help us get a feel for how things work. We will talk about
finite-dimensional representations of Uq(ŝl2). Recall its definition

Uq(ŝl2) = ⟨ei, fi,K±
i ⟩/(⋯)

with Cartan matrix

( 2 −2
−2 2

) .

The generators ei, fi,K
±
i satisfy sl2-relations for each i = 0,1. Further we have

K0K1 =K1K0, [e0, f1] = [e1, f0] = 0

K0e1K
−1
0 = q−2e1, K1e0K

−1
1 = q−2e0

K0f1K
−1
0 = q2f1, K1f0K

−1
1 = q2e0.

We also have relations

e3
i ej − (q2 + 1 + q−2)e2

i ejei + (q2 + 1 + q−2)eieje2
i − eje3

i = 0.

For q = 1, we also have relations coming from Lsl2

e0 = ft, f0 = et−1, h0 = c − h, c = h0 + h1.

In particular, K0K1 =∶ C is a central element. This will act by 1 in finite-dimensional representations. There
is an evaluation homomorphism

φ∶Uq(ŝl2) → Uq(sl2)

given by the formula

φ(e1) = φ(f0) = e, φ(f1) = φ(e0) = f, φ(K1) = φ(K−1
0 ) =K.

This is a generalization of the evaluation homomorphism t ↦ 1. In fact we have a whole family of
evaluation homomorphisms corresponding to a choice of z ∈ C×. There is a C×-action τz which acts by
scaling t, i.e. e0 ↦ ze0 and f0 ↦ z−1f0, with trivial action on other generators. Then we can look at

φz ∶= φ ○ τz.

This is good because we know a lot about the representation theory of Uq(sl2), and we can pull them back
via φz. It turns out these pullbacks give all irreducible finite-dimensional representations.
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The simplest representation of Uq(sl2) is V = C2, given by

e↦ (0 1
0 0

) , f = (0 0
1 0

) , K ↦ (q 0
0 q−1) .

For higher-dimensions it may differ, but in two dimensions it is the same. Denote by V (z) the evaluation of
V at z, i.e.

ΠV (z)(a) = ΠV (φz(a)).

Then

e1 ↦ (0 1
0 0

) , f1 ↦ (0 0
1 0

) , e0 ↦ (0 0
z 0

) , f0 ↦ (0 z−1

0 0
) , K0 ↦ (q

−1 0
0 q

) .

It is easy to show that any 2-dimensional irrep will be V (z) for some z. So the dual V (z)∨ of this represen-
tation must be V (w) for some w. Let’s compute and see what w is. How can we recognize z from V (z)? It
is clear that

z = tr e0e1.

On V (z)∨, we have

ΠV (z)∨(e0) = ΠV (z)(Se0) = ΠV (z)(−e0K
−1
0 )

ΠV (z)∨(e1) = ΠV (z)(Se1) = ΠV (z)(−e1K
−1
1 ).

Hence by algebra relations we get

w = tr e1K
−1
1 e0K

−1
0 = q2 tr e1e0 = q2z.

The result is that
V (z)∨ = V (q2z). (7)

But then if we take the double dual, we will get

V (z)∨∨ = V (q4z).

This is an example of a Hopf algebra where taking double dual is not a trivial operation, even at the level
of simple objects. So not only is S2 ≠ id, it is not an inner automorphism.

Actually, (7) holds for any irrep. For other algebras, the double dual will result in q2h∨ where h∨ is the
dual Coxeter number.

This implies that V (z) ⊗ V (q2z) is reducible, because it is the same as V (z) ⊗ V (z)∨, and there is a
coevaluation C → V (z) ⊗ V (z)∨. The same goes for V (z) ⊗ V (q−2z), which maps to C via the evaluation
map. So this category is not semisimple. Exercise: there are SESs

0→W (q−1z) → V (z) ⊗ V (q−2z) → C→ 0

where W is the 3-dimensional irrep. Note in particular that this category cannot be braided, because X ⊗Y
is not always isomorphic to Y ⊗X. However they do always have the same composition factors.

Claim: in fact V (u) ⊗ V (z) is irreducible except when u/z = q2 or q−2.
For a ∈ Z≥0, let Va be the irrep of Uq(sl2) with highest weight a. Then we get a representation Va(z),

and we can look at the product
Va1(z1) ⊗⋯⊗ Van(zn).

When is it irreducible? We saw the answer in the case where there are two factors and both are 2-dimensional.
It turns out this has a very nice answer.

Definition 11.1. A string in C× is a finite geometric progression with ratio q2. Two strings S,T are in
special position if S ∪ T is a string containing S and T properly. Otherwise they are in general position.
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To Va(z), associate its string Sa(z) given by

q−(a−1)z, q−(a−3)z, . . . , qa−1z.

This is a string of length a. For example, if V is 2-dimensional, we get the single string S1(z) which is just
z.

Theorem 11.2 (Chari–Pressley).

1. The tensor product
Va1(z1) ⊗⋯⊗ Van(zn)

is irreducible iff the strings Sai(zi) are pairwise in general position.

2. Such irreducible tensor products are isomorphic iff they differ by permutation.

3. Any irreducible finite-dimensional representation is isomorphic to such a product.

It is not clear immediately why if two irreps differ by permutation then they are isomorphic. This is
because we have an R-matrix. So no part of this theorem comes for free.

Lemma 11.3. Any finite set in C× with multiplicities can be uniquely represented as a union of strings
pairwise in general position.

So we view finite-dimensional irreps as parameterized by finite subsets of C× with multiplicities, i.e.
polynomials with constant term 1. These are called Drinfeld polynomials, which arise in a natural way
in the next discussion.

Now let’s talk about permuting factors, which comes from R-matrices. Certainly this quantum affine
algebra Uq(ŝl2) has a universal R-matrix of the form R = ∑i ai ⊗ a∗i , which we discussed. It is a huge sum,
which even for finite-dimensional V,W does not make sense on V ⊗W . Apply the symmetry τz to the first
component of R. Recall that it has positive weight with respect to this degree. For finite-dimensional V,W ,

RV,W (z) ∶= (τz ⊗ 1)(R)∣V ⊗W ∈ End(V ⊗W )[[z]],

which we can think of as R∣V (z)⊗W . So while we can’t make sense of R on V ⊗W , this at least makes sense.

Theorem 11.4 (Drinfeld). This series RV,W (z) converges for ∣z∣ < r for some r. If V,W are irreducible,
then

RV,W (z) = RV,W (z)fV,W (z)

where R is a rational function and f is a scalar meromorphic function.

The shift q ↦ q4z gives rise to a non-linear q-difference equation for R. Then one shows using some
simple complex analysis that the solution converges on some disk.

The matrix R satisfies a unitarity condition, namely

R(z)R21(z) = 1⊗ 1.

This is a mock symmetric braiding, because it has poles. For example, if V =W = C2 with basis v+, v−, then

R(z) =

⎛
⎜⎜⎜⎜⎜
⎝

q
z−1
z−q−2

q−q−1
z−q−2

z(q−q−1)
z−q−2

z−1
z−q−2

q

⎞
⎟⎟⎟⎟⎟
⎠

.

This matrix has a pole at z = q−2, but also we can check that it satisfies the unitarity condition. It is also not
an isomorphism at z = q2; in fact it has a zero there. These are exactly the points where the tensor product
is reducible. This is a general fact that can be formulated for quantum affine algebras in general.
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Proposition 11.5. Va1(z1) ⊗⋯⊗ Van(zn) is irreducible iff all R-matrices

Rij ∶End(Vai(zi) ⊗ Vaj(zj))

are defined and invertible.

For higher-rank algebras, the situation becomes more complicated. For Uq(ŝln) we still have an evaluation
homomorphism

φz ∶Uq(ŝln) → Uq(sln)

but it is a little more complicated to define. However it is not true anymore that any irrep is a tensor
product of evaluation representations. They will in general be quotients of such products. The ultimate
understanding came from Nakajima, who showed that these representations are realized in equivariant K-
theory of Nakajima quiver varieties.

For other types, things actually get worse. For example, there are no evaluation homomorphisms: there
are no arrows making

Uq(ĝ) Uq(g)

Uq(g)

id

commute. Drinfeld showed that the adjoint representation for g does not lift to Uq(ĝ). To lift it, we have to
add a copy of the trivial rep, which then can be twisted by the τz. In general, to quantize reps V , one has
to add to it a sum:

V̂λ = Vλ + ∑
µ<λ

cµλVµ.

This is a complicated phenomenon which was only understood well after Nakajima.
In particular this discussion already shows in the gln case that there are no “highest weights”. We need

to pick a different polarization of the Lie algebra. The usual decomposition is

g[z, z−1] = b̂+ ⊕ h⊕ b̂−

For finite-dimensional reps, we will have a nilpotent action if we do a decomposition along the loop direction,
i.e.

g[z, z−1] = ñ+ ⊕ h̃⊕ ñ−.

This is quite simple in the classical case, e.g. we can say what the highest weight for the reps we saw last
time are, but what is not completely clear is why it is that after q-deformation we still have a decomposition
like this. Elements quantize in a quite complicated way. This was a great discovery of Drinfeld.

12 Andrei Okounkov (Jul 11)

As explained in Alisa’s lecture, a correlation function of the form

⟨Y (x) + ∗
Y (x +⋯)

⟩

has no poles. This is a qq character C2(x) of Y (sl2). In this case, one can go and check poles cancel by
elementary math. In more complicated situations, there is a geometric proof for pole cancellation, involving
a localization formula over a compact space. To make this work we would like to make H∗

T or K∗
T of a

Nakajima quiver variety into a module for a quantum group.
Let G ⊂ GL(V ) be a reductive group. Then G acts on all possible tensor products V ⊗d. One can consider

the category in which objects are such representations and maps are all possible homomorphisms. This
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gives a symmetric tensor category. It is a simple observation, going back to Weyl, that this category knows
everything. In particular it knows what the group G is. For example, if dimV = n, then

Hom(V ⊗d, V ⊗d)Sd = Symd(V ∗ ⊗ V ) = polynomials on n × n matrices of degree d.

Hence we know all G-invariant polynomials on matrices, yielding coordinates on the quotient

GL(V ) → GL(V )/G.

Since the fiber over the identity 1 ∈ GL(V )/G is G itself, we have recovered G. The takeaway is that it is
typically easier to think about categories than about equations.

Now we want to make the group G quantum. In the classical story, permutation of factors V1⊗V2 → V2⊗V1

is a morphism in the category. In the quantum story, there will be a new non-trivial morphism

R∶V1 ⊗ V2 → V2 ⊗ V1

called the R-matrix. (Note that it need not square to 1.) We require the R-matrix to satisfy the Yang–
Baxter equation, coming from two ways to permute three factors in a tensor product. In this setup, the
typical reconstruction we just talked about is much easier! This is because now, instead of a single symmetric
group for all objects, every pair of objects has its own R-matrix. Introduce an auxiliary space V0 and consider

V0 ⊗ V1 ⊗ V2 ⊗ V3 ⊗ V4.

Write the R-matrix which braids them by fusion:

V1 ⊗ V2 ⊗ V3 ⊗ V4 ⊗ V0

If we take an arbitrary matrix element in the auxiliary space V0, we get an operator in End(V1⊗V2⊗V3⊗V4).
These operators are braided by the R-matrix, as claimed. To compose operators we just add tensor factors
in the auxiliary space, and the Yang–Baxter equation in the auxiliary space is commutation relations. Any
decomposition in the tensor category gives automatically a relation in the auxiliary space. So we get a Hopf
algebra.

Let’s discuss the Yang–Baxter equation with spectral parameters. The picture to have in mind is

u1u2 u3

=

u1u2 u3

.

Interpret these as particles with some velocity in spacetime. In principle there is some triple interaction,
which factors into double interactions, and it doesn’t matter in which order it happens. Now imagine
we have a stationary observer. What happens in the momentum plane? At generic times we will see
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V1(u1) ⊗ V2(u2) ⊗ V3(u3), but at special times corresponding to ui = uj we will see a bound state.

u1 = u2

u2 = u3

u1 = u3

V2 ⊗ V1 ⊗ V3 V1 ⊗ V2 ⊗ V3

So we should really think of an R-matrix as factored into two processes: forming a bound state, and
unforming. Instead of thinking of the Yang–Baxter equation as a relation on open cells, we should think of
there being an operation going between arbitrary strata.

Where have we seen this picture before? Consider the equivariant K-theory

KT (
n

⊔
k=0

T ∗ Gr(k,n)) .

The T ∗ Gr(k,n) carries an action of GL(n). In GL(n), these variables ui will be equivariant variables. Take
a subtorus of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag(

n1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u1, . . . , u1,

n2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u2, . . . , u2,

n3

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
u3, . . . , u3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊂ GL(n)

with n1 + n2 + n3 = n. We discussed that

SpecKT (⋯) → SpecKT (pt) = (u1, u2, u3).

Write TG(n) ∶= ⊔nk=0 T
∗ Gr(k,n). Over a generic point in the base, we have TG(n1) ×TG(n2) ×TG(n3). In

general, we get a picture
u1 = u2

u2 = u3

u1 = u3

TG(n1 + n2) × TG(n3)

TG(n1) × TG(n2) × TG(n3)

Hence we really need some sort of correspondence

Z

TG(n1) × TG(n2) TG(n1 + n2).

All these correspondences are special cases of the following problem. Pick a 1-parameter subgroup C× ⊂ A,
and suppose it preserves the symplectic form ω. Then at a component of the fixed locus XA ⊂X, there will
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be as many attracting as repelling directions. The attracting set gives a correspondence, and so does the
repelling set. Pick the attracting set to use as a correspondence:

Attr ∶= {(x, f) ∶ lim
a→0

ax = f} ⊂X ×XA.

The main issue with Attr is that it is not closed. One would think taking the closure Attr solves this problem,
but the closure can be very complicated and will not give something that satisfies the Yang–Baxter equation.
The way out, at least in cohomology, is to do a deformation like

µC = 0 ↝ µC = (scalar) ⋅ 1.

After deformation we get something affine, and the resulting cycle is closed. Taking the closure yields a cycle
in the central fiber which is the cycle we want.

Exercise: do this computation for TG(2) = pt ⊔ T ∗P1 ⊔ pt.

13 Nikita Nekrasov (Jul 11)

In the previous lecture we finally introduced the instanton partition Z(q, a⃗, ε1, ε2) function for the simplest
gauge theory. We also introduced the Y (x) observable and said we would study correlation functions

⟨Y1(x)⋯Yk(x)Y −1(xk+1)⋯Y −1(xm)⟩.

Out of all possible insertions Y , there are some that exhibit interesting analytic properties. Today we will
see this more explicitly. Namely we’ll show that

⟨Y (x + ε1 + ε2) + qY −1(x)⟩ (8)

is an entire function in x ∈ C, and therefore a polynomial in x. This particular combination is the simplest
example of a qq-character. Actually we should call this an εε-character because it is in cohomology; qq-
characters live in K-theory. We will generalize Z to quiver gauge theories with matter, and then generalize
this qq-character. This particular qq-character corresponds to the fundamental representation of sl2. If we
look at the formula (8), we see two terms, one of which is the inverse of the other. This should be compared
to the trace of elements g ∈ SL2(C). In fact if we remove all deformations, this is literally the trace of a
matrix with eigenvalues Y and 1/Y .

Let’s “add adjoint matter”. In our paradigm of fields, equations, and symmetries, every term in this triad
comes with a supermultiplet. We had (x,ψ) for fields, (χ,H) for equations, and (σ,σ, η) for symmetries.
The actual form of the equations is not as important as where the equations take values, which determines
what variables we introduce.

The complex moment map equation is

0 = [B1,B2] + IJ.

We want to kill all degrees of freedom in the system. The spaceM(k,n) of solutions to these equations has
dimension 2kn. Hence we should introduce a form Ω of degree 4kn, so that

∫M(k,n)
Ω

yields a non-zero answer. We could build Ω using polynomials in σ, but there is no canonical choice that
way. It would be much better if the space we defined were of dimension 0. Then integration over that space
is just a point count. This is what we mean by killing degrees of freedom. We should impose additional
equations, at the expense of introducing additional variables, so as to make the dimension 0.

There is a canonical procedure for cooking up the cotangent bundle to M(k,n) and computing its char-
acteristic classes. This is called the co-field construction, first introduced by Moore–Cordes–Rangoolam
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(1994) and then made explicit by Vafa–Witten (1994) in the context of 4d N = 4 super-Yang–Mills. The
idea is to introduce new fields, called co-fields, which are dual to both equations and symmetries. In our
case we had three Lie algebra-valued equations:

0 = µC = [B1,B2] + IJ

0 + µR = [B1,B
�
1] + [B2,B

�
2] + II

� − J�J − r ⋅ 1.

We introduce four copies of LieU(k) and call them B3,B4. In terms of the quiver we now have

N

K

IJ

Now we impose as many equations as we have variables, to kill them all. The way to do this in one swoop
is as follows. Write

(B3,B4) = (φ⃗ ∈ LieU(k) ⊗R3, σr ∈ LieU(k)).

Define a function
f ∶= tr φ⃗ ⋅ µ⃗ + trφ1[φ2, φ3].

The equations we impose are
∂f

∂(variable)
+ δU(k)

σr (variable) = 0,

for all variables. This is almost like looking for critical points of f , but because we have a symmetry we allow
for “generalized” critical points. Note that if we omit the second term, the equations are not independent
anymore, by symmetry of multiple derivatives. If we unpack all this, the equations are

0 = µC + [B3,B4]�

0 = µR + [B3,B
�
3] + [B4,B

�
4]

0 = B3I +B�
4J

�

0 = B4I −B�
3J

�

0 = [B1,B3] + [B4,B2]�

0 = [B1,B4] + [B2,B3]�.

If we try to solve these equations, we find that they imply B3 = B4 = 0, and we are back at the original
moduli spaceM(k,n). But even though we are producing the same space, there is a new symmetry SU(2)34

rotating B3 and B4, and a U(1)χ extending the one from last time, which scales

(B1,B2,B3,B4, I, J) ↦ (eiχB1, e
iχB2, e

−iχB3, e
−iχB4, I, e

2iχJ).

New symmetries provide new equivariant parameters. In total, we have four parameters

ε1, ε2, ε3, ε4

with the condition that
ε1 + ε2 + ε3 + ε4 = 0.
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The geometric origin of this construction in string theory is the worldvolume theory of a stack of D3
branes, in type IIB string theory. These branes span an R4 sitting inside a ten-dimensional space. There is a
transverse six-dimensional space which we write as R4 ×R2. This R2 represents the σ field which takes care
of the gauge symmetry, and the remaining R4 is represented by B3,B4. The coordinates B1,B2 are in some
sense “non-commutative coordinates” on the worldvolume. The reason we get the original space M(k,n)
back out of these equations is that branes don’t like to move in transverse directions. The symmetries in
this picture, when properly analyzed, are

SU(2)12 ×U(1)χ × SU(2)34.

The fixed locus under this larger symmetry group remains the same, because B3 = B4 = 0. The analysis
of characters for (B1,B2, I, J) stays the same, but now there are new equivariant parameters. The partition
function becomes

Z(q, a⃗, ε1, ε2, ε3, ε4) = ∑
λ⃗=(λ(1),...,λ(n))

q∣λ⃗∣ ∏
w∈Tλ⃗

w + ε3
w

where the character is now
Tλ⃗ ∶= ∑

j

ewj = NK∗
λ⃗
+N∗Kλ⃗q1q2 − P12Kλ⃗K

∗
λ⃗

where

Kλ⃗ ∶=
k

∑
α=1

eaα ∑
(i,j)∈λ(α)

qi−1
1 qj−1

2

This space has a symplectic nature, in the sense that

T ∗
λ⃗
q1q2 = Tλ⃗.

In other words, the set of weights {wj} is unchanged under the shift

{wj} ↔ {ε1 + ε2 −wj}.

This parameter ε3 is sometimes called the mass of the adjoint hypermultiplet, or adjoint mass for short.
We can recover the partition function of the old theory by taking a limit

ε3 →∞, q→ 0, qold ∶= qεn3 = constant.

So if we can analyze this theory, we can analyze the old theory as well. Note that if we send ε3 → 0, we get
the generating function for partitions, which is some kind of modular form. This is a non-trivial check of
S-duality

q = e2πiτ , τ ↦ −1

τ
.

What we have really computed is a generating function

∞
∑
k=0

qk ∫M(k,n)
(Chern polynomial of T ∗M(k,n) evaluated at ε3).

Explicitly, this is the sum
2nk

∑
`=0

ε`3c2nk−`(T ∗M(k,n)).

Let’s do a calculation with Y-observables in this theory. Recall that, in plethystic form, Y (x)∣λ⃗ = E[exS∗
λ⃗
],

where at the specific fixed point λ⃗ the character is

Sλ⃗ = N − P12Kλ⃗.
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How does the weight of a particular λ⃗ change when we add a box in ∂+λ or remove a box in ∂−λ? Let λ⃗′ be
obtained from λ⃗ by adding one box ◻ ∈ ∂+λ(α) to λ(α). We should compare characters of Tλ⃗ and Tλ⃗′ . Note
that

Kλ⃗′ =Kλ⃗ + e
c◻+aα .

Plugging this into Tλ⃗′ gives

Tλ⃗′ = Tλ⃗ +N
∗q1q2e

c◻+aα +Ne−c◻−aα − P12(quadratic term)
= Tλ⃗ + S

∗
λ⃗
q1q2e

c◻+aα + Sλ⃗e
−c◻−aα − P12.

Let P3 ∶= 1 − eε3 . Taking plethystic exponential,

E[Tλ⃗′P3] = E[Tλ⃗P3]
Y (aα + c◻ + ε1 + ε2 + ε3)∣λ⃗
Y (aα + c◻ + ε1 + ε2)∣λ⃗

⋅
Y (aα + c◻ − ε3)∣λ⃗
Y (aα + c◻)∣λ⃗

⋅E[−(1 − q1)(1 − q2)(1 − q3)].

This last term is problematic, because it contains a fixed weight −1. Fortunately the denominator also
contains exactly the same fixed weight. After canceling these fixed weights, we get

Resx=aα+c◻ (Y (x + ε1 + ε2)∣λ⃗′ + q
Y (x − ε3)∣λ⃗Y (x + ε1 + ε2 + ε3)

Y (x)
) = 0.

Hence we have shown that

Y (x + ε1 + ε2) + q
Y (x − ε3)Y (x − ε4)

Y (x)
has no poles coming from zeros of Y (x). However it has new poles coming from Y (x − ε3) and Y (x − ε4) in
the numerator. So now we have to add new terms

q2Y (x − ε3 + ε4)Y (x)Y (x − ε4)
Y (x)Y (x + ε2)

,

which takes care of poles coming from Y (x − ε3). Continuing this procedure, we end up building the Young

graph. The q term corresponds to , the q2 term we just added corresponds to , etc. The entire series
is therefore

∑
λ

q∣λ∣ ∏
◻∈λ

S(ε3(`◻ + 1) − ε4a◻) ×
∏◻∈∂+λ Y (x + σ◻ + ε1 + ε2)

∏◻∈∂−λ Y (x + σ◻)
(9)

where a◻ = λi−j and `◻ ∶= λtj − i are arm and leg lengths, and

σ◻ ∶= ε3(i + 1) + ε4(j + 1)

and

S(x) = (x + ε1)(x + ε2)
x(x + ε1 + ε2)

.

Note that this formula feels like a localization formula coming from integrating over Hilb of C2 with ε3, ε4.
What is this formula (9)? It is the qq-character of Â0, which we denote X1,0(x).

Theorem 13.1. The correlator

⟨X1,0(x)⟩ =
1

Z

∞
∑
k,`=0

qk+` ∫M(k+`,n)
X (`)

1,0 (x)cε3(T
∗M(k + `, n))

has no poles in x.
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To understand X (`)
1,0 (x) we need a generalization. Take a finite subgroup Γ ⊂ SU(2), which corresponds

to a graph whose vertices are irreps Ri labeled with their dimensions ai and

Ri ⊗C2 =⊕
j

CIij ⊗Rj .

From this it is clear that 2ai = ∑j Iijaj . Using this data, formulate the following gauge-theoretic problem
over R4. At each vertex, do the ADHM construction. The gauge group will be

Gg ∶= ∏
i∈vertices

U(Ni)

and in addition we introduce bifundamental matter multiplets Hom(Ni,Nj). This means we will study spin
bundles tensored with these bundles. From this we will build a class over ∏i∈verticesM(k,n). So the resulting
partition function involves a whole vector of fugacities q⃗, a whole vector of equivariant parameters a, and so
on. The resulting theory is nice when the Ni satisfy the equation

2Ni = ∑
j

IijNj

coming from the graph of Γ.
To get this theory from what we already had, we can do the orbifold construction. Instead of writing

N

K

IJ

we should instead combine B1,B2 into a single operator K → K ⊗ C2
12 and the same for B3,B4. We draw

the quiver with fat arrows:

N

K

IJ

Fix Γ ⊂ SU(2)34, and insist on Γ-invariance in the symmetry group SU(2)12 × U(1) × SU(2)34. This means
that if g is the 2-dimensional rep of Γ, then

g(γ)(B3

B4
) = (H(γ)−1B3H(γ)

H(γ)−1B4H(γ))

can be undone via some symmetry transformation H(γ), and similarly for (B1,B2). We should also fix

H ∶Γ→ U(K), h∶Γ→ U(N),

and impose the condition on I ∶N →K that

H(γ)I = Ih(γ)

46



and similarly for J . Producing a representation Γ→ U(K) means

K = ⊕
i∈vertices

Ki ⊗Ri

and similarly for N . So now our linear algebraic data splits over vertices of the graph Γ, where at each vertex
we have the usual ADHM quiver with Ni and Ki. The resulting quiver is

Ni

Ki

IiJi

Ni+1

Ki+1

IiJi
B3

B4

B3

B4 B3

B4

For this theory we can repeat the story for the partition function. We will have observables

Yi(x) ∶= E[−exS∗i ], Si ∶= Ni − P12Ki

coming from each vertex. The entire partition function is

Z = ∑
(ki)

∏
i

qkii ∑
λ⃗=(λ(i,α))

E [− ∑
i∈vertices

(NiK∗
i + q1q2N

∗
i Ki − P12KiK

∗
i )

+ ∑
e∈edges

eme(Nt(e)K∗
s(e) + q1q2N

∗
s(e)Kt(e) − P12Kt(e)K

∗
s(e))

⎤⎥⎥⎥⎥⎦
.

Here t(e) and s(e) are the target and source of the edge e in the McKay graph Γ respectively. The me are
mass parameters, and correspond to loops in Γ.

The fundamental qq-character for Γ is

Xi,0(x) ∶= Yi(x + ε1 + ε2) + qi
∏e→i Ys(e)(x −me)∏e←i Yt(e)(x + ε1 + ε2 +me)

Yi(x)
+⋯.

This ⋯ could be fairly complicated, and can be an infinite sum. It is however possible to derive the full
expression for ADE quivers, which we’ll see tomorrow.

14 Pavel Etingof (Jul 11)

Let’s continue from last time, when we wrote a formula

R(z) =

⎛
⎜⎜⎜⎜⎜
⎝

1
z−1

qz−q−1
q−q−1
qz−q−1

z(q−q−1)
qz−q−1

z−1
qz−q−1

1

⎞
⎟⎟⎟⎟⎟
⎠

.

Call the middle block B(z). For sln, we have an analogous formula, with V = Cn = ⟨v1, . . . , vn⟩. Then R acts
by 1 on vi ⊗ vi, and by B(z) on ⟨vi ⊗ vj , vj ⊗ vi⟩.

The historical approach to this business is the Faddeev–Reshetikhin–Takhtajan formalism (for sln). Given
this representation V , define

T (z) ∶= (πV (z) ⊗ id)(R) ∈Matn ⊗Uq(ŝln)
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where R is the universal R-matrix. Then

R12(z/w)T 13(z)T 23(w) = T 23(w)T 13(z)R12(z/w).

What does it mean? If we think about T as a matrix (tij(z)), this is simply the quantum YBE for the
universal R-matrix evaluated in V (z) ⊗ V (w) in the first two components. The main idea of the FRT
approach is to define quantum groups starting from just the R-matrix. It is interesting that in modern
appearances of quantum affine algebras in enumerative geometry, R-matrices play the same role.

Given a square matrix A, we can write it as A = A−A0A+ where A− is strictly lower triangular, A0 is
diagonal, and A+ is strictly upper triangular. This is true not just for A over a field or commutative ring,
but also over a non-commutative ring. In particular we can do this for T , over Uq(ŝln). One has to be
careful because some division may be required, but it all works out here because T lies in only one half of
the algebra. Hence write

T = T−T0T+.

Let the diagonal entries of T0 be t0ii(z). They will pairwise commute; this is not immediately obvious. Also,

∏ t0ii(z) = 1,

because classically det = 1, and in the quantum setting detq = 1. Define functions

ψi(z) ∶=
t0ii(z)

t0i+1,i+1(z)

which correspond to roots. Given a finite-dimensional irrep W , there is a highest weight vector w ∈W under
Uq(sln) of some weight λ. (A priori there could be several of them, but it turns out they are unique.) If
off-diagonal entries of T+ are t+ij , then it is clear that t+ijw = 0 for weight reasons. We can choose w to be an
eigenvector of ψi(z). This gives us a good theory of highest weight, with

ψi(z)w = di(z)w

for some power series di(z). The elements ψi, t
+
i,i+1, t−i+1,i are generators.

This is really about a factorization R = R+R0R− of the R-matrix, where R+ has second component
positive, R0 zero, and R− negative Uq(sln) weights.

Theorem 14.1 (Drinfeld). There exists a finite-dimensional irrep with highest weight (di) iff

di(z) =
pi(zq2)
pi(z)

for some polynomials pi with constant term 1. If this representation exists, it is unique.

So finite-dimensional irreps are parameterized by (n − 1)-tuples of subsets of C× with multiplicities, i.e.
roots of pi. These are called Drinfeld polynomials. Actually Drinfeld worked them out for Yangians.

The Yangian is a limiting case of this story, where q = eh̵/2, z = eh̵u, and we send h̵→ 0. In this limit,

R(z) = u

u + 1
(1 + P

u
) = u

u + 1

⎛
⎜⎜⎜
⎝

1 + 1
u

1 1
u

1
u

1
1 + 1

u

⎞
⎟⎟⎟
⎠

where P (x⊗ y) ∶= y ⊗ x is the permutation. The FRT relation in this limit looks like

R12(u − v)T 13(u)T 23(v) = T 23(v)T 13(u)R12(u − v)

where

R(u) ∶= 1 + P
u

is Yang’s R-matrix. This is why the corresponding algebra is called the Yangian. A very nice exercise is to
show R(u) satisfies the quantum YBE; it is the simplest non-trivial solution.
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Definition 14.2. The Yangian Y (gln) is generated by the entries of the n×n matrices T (k) for k = 0,1,2, . . .,
with the following relations. Define the generating function

T (u) ∶= 1 +
∞
∑
n=0

T (n)u−n−1.

Then the relations are

R12(u − v)T 13(u)T 23(v) = T 23(v)T 13(u)R12(u − v) ∈ 1

u − v
C((u−1, v−1)).

Note that T
(0)
ij = Eij , so that

U(gln) ⊂ Y (gln)

and this is true in general as well. One of the advantages of the FRT approach is that the coproduct is very
simple. Namely, ∆T = T ⊗ T , which means

∆T
(u)
ij = ∑T

(u)
ik ⊗ T (u)

kj ,

no matter how complicated the algebra.
The Yangian Y (gln) is almost the same of Y (sln); the distinction is by a tensor factor of a polynomial

ring in infinitely many generators. To get Y (sln) we need to impose

det
q
T = 1.

For example, in the 2 × 2 case the quantum determinant is

det
q

(t11 t12

t21 t22
)(u) = t1(u)t22(u + 1) − t12(u)t21(u + 1).

Then we can play the same game with factorizing T = T+T0T−, and then

det
q
T (u) =∏ t0ii(u)

which are still pairwise commutative.
For sl2, define the roots

Hi(z) ∶=
t0ii(z)

t0i+1,i+1(z)
,

and let

T + = (1 X+

0 1
) , T − = ( 1 0

X− 1
) .

This yields an infinite collection of series Hn,X
+
n ,X

−
n , which we write as

H(u) = 1 + ∑
n≥0

Hnu
−n−1, X±(u) = ∑

n≥0

X±
nu

−n−1.

The relations which result from the single RTT relation are

[Hk,Hl] = 0, [H0,X
±
k ] = ±2X±

k , [X+
k ,X

−
` ] =Hk+`

[Hk+1,X
±
` ] − [Hk,X

±
`+1] = ±(HkX

±
` +X±

` Hk)
[X±

k+1,X
±
` ] − [X±

k ,X
±
`+1] = ±(X±

kX
±
` +X±

` X
±
k ).

In general, if we want Y (g), we will get such relations for every simple root, and then there will be Serre
relations which will look rather horrible. This is another presentation for the Yangian, called the loop
realization.
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There is a third presentation of the Yangian which makes manifest the G-symmetry. The Yangian is a
quantization of the enveloping algebra U(g[t]). Here there is a classical R-matrix

r = Ω

z
.

So if we take the associated graded with respect to the filtration induced by the k in T (k), we will obtain
U(g[t]). So to produce a presentation of Y (g) we should start with a presentation of g[t] and try to deform
it. It has elements a ∈ g and J(a) ∶= at ∈ gt. If g is simple, these suffice as generators. There will be some
relations between them, and there is a unique way to deform them. This means there is a unique quantization
of the Lie bialgebra U(g[t]), and the result is the Yangian.

Unlike the limit where we degenerate the Yangian to classical algebras, where the representation theory
undergoes a drastic change, the degeneration of quantum affine algebras into Yangians does not change the
representation theory. Let Vd be a highest weight d = (di) representation, i.e.

Hi(u)w = di(u)w.

Proposition 14.3 (Drinfeld). There exists a finite-dimensional representation (unique) iff

di(u) =
pi(u + 1)
pi(u)

where pi is a monic polynomial (Drinfeld polynomial).

So again, representations are parameterized by tuples of such polynomials, or their roots. It is the same
story, except we went to logs of all variables.

In the classical theory of compact Lie groups, we have a good notion of character: trV g for reps V . If
we restrict to the torus, this is a Weyl-invariant polynomial. So the K-group of the Lie group gets identified
with the ring of such polynomials, and knowing the character is equivalent to knowing the representation.
However U(g) ⊂ Y (g), and for every rep of Y we can regard it as just a rep of U and then take its character
in the classical Lie theory sense. This will certainly not determine the representation, since it will not know
about the complex numbers z, i.e. it will not be aware of shifts

τa∶T (u) ↦ T (u + a).

So we need a notion of character that keeps track of this information. We have some idea where to start
because we have these Drinfeld polynomials, which are highest weights.

Let’s think about Y (sl2). How do the Hi act on the whole representation? Perhaps to define the character
we should look at the eigenvalues of these Hi. They have a generalized eigenbasis, and eigenvalues always
have the form

P (u + 1)
P (u)

Q(u)
Q(u + 1)

for some polynomials P,Q. To record this information, we do the following thing. If

P (u)
Q(u)

= ∏
n
i=1(u − ai)

∏m
j=1(u − bj)

,

then attach to it a polynomial
Ya1⋯YanY −1

b1 ⋯Y
−1
bm

for formal variables Ya indexed by a ∈ C.

Definition 14.4. The q-character
χq(V ) ∈ Z+[Y ±1

a ∶ a ∈ C]

is the sum of these monomials attached to all eigenvalues.

50



Theorem 14.5. The map
χq ∶K0(RepY ) → Z[Y ±1

a ∶ a ∈ C]

is an injective ring homomorphism.

This implies all kinds of things, e.g. K0(RepY ) is an integral domain, which is not completely obvious
from the start.

Take V = V1 to be a two-dimensional representation of sl2 and consider V1(a) for a ∈ C. The Drinfeld
polynomial in this case is just

P

Q
= u − a,

so the highest weight is Ya. There is also a second weight, which is the lowest weight. It is a nice computation
to show for the lowest weight that

P

Q
= 1

u − a − 2
,

Hence the q-character is
χq(V1(a)) = Ya + Y −1

a+2.

Now consider the tensor product. By the theorem,

χq(V1(a) ⊗ V1(b)) = (Ya + Y −1
a+2)(Yb + Y −1

b+2)
= YaYb + Y −1

a+2Yb + YaY −1
b+2 + Ya+2Y

−1
b+2.

We see immediately that this is irreducible unless a − b = ±2, because otherwise there are no cancellations
and there is only one monomial of positive degree, which is the highest weight. To be reducible there must
be more than one such monomial. If a − b = 2, then a = b + 2 and we have

YaY
−1
b+2 ↝ 1.

In this case we split off a trivial rep.
From this we also get the q-character of the three-dimensional rep. Recall that if we take V1(0) ⊗ V1(2),

it fits into a sequence
0→ 1→ V1(0) ⊗ V1(2) → V2(1) → 0.

Taking q-character gives
χq(V2(1)) = (Y0Y2 + 1 + Y0Y

−1
4 + Y −1

2 Y −1
4 ) − 1.

In particular if we want to normalize to 0,

χq(V2(0)) = Y−1Y1 + Y−1Y
−1
3 + Y −1

1 Y −1
3 .

Exercise: show that

χq(Vm+1(0)) = Y−1Y1Y3⋯Y2m−1 + Y−1Y1⋯Y2m−3Y
−1
2m+1 +⋯ + Y −1

1 ⋯Y −1
2m+1.

In fact this shows that
K0(RepY ) = C[Vωi(a)],

because by tensoring we can create an arbitrary highest weight in a unique way.
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15 Andrei Okounkov (Jul 12)

Let X be symplectic with an action by A ⊂ Aut(X,ω). Then we had the picture

Lie(A)

These hyperplanes carry the weights of the A-action on NX/XA . If ξ ∈ Lie(A) is generic, it vanishes only on

the fixed locus XA, but if it sits on one of the hyperplanes then it vanishes on something bigger than XA.
In particular at 0 ∈ Lie(A) we get X itself. There is a triangle

XA X

XA′

for A′ ⊂ A. Each arrow is a correspondence. These correspondences are improved versions of the attracting
correspondence

Attr ∶= {(x, f) ∶ lim
a→0

a ⋅ x = f}

where a = exp(ξ). We saw yesterday that we should fix this by perturbing X and taking the resulting
attracting set.

If one does not do this, the resulting correspondences will not make the triangle above commute, and the
resulting R-matrix fails Yang–Baxter.

What multiple of the extra cycles do we add? In other words,

Stab(p1) = Attr(p1) + c ⋅Attr(p2) +⋯

and we want to know what c is. Then we should take the family

X ÐÐÐÐ→ Xt

×××Ö
×××Ö

0 ÐÐÐÐ→ t ⋅ 1.

Take the full torus T , which acts on the base with weight h̵±1. If we turn off the weight h̵, then as we
discussed there is an equivariant deformation which makes Stab(p1)∣p2 miss the point p2. Hence

Stab(p1)∣p2 = 0 mod h̵.
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For example, the picture for T ∗P1 (with weights written additively) is

ξ

−ξ − h̵ ξ − h̵

Hence in this case we have
Stab(0)∣∞ = (ξ − h̵) + c ⋅ (−ξ),

and if we want this to be 0 mod h̵ we must have c = 1.
In K-theory this is not the right thing to do anymore, because there are millions of sheaves we can use

to satisfy the analogous condition. We should rephrase the condition in cohomology as follows. Note that
in general,

Stab(p1)∣p2 = polynomial in ξ, h̵ of degree
1

2
dimX,

because it is given by a Lagrangian correspondence. Then the condition that we get 0 mod h̵ means the
degree of this polynomial in ξ is actually strictly less than (1/2)dimX. This condition is now sensible in
K-theory. For example, T ∗P1 with multiplicative weights is

a

1
ah̵

a
h̵ .

Let O be the structure sheaf of the cohomological stable envelope. A priori, O∣∞ is a Laurent polynomial in
a and h̵. Actually we have

O∣∞ = 1 − h̵.

What is the “degree” of a Laurent polynomial? It is not a number, and should instead be its Newton polygon,
up to translation. So the K-theoretic analogue of the degree condition in cohomology is

Newton polygonA(Stab(p1)∣p2) ⊂ Newton polygonA(Stab(p2)∣p2).

In general, the K-theoretic stable envelope will be some line bundle supported on the cohomological stable
envelope. Because of this line bundle, we can actually allow the lhs Newton polytope to be contained in a
shift of the rhs polytope. Since these polytopes live in the weight lattice of A, we need to shift by a weight
of A. The way to do it is to pick an arbitrary L ∈ PicA(X) ⊗R, and write the condition

Newton polygonA(Stab(p1)∣p2) ⊂ Newton polygonA(Stab(p2)∣p2) +weight L∣p2 −weight L∣p1 .

This creates a locally constant dependence on L, and therefore there is some periodic hyperplane ar-
rangement in Pic(X) ⊗ R. We get a family of coproducts. Crossing a wall changes the R-matrix by a
factor

Rwall = Stab−1
L− ○StabL+ ,

which does not depend on a spectral parameter. Given an R-matrix RL, we can cross walls until we get to
infinity, where the Drinfeld coproduct lives, and then go back. This gives the Koroshkin–Tolstoy factorization
of the R-matrix:

R(u) = R− R∆

´¸¶
at ∞ slope

R+.

The matrix coefficients of R∆ generates a commutative subalgebra of which we were taking the trace to get
the q-character.
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Let’s return to cohomology, to talk about R∆. If a torus like diag(1,1,1, u, u, u) acts on the framing for
X, we saw that

Xu = ⊔X1 ×X2

for Nakajima varieties. The normal bundle to this product is

Ext1(F1, F2) ⊕Ext1(F2, F1)

in terms of quiver representations. These terms carry weight u and u−1 respectively, and are dual to each
other with a shift by h̵. Hence R∆ has the form

R∆(u) =∏
u +w

u +w + h̵

where u + w are the Chern roots of uExt1(F1, F2). When we take matrix elements, it means we fix what
happens on F1 and look at what happens on X2. In F2 it is linear. Things of the form

Ext1(fixed, F )

generate all characteristic lasses of Vi and Wi.
Now we can discuss qq-characters. First, q-characters are the traces over the K-theory of Nakajima

varieties of the operators of classical multiplication. The reason we write them in a funny way is because we
use a particular generating function. This can be written as

(a⊗ −, id) = ∫
X×X

i∆,∗(α)O∆ = ∫
X
α ⋅ ∧∗−1T

∗X.

If we have finitely many fixed points, we really get something like a trace, by localization:

∑
p∈XT

α∣p.

For qq-characters, we just introduce a new variable m:

∫
X
α ⋅ ∧∗−mT ∗X = (α⊗ −,vertex operator).

Recall that TX = Ext1(F,F ) = Ext1(F1, F2)∣F1=F2 . The vertex operator should be something like

Euler(m⊗Ext1(F1, F2)) (10)

on X ×X. Note that

qq-character(M1 ⊗M2) ≠ qq-character(M1)qq-character(M2),

precisely because (10) is bilinear, and we will get cross-terms corresponding to Ext(F1, F2) and Ext(F2, F1).
These cross-terms are dual to each other, and will give contributions like

C(m) ∶= ∏
w

m +w
w

−w − h̵ +m
−w − h̵

.

What sort of equation does C(m) satisfy? Note that

C(m)
C(m + h̵)

=∏
m +w

m +w + h̵
−w − h̵ +m
−w +m

= R∆(m)
R∆(−m)

.

Hence the qq-character is not a homomorphism, but it remembers the Drinfeld coproduct.
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16 Nikita Nekrasov (Jul 12)

Let’s start by making clearer the class of theories we are studying. Quiver gauge theories is, in a sense, a
way of studying

Maps(M4,quiver varieties).

In Petr’s lecture, we saw that in studying maps from two-dimensional manifolds, there is a way to compactify
the moduli space called quasimaps. Now we do this for four-dimensional manifolds.

Given a quiver γ, write

Edgeγ
tÐ→
s
Vertγ

for source and target of edges. To each vertex i ∈ Vertγ of the quiver we associate two complex vector spaces
Mi and Ni. The dimensions mi ∶= dimMi and ni ∶= dimNi are parameters of the theory. We call Mi the
space of flavors and Ni the space of colors. Using these spaces we can study

Mγ = (moduli space of collections of torsion-free sheaves
(Ei)i∈Vertγ over P2 framed by Ei∣P1

∞

≅ Ni ⊗OP1
∞

) .

The structure of a quiver gives the following structure: take

Obs ∶= ⊕
e∈Edgeγ

Hom(Es(e),Et(e)) ⊕ ⊕
i∈Vertγ

Hom(Ei,Mi ⊗OP2).

Let Ei →Mγ × P2 be the universal sheaf. Let

π∶Mγ × P2 →Mγ

be the projection. Then we can take
Rπ∗ Obs ∈K(Mγ).

In cohomology, we then take its equivariant Euler class and integrate to get the partition function:

Z ∶= ∑ q⃗k⃗ ∫Mk⃗

γ

e(Obsγ).

For general quivers, we should view qk⃗ as formal parameters; we don’t expect any convergence.
The other parameters correspond to GL(Mi) and GL(Ni) symmetries. The GL(Mi) only act on fibers

of Mi ⊗OP2 . Denote the parameters by

m⃗
´¸¶
masses

× a⃗
´¸¶

Coulomb moduli

∈ Lie (maximal torus(∏GL(Mi) ×GL(Ni))) .

Write a⃗ = (ai,α) where α = 1, . . . , ni, and m⃗ = (mi,f) where f = 1, . . . ,mi. We can also scale edges, yielding
an additional set of parameters

(me) ∈ (C×)Edgeγ

called bifundamental masses. However there is a freedom to use the action on vertices to undo this edge
action, so the total number of degrees of freedom from edges is actually

(C×)Edgeγ /(C×)Vertγ−1 = (C×)b1(γ).

This relates back to what we said yesterday about these parameters not doing anything for simply-connected
quivers.

Finally, there is a GL(2) acting by rotation on (P2,P1
∞). The parameters of the maximal torus of this

GL(2) are called ε1, ε2.
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The Yi observables we introduced arise as the equivariant Euler class

Euler(“Ei∣Mγ×0”).

The formal way to define this is
cx(Rπ∗(Ei ⊗L O0))

where O0 is the structure sheaf of 0 ∈ P2 and cx is the Chern polynomial evaluated at x. We computed
yesterday that at a fixed point λ⃗ ∈ Mγ ,

Yi(x)∣λ⃗ =
ni

∏
α=1

(x − ai,α) ∏
◻∈λ(i,α)

(x − ai,α − c◻ − ε1)(x − ai,α − c◻ − ε2)
(x − ai,α − c◻)(x − ai,α − ε1 − ε2)

.

Here c◻ for a square at (a, b) is the content

c◻ ∶= ε1(a − 1) + ε2(b − 1).

For the top-most square, the first factor in the denominator cancels the prefactor (x − ai,α). There are a
bunch of cancellations, and the true numerator and denominator only care about ∂+λ and ∂−λ respectively.

As x→∞, the leading-order term in Yi is

xni exp
∞
∑
`=1

1

`x`
∑
α

(−a`i,α + ∑
◻∈λi,α

((a + c◻)` + (a + c◻ + ε1 + ε2)` − (a + c◻ − ε1)` − (a + c◻ − ε2)`)) .

When ` = 1, everything cancels, so we get

xni exp( 1

x
(−∑

α

ai,α) +
1

2x2
(−∑

α

a2
i,α + 2ε1ε2∑

α

∣λ(i,α)∣) + 1

3x3
(−∑

α

a3
i,α + ε1ε2∑(c◻ + εki)) +⋯) .

In the second term, ∑α ∣λ(i,α)∣ = ki, and in the third term we did not explicitly identify the numerical factor
ε.

Fix wi ∈ Z≥0. Start with a product of the following type:

Xw⃗(x) ∶= ∏
i∈Vertγ

wi

∏
β=1

Yi(x +wi,β) + (q-dependent corrections involving Y,Y −1

such that all poles in x cancel
)

where wi,β ∈ C with β = 1, . . . ,wi. Here when we say poles cancel, we mean in the expectation value

⟨Xw⃗(x)⟩ =
1

Z
∑qk⃗ ∫Mk⃗

γ

Euler(Mγ × Xw⃗(x)),

i.e. sum over all partitions. The quantity Xw⃗(x) is the qq-character with highest weight w⃗.
The geometric origin of Xw⃗(x) is as follows. Recall that the Nakajima quiver variety associated to data

v⃗, w⃗ is

M(w⃗, v⃗) ∶= T ∗
⎛
⎝ ⊕
i∈Vertγ

Hom(Wi, Vi) ⊕ ⊕
e∈Edgeγ

Hom(Vs(e), Vt(e))
⎞
⎠

� ∏
i∈Vertγ

GL(Vi).

Let Gw⃗ ∶= ∏GL(Wi), which acts on M(w⃗, v⃗). There is another torus Tγ ∶= C× × (C×)b1 where the first C×

is overall scaling. The terms (x + wi,β) are equivariant parameters of the framing torus Tw⃗. We identify
−(ε1 + ε2) with the weight of the overall scaling C×, and call the weights of (C×)b1 by (me)e∈Edgeγ . Now for
fixed w⃗, we have

Xw⃗(x) = ∑
v⃗∈ZVertγ

≥0

q⃗v⃗ ∫M(w⃗,v⃗)
cε2 or ε1(T ∗M(w⃗, v⃗)) ⋅ Cx.
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What is Cx? We need to define the canonical complex Ci over M(w⃗, v⃗). For fixed i ∈ Vertγ , consider

Vi

Wi

Vt(e)

Be

Be

JI

Form the following map using all arrows coming and going from Vi:

Vi
(Ji,Be,Be)ÐÐÐÐÐÐ→Wi ⊕ ⊕

s(e)=i
Vt(e) ⊕ ⊕

t(e)=i
Vs(e)

(Ii,−Be,Be)ÐÐÐÐÐÐÐ→ Vi.

This is a generalization of the object we called S for the ADHM construction. There are weights q on some
arrows, so that in the end the K-class of the complex is

Ci =Wi + ∑
s(e)=i

emeVt(e) + q−1 ∑
t(e)=i

e−meVs(e) − Vi − q−1Vi.

It turns out, like for S, that H2 = 0 and hence

ch(Ci) = ch(H1
i ) − ch(H0

i ) = ∑
A

eξi,A+ −∑
A′

eξ
−

i,A′ .

The formula for Cx in the integrand is therefore

∏
i∈Vertγ

∏A Yi(x + ξ+i,A)
∏A′ Yi′(x + ξ−i,A′)

.

The overall formula looks like a localization formula. It turns out that

⟨Xw⃗(x)⟩ = ∫ moduli of quiver
crossed instantons

1.

The absence of poles will be a consequence of this new moduli being compact. (Remember that M(w⃗, v⃗) is
not compact.)

Let’s see Xw⃗(x) in some simple examples. The simplest are A-type theories. We will discuss three cases:

1. A1 case with a general w⃗;

2. Â0 case for fundamental w⃗;

3. finite Ar case for fundamental w⃗.

In the A1 case, M = Cm and N = Cn. The Nakajima variety is

MA1(w, v) = T ∗ Gr(v,w).

This is non-empty only when 0 ≤ v ≤ w, so Xw(x) is a finite sum. The torus is C× × (C×)w, with (w
v
) fixed

points given by coordinate planes. Label them by ways of decomposing {1, . . . ,w} = I ⊔ J . Hence

Xw⃗(x) = ∑
I⊔J

q∣I ∣∏
i∈I
j∈J

(wi −wj − ε1)(wi −wj − ε2)
(wi −wj)(wi −wj − ε1 − ε2)

⋅∏
i∈I
Y (x +wi + ε)∏

j∈J

P (x +wj)
Y (x +wj)

.

There are 2w terms. We should think of it as some sort of deformed character of C2 ⊗⋯⊗C2. The claim is
that this expression has no poles in x when we substitute it into the integral. However one can tune the wi
parameters to acquire poles. It is interesting that sometimes one can tune parameters such that the fixed
locus is still compact, so the expression is still non-singular, but the fixed points are non-isolated.
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17 Nikita Nekrasov (Jul 12)

We already saw the fundamental qq-character for the quiver with one vertex and one edge. This was

X1,0(x) = ∑
λ

q∣λ∣⋯.

The last example is the finite Ar case for the fundamental qq-character. Choose all bifundamental masses
me = −ε. Set all Pi = 1 for simplicity. The `-th fundamental qq-character, labeled by the choice of a vertex,
is

X`(x) =
1

z0⋯zr+1
∑

I⊂{0,1,...,r}
∣I ∣=`

∏
i∈I

Λi(x + ε(hi + 1 − `)).

This should be compared to characters tr∧`Cr+1 g for g ∈ SL(r + 1); the Λi will be eigenvalues. They are
defined as

Λi(x) ∶= zi
Yi+1(x + ε)
Yi(x)

, i = 0, . . . , r

with the convention Y0 = Yr+1 = 1. The zi are redundant variables

zi ∶= z0q1⋯qi, i = 1, . . . , r.

Finally, hi are height functions
hi ∶= #{i′ ∶ i′ ∈ I, i′ < i}.

The main difference between this and characters in SL(r + 1) over ∧`Cr+1 is the shifts in Λi.
The first case in which we cannot escape taking derivatives of Y functions is the D4 quiver, where there

are four fundamental qq-characters X1,X2,X3,X4. They each have a simple 8-term structure. D4 corresponds
to the Lie algebra spin(8); the outer nodes correspond to vector and spinor representations (which are 8-
dimensional) and the middle node correspond to the adjoint rep (which is 28-dimensional). The actual
formula contains 28 simple terms, plus a term

q1q
2
2q3q4

Y2(x)
Y2(x − ε)

(2(1 − ε1ε2
ε2

) + ε1ε2
ε
∂x log( Y2(x)Y2(x − ε)

Y1(x)Y3(x)Y4(x)
)) .

This derivative term is not seen in the half-classical limit, where either one of the εi’s go to zero. It comes
from the fact that inside the Nakajima variety of D4 type

MD4(w⃗ = (0,1,0,0), v⃗ = (1,2,1,1))

there is a P1 fixed by the global symmetry, i.e. non-isolated fixed points.
Let’s return now to the ADHM construction, to discuss crossed instantons. Recall that we said we’d

like to enhance the space of matrices:

N K

I

J

.

This hinted at some symmetry between B1,B2,B3,B4, but clearly B1,B2 were attached to I and J and
B3,B4 were not. To make it symmetric, let’s introduce a second framing space and a new set of Ĩ , J̃ :

N K W

I

J Ĩ

J̃

.
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This means we should distinguish between the left moment map

µ`C = [B1,B2] + IJ

and the right moment map
µrC = [B3,B4] + Ĩ J̃ .

The moment map equations become

0 = µ`C + (µrC)�

0 = [B1,B3] + [B4,B2]�

0 = [B1,B4] + [B2,B3]�.

These combine into the equation

4

∑
a=1

[Ba,B�
a] + II� + Ĩ Ĩ� − J�J − JJ̃�J̃ = r ⋅ 1.

Similarly, we can do the same for the real moment maps:

µ`R ∶= [B1,B
�
1] + [B2,B

�
2] + II

� − J�J

µrR ∶= [B3,B
�
3] + [B4,B

�
5] + Ĩ Ĩ

� − J̃�J̃ ,

and the real moment map equation is
µ`R + µrR = ζ ⋅ 1K .

These are all equations which take values in square matrices, and one can check there are an equal number
of variables in B1, . . . ,B4 and equations. We can now impose equations that govern the interaction between
Bi matrices and I, J matrices. These equations “separate” the B3,B4 action from the I, J action:

0 = B3I +B�
4J

�

0 = B4I −B�
3J

�

0 = B1Ĩ +B�
2J̃

�

0 = B2Ĩ −B�
1J̃

�.

Again, there are an equal number of variables in the I, J variables and equations. But now we will impose
more equations! These will forbid relations between I, J and Ĩ , J̃ :

0 = J̃I − Ĩ�J�.

Squaring these equations and expanding, we get relations like

B3I = B4I = B1Ĩ = B2Ĩ = 0

JB3 = JB4 = J̃B1 = J̃B2 = 0

J̃I = JĨ = 0.

These equations also imply that the left and right moment maps vanish separately. So we do get ADHM
equations for (B1,B2, I, J) and (B3,B4, Ĩ, J̃) independently, but without the stability condition and they
are not completely independent. The only sort of thing that glues them together is the stability condition,
which says

K =K12 +K34, K12 ∶= C[B1,B2]I(N), K34 ∶= C[B3,B4]Ĩ(W ).
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The word crossed is in the quaternionic sense: there are two quaternionic planes intersecting in an eight-
dimensional space, and we are describing instantons that move along such a space.

W

N

There is a sheaf interpretation of this: we get two torsion-free rank n and w sheaves

E12 → P12, E34 → P34,

with ch2(E12) = k12 ∶= dimK12 and similarly for E34. They are trivialized at their respective P1
∞’s.

But these equations describe more structure, which is the intersection of these two spaces K12 ∩K34,
which need not be empty. This is a space which should be annihilated by B1,B2 inside K12, and by B3,B4

inside K34.
Introduce symmetries GL(N) ×GL(W ) × (C×)3, whose maximal torus has weights h and h̃ and qi with

∏4
i=1 qi = 1. Then

Ba ↦ qaBa

J ↦ h−1q1q2J

J̃ ↦ h̃−1q3q4J̃

I ↦ Ih

Ĩ ↦ Ĩh.

The anti-diagonal torus
C×

anti-diag ⊂ C×
N ×C×

W

acts non-trivially on the intersection, and the variable x is exactly the weight of this action. In a single
ADHM construction the action is trivial; we don’t see it.

Using GL(N) and GL(W ), we split everything into 1-dimensional eigenspaces. On the fixed locus,
J = J̃ = 0, and fixed points should be drawn as pairs of Young diagrams λ,µ. In the first Young diagram, we
have as usual steps by ε1, ε2 and

c◻ = ε1(i − 1) + ε2(j − 1).

Every box here is an eigenline in K, and are indexed by aα + c◻. In the second Young diagram, we have
steps by ε3, ε4 and

σ◻ = ε3(i − 1) + ε4(j − 1).

Boxes here are indexed by wβ+σ◻. Imagine now that the number of boxes keep growing and the two pictures
overlap. This is possible when K12 ∩K34 ≠ ∅. They can only overlap on ∂−λ, which are killed by B1,B2,
and ∂−µ, which are killed by B3,B4. We call this kissing.

We look at relations between weights aα + c◻ and wβ + σ◻. For certain special points on the torus T ,
some of these weights may coincide. Then we have a larger fixed locus. Relations will be of the form

aα + n1ε1 + n2ε2 + n3ε3 = wβ +m1ε1 +m2ε2 +m3ε3,

and therefore will be functions of x ∶= aα −wβ . This is the same x that appears in the definition of Y .
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There are special sub-tori for which we do get non-compact fixed loci. But they have nothing to do
with the x coordinate; we would avoid them even for the ADHM moduli space. There is a class of sub-tori
for which the fixed loci are compact. It applies not only to the moduli we just described, but also to all
orbifold versions of it. There was a group SU(2)12 ×U(1) × SU(2)34. If we take a finite subgroup Γ and fix
its homomorphisms ρ∶Γ→ U(N) ×U(W ), then we can look at (Mcrossed

N,W )Γ and its deformation

̃(Mcrossed
N,W )Γ.

The deformation means the following. The U(K) symmetry gets broken here into ∏iU(Ki), where i ∈
Irrep(Γ). Then K = ⊕iKi ⊗Ri, and

̃(Mcrossed
N,W )Γ = ⊔

k⃗

Mcrossed

N⃗,W⃗ (k⃗).

We can now change the levels, in the real moment map, for each of the irreps. This construction covers
quiver theories on ALE spaces, which is where Γ acts on SU(2)12, and in the presence of surface defects,
which is where Γ acts on SU(2)12 ×U(1).

Let’s distill this theory in the case of A1 theory with fundamental matter. Recall that this theory has
two parameters n and m, and the simplest qq-character has the form

X1,0(x) = Y (x + ε) + qP (x)
Y (x)

.

Now we want to add a surface defect at z2 = 0. This is obtained by saying that we study instantons on
the p-fold covering space, with restriction on how they transform as we go around the origin. Let the new
coordinates be (w1,w2) ∶= (z1, z

p
2). Fix homomorphisms

ρN , ρM ∶Z/p→M,N

into the color and flavor spaces; the defect is specified by these homomorphisms. They break the gauge
group into the subgroup which commutes with them.

One example which is interesting is called the regular defect, where p = N and N is a regular repre-
sentation of Z/N , i.e. if we decompose N into irreps, each rep occurs once. The good theory is where M is
two copies of the regular rep. When the number of masses is twice the number of colors, something special
happens. In X1,0(x), the degree of the two terms are n and m − n. We would like the second term to be
subdominant, so n ≥m−n. This happens to coincide with a nice condition in gauge theory called asymptotic
freedom and has to do with the ability to do things perturbatively in the coupling constant. The equality
case is the critical case.

Now we can repeat the story of universal sheaves and everything. Instantons in the orbifold theory are
characterized by n instanton charges, instead of 1; they fractionalize. We can interpret this roughly as
follows. Given a four-dimensional ambient space R4 with a surface defect R2, the surface becomes some
space with U(N) symmetry in the orbifold picture, e.g. U(N)/U(1)N with

π2(U(N)/U(1)N) = ZN−1.

So k ↝ (k0, k1, . . . , kN−1). Accordingly, the Y observable also gets fractionalized. Instead of a single observ-
able Y (x), we now have N of them:

Y (x) ↝ (Yω(x))ω=0,...,N−1,

These are labeled by irreps of the cyclic group. Since we fixed a homomorphism of the cyclic group into the
color space, assume N = ⊕Nα commutes with the decomposition into irreps of Z/N ; we’ll call

Rc(α) ∶= Nα,
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i.e. for each color there is an irrep. The old formula had the product structure

∏(x − aα)
∏(x − aα − c◻ − ε1)(x − aα − c◻ − ε2)
∏(x − aα − c◻)(x − aα − c◻ − ε1 − ε2)

We will keep only those factors with Z/n-parity equal to ω. For this we need to keep track of what Z/n-reps
each variable carries:

[x] = 0, [ε1] = 0, [ε2] = 1, [c◻] = j − 1.

Hence we have a formula

Yω(x)
⎛
⎝ ∏
α,c(α)=ω

(x − aα)
⎞
⎠∏β

∏
◻∈λ(β)

c(β)+j−1≡ω(n)

x − aβ − c◻ − ε1
x − aβ − c◻

×∏
β

∏
◻∈λ(β)

c(β)+j≡ω mod n

x − aβ − c◻ − ε4
x − aβ − c◻ − ε1 − ε2

.

The old Y -observable is equal to∏ω Yω, and so it really has been fractionalized. Note that the gauge coupling
q also gets fractionalized.

It follows from the same compactness theorem that

⟨Yω+1(x + ε1 + ε2) + qω
Pω(x)
Yω(x)

⟩

has no poles in x. It is beneficial to expand it for large x and look at negative-degree terms in x and set
them to zero. To get something meaningful in the old setting, we had to expand to something like x−n−1.
But in setting it is enough to expand Yω only to second-order!

18 Nikita Nekrasov (Jul 12)

Now we will expand the qq-character as x →∞, with the following purpose in mind. Since this expectation
value has no poles in x, in its asymptotic expansion

x(a + qω) +⋯

where ⋯ means terms of lower degree. But this means it is actually a linear function. Hence we can write
it as

⟨(1 + qω)x + ûω + û(1)ω x−1 +⋯⟩,

and obtain
⟨û(1)ω ⟩ = 0 ∀ω.

Doing û
(1)
ω will be enough, even though this is true for all û

(k)
ω . The large-x expansion of Yω(x) is

(x − a) exp ∑
β,◻∈λ(β)

c(β)+j−1≡ω mod n

(− ε1
x − a − c

+ ε21
2x2

) + ∑
β,◻∈λ(β)

c(β)+j≡ω mod n

( ε1
x − a − c◻

+ ε21
2x2

) .

Expanding each term further yields

(x − a) exp(−ε1kω
x

− ε1σω
x2

+ ε1kω
2x2

+ ε1
x
kω−1 +

ε1(σN−1 + ε2kω+1)
x2

+ ε
2
1kω−1

2x2
) .

The x−1 coefficient in this expression is therefore

ε21
2
(kω+1 − kω)2 − aε1(kω−1 − kω) + ε1(σω−1 − σω + ε2kω−1) +

1

2
ε21(kω + kω−1).
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Hence we see that
⟨some function of k’s + ε1(σω−1 − σω)⟩ = 0.

The function of k’s is a second-order differential operator in the q’s applied to the partition function. So
we have obtained some identity like: a differential operator in q⃗ is an expectation value of ⟨ε1σω−1 − σω⟩. If
we now sum over all k⃗, then these expectation values telescope and we get a non-trivial differential equation
satisfied by the partition function.

It is useful to isolate the ω’s in the following way. The fugacity for the bulk instanton charge is

q ∶=
n−1

∏
ω=0

qω.

We write these as
qω = zω

zω−1
, ω = 1, . . . , n − 1.

This differential operator we obtained is first-order in q. It is beneficial to multiply the partition function
by a prefactor:

Ψ ∶= ∏
ω

qkωω ∏
ω

za/ε1ω Z.

Then the differential operator is exactly

ε1ε2q
d

dq
Ψ = D2(z

∂

∂z
)Ψ,

which is exactly the KZ equation obeyed by a conformal block of the sln current algebra at level

n + k = ε2
ε1
.

Namely, it is the four-point conformal block

⟨Vµ⃗0(0)Vµq(q)Vµ1(1)Vµ⃗∞(∞)⟩

on the sphere. Two of these operators (at 0 and ∞) are Verma modules of sln, whose highest weights are
determined by the choice of masses m1, . . . ,mn and mn+1, . . . ,m2n. The other two operators in the middle
correspond to reps of sln in functions of n variables.

It was a priori expected that there is a relation between collections of special observables of 4d susy gauge
theory to some conformal blocks of 2d CFT. It was not clear how to derive from first principles which 4d
theory corresponds to which CFT.

The KZ equation, in 2d terms, is a consequence of the relation between the current algebra and the

Virasoro algebra (i.e. the Ward identity). Deeper expansions of the qq-character, i.e. identities from û
(k)
ω

for k > 1, will give objects in the W-algebra. For example, û
(2)
ω will give something like

d

dw3
Ψ = D3(z

∂

∂z
)Ψ,

where the w-coordinate comes from an additional insertion

e∑wj(chj(E))

into the partition function.
Take an Ar quiver and take all N spaces to be two-dimensional and M spaces to be two-dimensional

attached only to the endpoint nodes.

2 2 2 ⋯ 2 2
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One can tune mass parameters such that B2I(N (1)
1 ) becomes an allowed section. Then we can set it to 0.

This means that in the set of Young diagrams, only diagrams which grow in the B1 direction are allowed.
Precisely,

m1,1 = a1,1 + ε2

is what is needed to enforce the equation B2I(N (1)
1 ) = 0. Now set

m1,2 = a1,2,

which enforces I(N (2)
1 ) = 0. What happens once we make this choice is that, since λ(1,1) has this special

form and λ
(1,2)
2 = 0, we can express

σ◻ = ∑
◻∈λ

(a + c)

as an explicit function of its size

ak + ε1
k(k − 1)

2
.

Now, expanding all qq-characters for the Ar quiver, we get closed-form differential equations on Z. This is
because the sub-leading term in the large-x expansion used to require knowledge of c◻, which we now know.
Then we get BPZ equations (Liouville CFT)

⟨V∆0(z0)V∆1(z1)⋯V∆r+2(zr+2)⟩.

In general conformal blocks do not obey any equations, but if the dimension of the ? field is a special value
corresponding to the appearance of a null vector in the Verma module, then we get a non-trivial relation.
For

∆0 = −
1

2
− 3

4
(b2 or b−2)

where c = 1 + 6(b + b−1)2 is the central charge, then we get a relation (BPZ)

( 3

2(2∆0 + 1)
∂2

∂z2
0

+ ∂2

∂z2
0

+∑
i≠0

( ∆i

(z0 − zi)2
+ 1

z0 − zi
∂

∂zi
))Ψ = 0.

In addition to this equation there are also three more relations

0 = ( ∂

∂z0
+∑

∂

∂zi
)Ψ

0 = (z0
∂

∂z0
+∆0 +∑(zi

∂

∂zi
+∆i))Ψ

0 = (z2
0 + 2∆0z0 +∑(z2

i

∂

∂zi
+ 2∆izi))Ψ.

These equations are first-order, so in some sense we can set

z0 = 0, zr+2 = ∞, zr+1 = 1

and then we can identify zi with qi. Then we’ll get effectively one second-order DE, which coincides with
the one we got from the qq-characters of the Ar quiver theory.
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