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Let MPT(A, u, v) := {3d partitions with legs \, s, v}. The
localization contributions of a single C3 chart form the equivariant
DT vertex

Vi boyiz)= > w(m)Q™ € Kruo(pt)(Q)).
meNPT(\ pu,v)
wH () = (rational function in x, y, z).

Eg. V&;bK(non—equivariant) = [I,>0(1 — Q")~" is MacMahon's
famous enumeration of 3d partitions.
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Let MPT(X, p, v) := {PT configurations with legs \, i1, v}. The
localization contributions of a single C3 chart form the equivariant
PT vertex

Vi boys2)i= 30w (mQ € K m)(Q))
WGHPT(AHMJJ)

wK () = (rational function in x,y, z).

“Fewer” PT configurations than DT configurations, but with much
more complexity, possibly in positive-dimensional families.

PT.K
Voo (x:v:2) = 1.
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Conjecture (PT '07, Nekrasov—Okounkov '14)

DT,K PT,Ky\ ,DT,K
Vir = Vs Voo -

“[This] has the form of a wall crossing formula envisaged by Joyce
for invariants counting stable objects in D(X)"

Theorem (Kuhn—L.—Thimm '23)

This conjecture holds, in equivariant K-theory.

Indeed, we use wall-crossing techniques (which work equally well in
equivariant cohomology).
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Previous work also includes combinatorial approaches to the
numerical DT/PT vertex correspondence

DT.K _ iy PT.K\DT.K

lim V)\,,LL,V - Auy 0,00

xyz—1 xyz—1

In this Calabi-Yau limit, the equivariant term w’(7) disappears
and vertices become generating functions.

(Kononov—Okounkov—Osinenko '19) Holds for up to two
non-trivial A, u,v. (“Easy")

(Jenne-Webb—Young '20) Holds for arbitrary A, u,v. (Hard!)
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DT/PT vertex correspondence

The full Vif’l’fy(x,y,z) are genuinely equivariant objects, much
more sophisticated than Zyé( Z¥ 5, or limyyz 1 V;\\/I;J/KV'

We always work equivariantly with respect to the obvious action of
T = (C*)3.
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Proposition

There is a symmetric obstruction theory on Ny , ) n, given by
Extx(/, I(=D)), such that

VR = 2 QMO0 O)

VPTK Z QN msi ) (7_ ) @vir)‘

”ul/

Nekrasov—Okounkov symmetrization O¥I" := K/2 @ Ovir,

VIr
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Proof strategy, step 2: add framing data

Problem: master space arguments (later) require stable objects to
split into < 2 strictly-semistable pieces at a wall.

Solution: construct auxiliary moduli stacks

simple walls ~

- o - T Q(N)
S R z sﬁ(k,u,v),n,d
T st : _v . 7T|sst
. m A’ b b
T ewn

GL(N)/B-fibrations
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Proof strategy, step 2: add framing data

W(Q)\(’Zy)y)’md parameterizes quiver-framed objects (/, V, p)
Vi Vo _ VN VN+1:Fk’p(l)
- P1 . P2 PN—1 . PN °

for dim V = d and the framing functor

Fip([L® Ox — €]) == HY(E(k)) ® L7P,

with parameters
k > 0 such that H>9(E(k)) = 0 for all &,
N = fi p(1) == dim Fy (1),
d=(1,23,...,N-1,N).
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Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima—Yoshioka, Kiem-Li, Joyce, etc.)
Typical geometric argument for simple wall-crossings Z, ~ Z:

construct a master space M

with a C -action whose fixed loci are:
divisors Z; and Z;
components ng 2, X2y,
splittings a1 + ap = a.

for strictly semistable
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viry  — F, A.iF
X (M, O") > X < A_I(Nm)v)
FcMC
m
1— uotw

where k = Z[x*, y*, 2%, (xyz) /2, uF1/?].
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Proof strategy, step 3: master space

o @vir
M, ovr = X F, A.F>
X( ) FG%:X < /\_I(Nvlr)v
m m
<ize) <]
1—tv 1— uitv

(from properness of MIT + a bit more)

where k = Z[x*, y*, 2%, (xyz)*1/2, u*1/2]. Apply K-theoretic
residue map:

@Vir
0 = Resg X ( PR ANV )
FC§M%5>< (NVII‘)V

where ResX (f) = (resy—o + resu—oo )(f u™* du).



Proof strategy, step 3: master space

Avir
OF

_ K
0 = Z ReS“X<F’7\'1(Nvir)v>'

FCMCX

The goal: put an obstruction theory on M such that these residues
are understandable and explicit.
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Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory E € Dqcon satisfies
E~x®EY[1]
for some weight x of T. E.g. in equivariant K-theory on X:

X(1LI(=D)) = —x(I(=D),/®Kx)"
= —rax(l,(-D))".

for k == xyz.

(Restriction to any semistable = stable locus is automatically
perfect!)
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Interlude: symmetric obstruction theories

Key observation: if V' = F — k=1 ® FV is symmetric, then

1 B (kw)Y2 — (kw)~1/2
AL (VYT H w2 w12

weF

Let F = Fso + F<o be the decomposition into positive and
negative C; -weight. Then

1 o .
ResK s : — (_1)ind K/ll’ld/2 - K/*Ind/2
X ey = (O™ )
where ind := rank s — rank F.q is a kind of Morse—Bott index of
each C*-fixed component.
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Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

W on Q(N)
M - sn(/\,w'),n,d - Nex ),
has a symmetric

want want .
obstruction theory

Technical heart of our work: symmetrized pullback of symmetric
obstruction theories.
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Interlude: symmetric obstruction theories

Le[~1] — cone(8)V[1] Ey —
Le[-1] —2— f*Eqy ———— cone(d) —*,

l S [1] ¢

0—— ke LY[2 ke LY[2] —

\bl +1 +1

Required: the lift § must exist; 6V[1] o6 = 0; £ = ¢V[1].
None of these hold in general, but they do hold on any affine chart
for degree reasons.
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Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem—Savvas’
étale-local notion of almost-perfect obstruction theory (APOT)
assuming X is DM. This is:

an étale atlas {U; — X}; (can assume U; affine and
T-equivariant, by [Alper—Hall-Rydh '20]);
perfect obstruction theories ¢;: E; — Ly;
descent data for a global obstruction sheaf Ob, such that
Oby|y, ~ hH(EY).

Theorem (Kiem—Savvas '20, '21)

APOTs induce virtual structure sheaves OY*. They satisfy
equivariant localization assuming NV'* also exists globally.
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Interlude: symmetric obstruction theories

Let f: X — %) be a smooth morphism of Artin stacks, and
¢: Ey — Ly be a symmetric obstruction theory.
Assume X is DM. (E.g. semistable = stable locus)

Theorem (Kuhn—L.—Thimm)

Symmetrized pullback along f: X — 9) produces a symmetric
APOT on X. The resulting Og’gr satisfies equivariant localization
(with no extra assumptions!).
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Proof strategy, step 4: put it all together
Resulting simple wall-crossing formula:

0=x(Z;,055) — x(Zf 0%)
+ ) (WOV“ )x( ag,OV“)-[ind(m,az)]n

al1tar=c
s.t. -

where [N],; are (symmetric) quantum integers

N/2 _ .—N/2
— N-1F K
[V = (=1) k1/2 _ —1/2

= X(PN_I, 7\._1(:%_1 & 'Eprl)).

Can quantize many formulas in Joyce-Song this way.
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Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup:
classes have the form a = ((1,—f¢, —n), d);

strictly semistable splittings have the form
((17 _6(:7 _n)7 d) — ((1~ _6C7 —n+ m)7 e) + ((0707 _m)7 f)

with some condition like e > f (lexicographic order);
d, e, f are always full flags;
invariants for ((0,0, —m), f) have trivial wall-crossing.

Can iterate the simple wall-crossing formula.
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Proof strategy, step 4: put it all together

Iterated splittings of a full flag d = (1,2,..., N) into smaller full
flags are equivalent to word rearrangements:

N W W W NN~ = = W

R(my, ..., my) = {rearrangements of 1M2™2 ... kMk}
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Iterated simple wall-crossings produce complicated combinatorics.
Becomes DT/PT via a (new?) k-identity on word rearrangements.

Proposition (Kuhn-L.—Thimm)
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Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics.
Becomes DT/PT via a (new?) k-identity on word rearrangements.

Proposition (Kuhn-L.—Thimm)

For k>0 and my,...,mg, meiq1 > 1,
k+1 [ + n Il
my + -+ My e
Kl Z Z H[m"’ Z )3 €a()) )],.@ = T e — 11,1
oceS,  weR(my,..., myi1) Jj=i+1 [mk+1]“' Hi:l [m’ - ]K”'
0 (1) (W)>++->05 () (W)

where oj(w) is the index of the first occurrence of i in w, and
c(ej, ej) ~ the number of inversions in w for i and j.

Alternatively, can sidestep this by a trick using the freedom to
choose p > 1 in the framing functor Fy , = --- @ LP.
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Proof strategy, step 4: put it all together

We give two different implementations of the master space and
wall-crossing.

Mochizuki-style (cf. [Nakajima—Yoshioka], [Kuhn—-Tanakal):
ad-hoc auxiliary stability 7 and master space;
direct wall-crossing from 7~ to 77;

Joyce-style (“universal wall-crossing”):

“universal” auxiliary stability 7 and master space which

works for many other abelian categories;

indirect wall-crossing from 7~ to 79, and then 70 to 7.
However, 7-stable loci on auxiliary stacks are interesting in
their own right, e.g. they include Quot((’)gf);
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Possible future applications of our ideas

Conjecture (Cao—Kool-Monavari '19)

DT,K _\PT.K DT,K
V7r1,7r2,71'3,7r4 - V7r1,71'2,7r3,7r4v@,@,@,@'

Conjecture (L. '19)

For an appropriate notion of the Bryan—Steinberg vertex of a
singularity [C3/ G| satisfying the hard Lefschetz condition,

VXT(6) = VP (6 (6).

Finally, we may try to obtain formulas for DT /PT descendent
transformations.



Thank you!



