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1 Extensions in Category O

Proposition 1

Let λ, µ ∈ h∗. Then

(a) Let M be a highest weight module of weight µ with λ ≥ µ or λ is not comparable to µ. Then

Ext1O(M(λ),M) = 0. In particular

Ext1O(M(λ), L(λ)) = Ext1O(M(λ),M(λ)) = 0, Ext1O(M(λ), L(µ)) = 0

(b) If λ > µ and N(λ) is the maximal submodule of M(λ), then

HomO(N(λ), L(µ)) ∼= Ext1O(L(λ), L(µ))

(c) Ext1O(L(λ), L(λ)) = 0

Proof. (a) Recall there is a bijection of sets Ext1O(M(λ),M) with equivalence classes of SES

0→M → E
π−→M(λ)→ 0

where E ∈ O. It therefore suffices to show any such sequence splits. Let vλ ∈M(λ)λ be the h.w. vector.

Let ṽλ be any lift of vλ under π; we claim ṽλ is a h.w. vector of weight λ in E. Notice this will give

us the required splitting as the universal property of M(λ) will give us a map ϕ : M(λ) → E sending

vλ 7→ ṽλ and you can check that this map has to be injective (Use PBW basis in M(λ)). Because

E ∈ O, it is h−semisimple, and thus we can write ṽλ as a sum of weight vectors ṽλ =

n∑
i=1

aivi where

vi ∈ Eγi . Since π is a g module morphism we have that π(Eγ) ⊆M(λ)γ for γ ∈ h∗ and thus

M(λ)λ 3 vλ = π(ṽλ) =

n∑
i=1

aiπ(vi) ∈M(λ)γ1 ⊕ . . .⊕M(λ)γn

But the weight space decomposition of M(λ) is a direct sum decomposition and thus γi = λ for all i.

Thus we see that ṽλ ∈ Eλ.

Because π(ei · ṽλ) = ei · π(ṽλ) = ei · vλ = 0 we have that ei · ṽλ ∈M . However this means that λ+ αi is

a weight of M , and since M is h.w. of weight µ, this means that

λ+ αi = µ−
∑

kjαj =⇒ µ− λ =
∑

k∗jαj , k∗j ∈ Z≥0
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Section 2 Cailan Li Duality in Category O

where k∗i ∈ Z≥1, aka λ < µ which is contrary to assumption. It follows that we have ei · ṽλ = 0 and

thus ṽλ is a h.w. vector of weight λ as desired.

(b) From the SES

0→ N(λ)→M(λ)→ L(λ)→ 0

we get the LES in cohomology

. . .→ HomO(M(λ), L(µ))→ HomO(N(λ), L(µ))→ Ext1O(L(λ), L(µ))→ Ext1O(M(λ), L(µ))→ . . .

HomO(M(λ), L(µ)) = 0 because λ > µ so there’s nowhere for the h.w. vector in M(λ) to go but zero

as the image of a h.w. vector of weight λ under a g−module morphism is a h.w. vector of weight λ.

Since λ > µ, Ext1O(M(λ), L(µ)) = 0 by part (a) so this completes the proof.

(c) Replace µ with λ above. The last term is still zero by part (a) so it suffices to show HomO(N(λ), L(λ)) =

0. Because L(λ) is simple, any nonzero map φ : N(λ)→ L(λ) is surjective. But as N(λ) ∈ O, the same

argument in (a) shows that any lift of vλ, say ṽλ ∈ N(λ)λ. But by the construction of N(λ), N(λ)λ = 0

and thus φ can’t be surjective and thus has to be the zero map.

Warning. Category O is not closed under extensions. In fact it’s not even closed under extensions of

Verma modules. Consider g = sl(2,C) and λ ∈ h∗. Let N be the 2-dimensional U(b) module where

e · v = 0 ∀v ∈ N, h↔
(
λ 1

0 λ

)
Let M := U(g)⊗U(b) N . Then we then have an exact sequence

0→M(λ)→M
π−→M(λ)→ 0

that is not split! This amounts to checking that any element in π−1(vλ) is not a h.w. vector of weight

λ. Thus M 6∈ O as otherwise this sequence would split.

2 Duality in Category O

The natural choice for a duality functor is to send each module M 7→M∗ where the action of U(g) on

M∗ is given by

(x · f)(m) := −f(x ·m)

coming from the antipode in the hopf algebra U(g). However recall that for M is an infinite-dimensional

module, then M∗ is an even larger infinite-dimensional module and thus has no chance to be in O.

However recall that weight spaces of M are f.d. Thus our first try for a duality functor will be

Definition 2.1 (Try 1).

M∗∨ :=
⊕
λ

(Mλ)∗

where the action of U(g) on (Mλ)∗ is given above.

Now will M∗∨ ∈ O? A quick computation shows that the answer is NO.

Example 1. Let g = sl2 and consider M = M(2). Let vk = fkv0/k! ∈ M2−2k where v0 is the h.w.

vector.

[Draw usual picture of actions here]
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Let ϕk = v∗k be the dual basis vector to vk. Now compute that

(e · ϕ3)(v) = −ϕ3(e · v)

Since ϕ3 is only nonzero on the weight space M−4, it follows we must have v ∈ M−6 in order for the

number above to be nonzero. In particular we see that

(e · ϕ3)(v4) = −ϕ3(e · v4) = −ϕ3((−1)v3) = 1 =⇒ e · ϕ3 = ϕ4

Iterating this process shows that ekϕ2 = k!ϕ2+k and in particular is never 0 and thus not locally U(n)

finite.

However the example above tells us what we should do to achieve locally U(n) finiteness; we should

interchange the actions of e and f . Now because (g · h · f)(v) = f(h · g · v), in order to obtain a new left

g−module structure on V ∗ we need to precompose with a lie algebra anti-automorphism1 of g instead

of a lie algebra automorphism. As such we define

Definition 2.2. Consider the lie algebra anti-automorphism τ of g given by sending eα 7→ fα, fα 7→ eα
and fixing hα

2. Then define the twisted action of g on M∗ by

(x ·τ f)(m) := f(τ(x) ·m)

From now on we will just write x · f = x ·τ f .

Definition 2.3. Let M be a U(g) module which is h semisimple with f.d. weight spaces. Then the

(BGG) dual of M is defined as a set by

M∨ =
⊕
λ∈h∗

(Mλ)∗

where the g module structure on (Mλ)∗ is given by the twisted τ action above.

Lemma 2.4. Let M satisfy the conditions above. Then

(1)
(
M∨

)
λ

= (Mλ)∗

(2) ch(M∨) = ch(M)

(3) L(λ)∨ = L(λ)

Proof. (1) Because M =
⊕
µ∈h∗

Mµ, we always have an exact sequence of C vector spaces

0→
⊕

λ 6=µ∈h∗
Mµ →M →Mλ → 0

So dualizing as vector spaces gives

0→ (Mλ)∗ →M∗ →

 ⊕
λ 6=µ∈h∗

Mµ

∗ → 0

1ϕ([x, y]) = [ϕ(y), ϕ(x)] = −[ϕ(x), ϕ(y)]
2For matrix lie algebras this is just taking the transpose.
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This means that we can identify

(Mλ)∗ =
{
f ∈M∗ | f |Mµ = 0 ∀µ 6= λ

}
Now given f ∈ (Mλ)∗ since it vanishes outside of Mλ, it’s completely determined by what it does on

Mλ. But for v ∈Mλ we have

(h · f)(v) := f(τ(h) · v) = f(h · v) = f(λ(h)v) = λ(h)f(v) ∀h ∈ h

In other words (Mλ)∗ ⊆ (M∨)λ. Conversely, if f ∈ (M∨)λ and f |Mµ 6= 0 the same calculation above

shows that on Mµ, h · f = µ(h)f contrary to assumption and thus we have (M∨)λ ⊆ (Mλ)∗.

(2) is a direct consequence of (1) as dimV = dimV ∗ for V f.d.

(3) is a direct consequence of (2) as f.d. modules of g are completely determined by their characters.

Edit: only works for λ integral dominant. Instead use that ∨ is an exact contravariant functor (see

below) so that if M is not simple, then M∨ is not simple, as

0→ A→M →M/A→ 0 =⇒ 0→ (M/A)∨ →M∨ → A∨ → 0

It follows that since (L(λ)∨)∨ = L(λ) is simple, so is L(λ)∨. One then checks that v∗λ is a h.w. vector in

L(λ)∨ of weight λ where vλ is a h.w. vector in L(λ) and since there is a unique simple module of h.w.

λ we have L(λ)∨ ∼= L(λ).

Theorem 2

The BGG dual ∨ satisfies

(a) ∨ is an exact (contravariant) functor on the category of g modules which are h semisimple

with f.d. weight spaces.

(b) ∨ descends to a functor ∨ : O → O such that M 7→M∨∨ is isomorphic to the identity functor.

(c) For any M ∈ O and any central character χ, (M∨)χ ∼= (Mχ)∨. In particular ∨ descends to

a functor ∨ : Oχ → Oχ.

(d) Let M,N ∈ O. Then (M ⊕N)∨ = M∨ ⊕N∨. Thus M indecomposable =⇒ M∨ indecom-

posable.

(e) Ext1O(M,N) = Ext1O(N∨,M∨).

Proof. (a) As soon as you check ∨ is a functor you are done because in the category of vector spaces

Mλ 7→M∗λ is exact.

(b) Let φ ∈M∨λ . Note that eα ·φ ∈M∗λ+α. This is because for any g module N , we have eα ·Nλ ⊆ Nλ+α.

Apply this to N = M∨ and by Lemma 2.4 we have that (M∨)λ+α = M∗λ+α.

Now suppose M ∈ O. M∨ will then have a weight decomposition given by dualizing each Mλ by

Lemma 2.4 and so is h semisimple. Because the set of weights of M is contained the union of the cones

∪ni µi − Γi [Draw picture], it follows that Mµ+
∑
kiαi = 0 for ki >> 0 =⇒ M∨µ+

∑
kiαi

= 0 for ki >> 0.

By above we showed that each eα takes us to a higher weight space and thus U(n) · v = 0 for any v.
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Finally to show that M∨ is f.g as a U(g) module it suffices to show it has finite length as recall that

given

0→ A→ B → C → 0

A,C f.g. =⇒ B f.g. and the “base case” L(µ) is clearly f.g. as a U(g) module. Consider the last step

of a composition series for M

0→ N →M → L(µ)→ 0

Applying the functor ∨ yields

0→ L(µ)∨ →M∨ → N∨ → 0

But by Lemma 2.4 L(µ)∨ = L(µ) and more importantly simple so this gives us the start of a composition

series for M∨. Now repeat the same procedure but with N . Because O has finite length, we see this

procedure eventually stops and we will have produced a finite composition series for M∨ as desired. (In

fact, this gives us a composition series that is the same as M but order reversed!).

(c)− (e) Left to the reader.

2.1 Duals of H.W. modules

Example 2 (Dual Verma modules in sl2). Consider our previous example with M(2). Recall that our

twisted action was specifically designed so that e still raises weights by 2 instead of lowering by 2. Thus

in terms of arrows, our picture of M(2)∨ is exactly the same as M(2).

[Draw M(2) here ] [Draw M(2)∨ here]

However the scalars by which e, f move vi change. Essentially to get e to move say v∗−3 up, we need

to use the actual action of f on v−2 and therefore the scalar by which we move up by is exactly 3 and

in general we have [picture]. Using this perspective one can see why L(2) is self dual; when we cut off

M(2) by the maximal submodule, the scalars by which we move up by in L(2)∨ is exactly the same as

in L(2) but in reverse order. This symmetry allows us to define an isomorphism L(2)∨
∼−→ L(2) given

by v∗2 7→ 2v2, v
∗
1 7→ v1, v

∗
0 7→ 2v0.

Theorem 3

Let λ, µ ∈ h∗. Then

(a) The dual Verma module O(λ) := M(λ)∨ has L(λ) as its unique simple submodule and its

other composition factors L(µ) satisfy µ < λ.

(b) If M is a h.w. module of weight λ, then M∨ is also a highest weight module of weight λ.

(c) Any nonzero homomorphism M(λ) → M(λ)∨ has the simple submodule L(λ) as its image.

Moreover we have

dim HomO(M(λ),M(λ)∨) = 1, dim HomO(M(µ),M(λ)∨) = 0 for µ 6= λ

(d) Ext1O(M(λ),M(µ)∨) = 0 for all λ, µ.

Proof. (a) is just the dual of the fact that a h.w. module has a unique maximal submodule and thus

unique maximal quotient. The second statement follows from the fact that the composition factors of
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M∨ is the same as of M as proved in previous theorem.

(b) Left to the reader. (c) The image I, of a nonzero morphism M(µ)→M(λ)∨ is a nonzero submodule

of M(λ)∨ of h.w. µ. I therefore contains a simple submodule but by (a) it follows that L(λ) ↪→ I and

thus λ ≤ µ. On the other hand, as I is a h.w. module of weight µ it has L(µ) as a quotient and since

I ↪→ M(λ)∨ this shows that L(µ) appears as a composition factor of M(λ)µ and so again by (a) we

have that µ ≤ λ =⇒ µ = λ. In this case, we see that

M(λ)� L(λ) ↪→M(λ)∨ (1)

gives us a nonzero morphism, and since dimM(λ)∨λ = dimM(λ)λ = 1, it follows that up to scalar this

is the only nonzero morphism.

(d) If λ ≥ µ or incomparable, then since M(µ)∨ is a h.w. module of weight µ by (b), by Proposition 1

we have that Ext1O(M(λ),M(µ)∨) = 0. Otherwise we must have µ ≥ λ but in this case for any SES

0→M(µ)∨ →M →M(λ)→ 0

corresponding to an element in Ext1O(M(λ),M(µ)∨), we can dualize to obtain

0→M(λ)∨ →M∨ →M(µ)→ 0

which corresponds to an element of Ext1O(M(µ),M(λ)∨) = 0 as µ ≥ λ. Dualize again and use that

BGG dual commutes with direct sums.

Remark. Eq. (1) exhibits L(λ) as an “intermediate extension” in geometry. Moreover parts (b) and

(c) can be thought of geometrically as the statement that j∗λ(jµ)! = 0 for λ 6= µ.

3 Standard Filtrations

Definition 3.1. An object M ∈ O has a standard filtration if there is a sequence of submodules

0 ⊂M1 ⊂ . . . ⊂Mn = M

s.t. Mi/Mi−1 is isomorphic to a Verma module. Denote by (M : M(λ)) the number of times M(λ)

appears

Remark. Note that because O is of finite length, any standard filtration must be finite or otherwise

you can construct a composition series of infinite length.

Proposition 3.2. Suppose M ∈ O has a standard filtration. Then

(a) Suppose λ is a maximal weight3 of M , then M has a submodule isomorphic to M(λ) and M/M(λ)

has a standard filtration.

(b) If M = M1 ⊕M2 then M1,M2 also have standard filtrations.

(c) M is free as a U(n−) module. (Analogue of PBW basis in M(λ))

3This means that 6 ∃µ ∈ P (M) s.t. µ > λ.
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Proof. (a) Let mλ be any vector in Mλ. Because eα ·mλ ∈ Mλ+α = 0 since λ is a maximal weight of

M , it follows that mλ is a h.w. vector of weight λ. By the universal property of M(λ), we have a map

ϕ : M(λ)→M . We claim it’s injective. Because M has a standard filtration, let i be the smallest index

for which ϕ(M(λ)) ⊂Mi. Thus we see that the reduction map

ϕ : M(λ)
ϕ−→Mi

π−→Mi/Mi−1

is nonzero. But by definition Mi/Mi−1 ∼= M(µ) for some µ. Thus λ ≤ µ or otherwise there’s nowhere

for the h.w. vector of M(λ) to go. But because λ is a maximal weight of M and thus of Mi, we must

actually have λ = µ. [Draw picture] Since any nonzero endomorphism of M(λ) must send the h.w.

vector to the h.w. vector ϕ must be an isomorphism and thus ϕ is injective.

Notice that Mi−1 ∩M(λ) = 0 as given x ∈ Mi−1 ∩M(λ), we see that π ◦ ϕ(x) = 0 =⇒ x = 0 as ϕ is

an isomorphism. As a result Mi−1 → M/M(λ) is injective (as the kernel is Mi−1 ∩M(λ)) and by the

Third isomorphism Theorem we have the exact sequence

0→Mi−1 →M/M(λ)→M/Mi → 0

The side factors have standard filtrations and thus they combine to give a standard filtration for

M/M(λ).

(b) Sketch: Use induction on standard filtration length and wlog one can find M(λ) inside M by part

(a) s.t.

M/M(λ) = M1

/
M(λ) ⊕M2

Part (a) tells us that M/M(λ) has a standard filtration and so by induction we conclude that M2 has

a standard filtration and M1

/
M(λ) has a standard filtration ( =⇒ M1 has a standard filtration).

(c). Proceed by induction on standard filtration length. The base case is true because M(λ) has basis

F e11 . . . F ekk ⊗ 1 by PBW which of course is a U(n−) basis. For the induction step by part (a) we can

find a submodule M(λ) ↪→M

0→M(λ)→M →M
/
M(λ) → 0

s.t. M
/
M(λ) has a standard filtration. By induction it follows that M

/
M(λ) is a free U(n−) module.

But since free U(n−) modules are projective, it follows that the above sequence splits as U(n−) modules

and thus we have

M
U(n−) mod

=== M(λ)⊕ M

M(λ)

But both summands on the RHS are free U(n−) modules and thus so is M .

Remark. Part (b) above is actually deeper than you think. Given a standard filtration {Mi}i∈I for M

and N ⊂M a submodule, {N ∩Mi}i∈I is not necessarily a standard filtration for N as

Mi ∩N
Mi−1 ∩N

∼= submodule of
Mi

Mi−1
= M(µ)

by the second isomorphism theorem. Thus if all submodules of Verma modules are also Verma modules,

then {N ∩Mi}i∈I would give us a standard filtration of N . But this isn’t true once you are in rank

2 or higher, e.g. sl3. So arbitrary submodules of modules with a standard filtration need not have a

standard filtration.
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Theorem 4

Suppose M has a standard filtration, then for all λ ∈ h∗, we have

(M : M(λ)) = dim HomO(M,M(λ)∨)

Proof. You guessed it, we will proceed by induction on the standard filtration length of M . For the base

case we clearly have that (M(µ) : M(λ)) = δλµ while by Theorem 3 we have that dim HomO(M(µ),M(λ)∨) =

δλµ so they agree. For the induction step, since M has a standard filtration, we have an exact sequence

0→ N → M → M(µ)→ 0 where N also has a standard filtration, for some µ ∈ h∗ and thus a LES in

cohomology

0→ HomO(M(µ),M(λ)∨)→ HomO(M,M(λ)∨)→ HomO(N,M(λ)∨)→ Ext1O(M(µ),M(λ)∨)

The last term is zero by Theorem 3 and since N has a standard filtration by definition, we see that by

induction

dim HomO(M,M(λ)∨) = dim HomO(N,M(λ)∨) + dim HomO(M(µ),M(λ)∨)

= (N : M(λ)) + δλµ

But the last term above is literally (M : M(λ)) by the exact sequence 0→ N → M → M(µ)→ 0 and

this completes the induction step.

4 Refined Composition Factors of M(λ)

Question 1

For a fixed weight λ, what are conditions on µ s.t. L(µ) appears a composition factor of M(λ)?

We can give some necessary conditions to the question above. Namely, suppose we have a composition

series of M(λ) where Mk/Mk−1 ∼= L(µ). As central characters descend to submodules and quotients,

it follows that χλ = χµ and by Harish-Chandra this means that µ = w ? λ . Moreover since Mk ∈ O,

we know by the same trick as in Proposition 1 that a lift of the h.w. vector vµ ∈ L(µ) must be in

(Mk)µ ⊆M(λ)µ and thus µ is a weight of M(λ). But this means that µ ≤ λ .

However it turns out we can give a more refined condition. For each λ ∈ h∗ we will define a subgroup

W[λ] of the Weyl group as follows.

Definition 4.1. For any λ ∈ h∗, let

W[λ] = {w ∈W |wλ− λ ∈ R} Φ[λ] =
{
β ∈ Φ |

〈
λ, β∨

〉
∈ Z

}
where R is the root lattice.

Remark. Notice λ ∈ Λ the weight lattice ⇐⇒ W[λ] = W and Φ[λ] = Φ. Indeed if λ ∈ Λ, then

sα(λ)− λ = λ−
〈
λ, α∨

〉
α− λ =

〈
λ, α∨

〉
α ∈ R ∀ simple α

and sα generates W . To show Φ[λ] = Φ (aka
〈
λ, α∨

〉
∈ Z for all simple roots α actually implies

〈
λ, β∨

〉
for all roots β) requries a bit more work. Hint: Show (sα(β))∨ = sα(β∨) for any two roots α, β).

Thus, when λ 6∈ Λ we see that W[λ],Φ[λ] will be proper subsets of W,Φ.
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Remark. Check that wρ − ρ ∈ R for any w ∈ W . Hint: w will send some positive roots to negative

roots. But ρ is the half sum of all positive roots. In addition, check
〈
ρ, α∨i

〉
= 1 for all simple roots

αi and thus ρ ∈ Λ. Hint: Compute sαi(ρ). As a result if follows that we can rephrase our definitions

above as

W[λ] = {w ∈W |w ? λ− λ ∈ R} Φ[λ] =
{
β ∈ Φ |

〈
λ+ ρ, β∨

〉
∈ Z

}
Claim: A necessary condition for L(µ) to appear as a composition factor of M(λ) is

µ ≤ λ and µ = w ? λ for some w ∈W[λ]

Proof. This is actually just combining our two previous conditions from before (µ ≤ λ and µ = w ? λ

for w ∈ W ). Note µ ≤ λ means µ − λ ∈ R− ⊂ R and thus our combined necessary condition is that

w ? λ− λ ∈ R. But this is exactly the statement that w ∈W[λ] by the remark above.

Theorem 4.2. Let λ ∈ h∗. Then

(a) Φ[λ] is a root system in it’s R−span.

(b) W[λ] is the Weyl group of the root system Φ[λ]. In particular it is generated by the reflections sα
where α ∈ Φ[λ].

Example 3. Consider g = sl3 and let ω1, ω2 be the fundamental weights and let λ = −0.5ω1 − 0.5ω2.

[Draw picture]

Clearly λ 6∈ Λ. Note it’s easier to compute Φ[λ] first and then use the theorem above to compute W[λ].

When testing for integrality (
〈
λ, β∨

〉
∈ Z?) we can restrict our attention to the positive roots as the

answer for the negative roots is the same as for the positive one. A2 has 3 positive roots α1, α2, α1 +α2.

By definition we have that 〈
λ, α∨i

〉
= −0.5 6∈ Z i = 1, 2

So we just need to compute 〈
−0.5ω1 − 0.5ω2, (α1 + α2)

∨〉
Explicitly we have α1 = ε1 − ε2 and α2 = ε2 − ε3 so α1 + α2 = ε1 − ε3, and thus

(α1 + α2)
∨ =

2(ε1 − ε3)
〈ε1 − ε3, ε1 − ε3〉

=
2(ε1 − ε3)

2
= ε1 − ε3 = α1 + α2

And nearly the same computation shows that α∨i = αi and thus we see that〈
−0.5ω1 − 0.5ω2, (α1 + α2)

∨〉 =
〈
−0.5ω1 − 0.5ω2, α

∨
1 + α∨2

〉
= −1 ∈ Z

Thus we see that Φ−0.5ω1−0.5ω2 = {α1 + α2,−(α1 + α2)} which is isomorphic toA1 and thusW−0.5ω1−0.5ω2 =

Z/2Z (in fact is generated by sα1sα2sα1 in W = S3). By our claim above, this means that M(−0.5ω1−
0.5ω2) can only have up to two different composition factors instead of up to 6.
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5 ρ−Antidominant Weights

Definition 5.1. A weight λ ∈ h∗ is called ρ−antidominant if〈
λ+ ρ, β∨

〉
6∈ Z>0 ∀β ∈ Φ+

Similarly we say that a weight λ ∈ h∗ is ρ−dominant if〈
λ+ ρ, β∨

〉
6∈ Z<0 ∀β ∈ Φ+

Warning. ρ−antidominant is not the same as an antidominant weight in the usual sense nor is it

the same as a ρ−shifted antidominant weight (aka X− − ρ). [Draw picture] However X− − ρ ⊂
ρ−antidominant weights as given λ ∈ X− we have〈

λ− ρ+ ρ, β∨
〉

=
〈
λ, β∨

〉
≤ 0

ρ−dominant is not the same as a dominant weight in the usual sense nor is it the same as a ρ−shifted

dominant weight (aka X+ − ρ). However X+ − ρ ⊂ ρ−dominant weights.

Example 4. Let us find all ρ−antidominant weights of sl2. Here there is only one positive root α = 2

and thus α∨ = 1. Note that ρ = 1 also and thus

λ is ρ− antidominant ⇐⇒ 〈λ+ 1, 1〉 = λ+ 1 6∈ Z>0 ⇐⇒ λ 6= 0, 1, 2, . . .

And similarly, we have

λ is ρ− dominant ⇐⇒ λ 6= −2,−3, . . .

Notice that these two sets are not disjoint, −1 = −ρ is in both of them as well as all irrational numbers.

Example 5. Check that for g = sl3 the weight −0.5ω1 − 0.5ω2 is not antidominant.

Proposition 5.2.

λ is ρ− antidominant ⇐⇒ λ ≤ w ? λ ∀w ∈W[λ]

λ is ρ− dominant ⇐⇒ λ ≥ w ? λ ∀w ∈W[λ]

Corollary 5

∃! ρ−antidominant weight in the orbit W[λ]?λ. Likewise ∃! ρ−dominant weight in the orbit W[λ]?λ.

Proof. We just prove it for ρ−antidominant as ρ−dominant is very similar. We first show the existence

of a ρ−antidominant weight in the orbit W[λ] ? λ. Let µ be any weight in W[λ] ? λ that is minimal

with respect to standard partial ordering. We claim µ is antidominant. Otherwise ∃β ∈ Φ+ s.t.〈
µ+ ρ, β∨

〉
∈ Z>0. By our rephrased definitions we see that this means β ∈ Φ[λ] and thus sβ ∈ W[λ].

But now

sβ ? µ− µ = sβ(µ+ ρ)− ρ− µ = µ+ ρ−
〈
µ+ ρ, β∨

〉
β − ρ− µ = −

〈
µ+ ρ, β∨

〉
β ∈ R−

But this exactly means that sβ ? µ < µ contradicting our assumption that µ was minimal in W[λ] ? λ.

Uniqueness follows immediately from the Proposition above.
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6 Projectives in O

Proposition 6.1. (a) Suppose λ ∈ h∗ is ρ−dominant. Then M(λ) is projective in O.

(b) If P ∈ O is projective and dimL <∞, then P ⊗ L is also projective in O.

Proof. We want to construct a lift ψ of the following diagram of modules in O

M(λ)

M N 0

ϕ
ψ

π

(a) Let vλ be the h.w. vector of M(λ). Then ϕ(vλ) is a h.w. vector of weight λ in N . Again as M ∈ O
and π is surjective, the same trick as in Proposition 1 shows that v = π−1(ϕ(vλ)) ∈ Mλ. Consider the

submodule U(n+)v. It is finite-dimensional as M ∈ O. However since v is a weight vector, the action

of all elements of U(n+) raises the weight and so to be f.d, we must have that there exists a h.w. vector

say vµ of weight µ ≥ λ in U(n+)v and thus in M . This means we have a highest weight module S of

weight µ occuring as a submodule of M that contains v. [Draw picture] We therefore have the following

exact sequence

0→ kerπ|S → S
π|S−−→ imϕ→ 0

Therefore any composition factor of imϕ appears as a composition factor of S. But imϕ being the

surjective image of a h.w. module of weight λ is also a h.w. module of weight λ and therefore L(λ)

is a composition factor of imϕ and thus of S. But S is h.w. of weight µ and therefore a quotient of

M(µ) and thus L(λ) is a composition factor of M(µ) as well. But we know from before that a necessary

condition is that λ = w ? µ ⇐⇒ µ = w−1 ? λ for some w ∈W[λ]. But λ is ρ−dominant and by Propo-

sition 5.2 we see that this means µ ≤ λ and thus µ = λ. But this exactly means n+v = 0 or in other

words v is a h.w. vector of weight λ in M and this is exactly what gives us the lift ψ : M(λ)→M above.

(b) Left to reader, note that since dimL <∞, we know P ⊗L is in O. Hint: Use Tensor-Hom and note

that the inclusion functor ι : O ↪→ U(g)−mod is fully faithful.

Remark. M(λ) is not projective as a U(g) module!

Remark. As a clarification, note that

Any block of Category O ⊆ Oχλ

as ExtiO(A,B) = 0 for A ∈ Oχλ , B ∈ Oχµ because the central character acts differently on A,B. We

now give an example where this is a proper inclusion, aka Oχλ will have more than one block in it.

Let g = sl2 and let λ 6∈ Q. Check that for g = sl2, that M(λ) is simple ⇐⇒ λ 6∈ Z≥0. Therefore

M(λ),M(s ? λ) = M(−λ− 2) are both simple and thus HomO(M(λ),M(−λ− 2)) = 0. But from above

we know that λ is also ρ−dominant and thus M(λ) is projective and therefore

ExtiO(M(λ),M(−λ− 2)) = 0 ∀i ≥ 1

So even though M(λ) and M(−λ− 2) are in the same linkage class, they are not in the same block!
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