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1 Intersection Homology

The motivation for Intersection Homology is that Poincare duality (and the rest of the Kahler package)

fails for singular spaces. For example consider [Draw X = S2 ∨ S2].

By Mayer-Vietoris we have

H2(pt)→ H2(S2)⊕H2(S2)→ H2(X)→ H1(pt)

and so we have that H2(X) = Z⊕ Z but H0(X) = Z. However if we resolve the singuarlity we end up

with S2 t S2 and H0(S2 t S2) = Z⊕ Z. In general if X̃ is the normalization of X (middle-perversity)

intersection homology will have the property that

IH∗(X,Z) ∼= H∗(X̃,Z)

and IH∗(X,Z) will satisfy Poincare duality. However, to build up the machinery for this, the rest of

the talk seemingly will look like it has almost nothing to do with what I just said. So let’s all take a

deep breath and...

2 Local Systems

Definition 2.1. Let X be a topological space and let k be a field. The constant sheaf kX is defined as

kX(U) = {f : U → k | f is continuous and k has the discrete topology}

Remark. Equivalently, kX is the sheaf whose sections are locally constant functions f : U → k and

also is equivalent to the sheafification of the constant presheaf which assigns k to every open set.

Remark. When U is connected, kX(U) = k.

Definition 2.2. A k−local system on a topological space X is a sheaf L ∈ mod(kX) s.t. there exists

a covering of X by {Ui} s.t. L|Ui = k
ni where kni is the constant sheaf associated to the vector space

k
ni. In other words, a local system is the same thing as a locally constant sheaf.

Remark. If X is connected, then all the ni are the same.

Example 1. kX is an k−local system.

Example 2. Let D be an open connected subset of C. Then the sheaf F of solutions to LODE, namely

F (U) =
{
f : U → C | f (n) + a1(z)f (n−1) + . . .+ an(z) = 0

}
where ai(z) are holomorphic forms a C−local system. Existence and uniqueness of solutions of ODE

on simply connected regions means that by choosing a disc D(z) around each point z ∈ D, we see that

the initial conditions f (k) = yk give an isomorphism

F |D(z)
∼= Cn
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The stalk of the constant sheaf kni is just kni as “locally constant functions” are eventually constant.

Thus k−local systems are sort of like vector bundles or locally free sheaves in that the stalks will be

vector spaces. But they aren’t the same thing because local systems are “discrete.” However, local

systems are essentially vector bundles with a flat connection which is an incarnation of the Riemann-

Hilbert correspondence.

2.1 Monodromy

Lemma 2.3. Any k−local system L on a locally connected and simply connected space is a constant

sheaf V for some k−module V .

I won’t prove this since I did it last semester in another seminar.

Remark. As S2 is simply connected, locally path connected, any C local system is constant(trivial) on

S2. However, the same isn’t true for vector bundles. Complex line bundles on S2 up to isomorphism

are in bijection with π1(GL1(C)) = π1(C×) = Z by the clutching construction. Or you can classify

them by their first Chern class in H2(X,S2) = Z. Or if you like algebraic geometry, then S2 = P1(C)

and line bundles on P1 are exactly given by OX(n) for n ∈ Z. Thus local systems are “simpler” in the

sense that you only need the first homotopy group to vanish to be trivial while vector bundles need all

homotopy groups to vanish.

Theorem 1

Assume X has a universal cover. Then the following categories are equivalent.

(i) k−local systems on X.

(ii) Representations ρ : π1(X,x0)→ GLk(V ), V is an k−vector space.

Proof. We describe how a local system L gives maps between fibers/stalks. Consider a path γ : I → X

between x0 and x1, then note that γ−1L will be a local system on [0, 1] as given a trivializing cover

{Ui} for L, γ−1(Ui) will give us a trivializing cover for γ−1L. Now as [0, 1] is simply connected by

Lemma 2.3, we see that γ−1L = V will be a constant sheaf. As [0, 1] is connected, V ([0, 1]) = V . It

follows that the natural map γ−1L([0, 1]) = V ([0, 1])→ V x = (γ−1L)x sending m to the germ (m, [0, 1])

is an isomorphism for any x ∈ [0, 1] (Notice that this phenomenom that global sections is isomorphic

to the stalk doesn’t happen for trivial OX modules). Applying this to x = 0, 1 we obtain a chain of

explicit isomorphisms γ∗ : Lγ(0) → Lγ(1) called the monodromy map

Lγ(0)
∼= (γ−1L)0

∼= γ−1L(I) ∼= (γ−1L)1
∼= Lγ(1)

where the first isomorphism is the isomorphism of the stalk of the pullback sheaf, i.e. we send (s, U) 7→
((s, U), γ−1(U)) and similarily with the last isomorphism. It turns out that γ∗ satisfy a bunch of nice

properties, namely

Lemma 2.4. Suppose L ∈ mod(kX). Then the monodromy map γ∗ is

1. k−linear: γ∗(v + aw) = γ∗(v) = aγ∗(w).

2. homotopy invariant: if γ ∼ γ′, then γ∗ = γ′∗.

3. compatible with composition of paths: γ′∗(γ∗(x)) = (γ′.γ)∗(x)
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This shows that the assignment of each point of x to it’s stalk gives us a functor from the fundamental

groupoid Π(X) to k−modules. By considering loops, composition of paths and homotopy invariance

gives us a group homomorphism π1(X,x0) → Aut(Lx0) := Aut(V ) and by k−linearity it will land in

GLk(V ). This map

π1(X,x0)→ GLk(V )

is called the monodromy representation of L. To go back consider the space (X̃ × V )/π1(X,x0)

over X where π1(X,x0) acts on X̃ by monodromy and V has the discrete topology. Take it’s sheaf of

sections to recover L.

Lemma 2.5. The monodromy map on a constant sheaf A is trivial.

Remark. We can now give a geometric picture of the monodromy map. By Lemma 2.5 we can think of

monodromy on an element a ∈ Lx as a composition of piecewise constant maps corresponding to where

L is constant as we go along γ. [draw picture of loop and a cover of the loop] On the overlaps a might

change when identifying the stalks and this is what gives rise to the action.

You can now go home and generate a lot of examples of local systems by taking representations of

fundamental groups.

3 Verdier Duality

Definition 3.1 (Direct Image with Compact Support). Let f : X → Y be a continuous map. Then f!

is defined to be the functor

f!F(V ) =
{
s ∈ Γ(f−1(V ),F) | f |supp(s) : supp(s)→ V is proper

}
where proper is in the topological sense, i.e. inverse image of compact is compact.

Remark. It follows that when f is proper, f! = f∗. Moreover if f is pushforward to a point, aX :

X → {pt}, we recover cohomology with compact support, i.e. for F ∈ Sh(X) we have that (aX)!(F) =

Γc(X,F) where

Γc(X,F) = {s ∈ Γ(X,F) | supp(s) is compact }

When f is proper f! = f∗ has a left adjoint given by f−1. Can f! have a right adjoint? In general

no, as when f is proper this would imply that f! is exact, as f! = f∗ being a right adjoint implies it

preserves colimits and thus cokernels and f! being a left adjoint means its preserves limits and thus

kernels. However f! is clearly not exact for all proper maps. For example consider f : X → pt where

X is compact. If f! is exact then there are no higher derived functors, which in this case would mean

there’s no higher cohomology with compact support for any sheaf F on compact spaces X which is just

cohomology since X is compact which clearly isn’t true.

However if we move to the derived category we will obtain our desired adjunction.

Theorem 2 (Global Verdier Duality)

Let f : X → Y be a continuous map. Then there is an additive triangulated functor f ! : D+(Y )→
D+(X), called exceptional inverse image such that we have an adjunction

HomD+(Y )(Rf!F•,G•) = HomD+(X)(F•, f !G•)
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Proof. Use some adjoint functor theorem.

Remark. When j : U ↪→ X is an open embedding, j! = j−1 (So not only does j! exist at the level of

abelian categories we don’t need to derive it because j−1 is exact.)

Definition 3.2. Let aX : X → pt be the usual projection to a point. Then the dualizing complex is

defined as

ωX/A = a!
X(Apt)

Although we haven’t explicitly constructed the functor a!
X we actually can obtain a very good description

of the cohomology sheaves of the complex ωX/A where A = k is a field.

Lemma 3.3. Suppose A = k is a field and let ωX = ωX/k. Then for every integer i the cohomology

sheaf HiωX is the sheafification of the presheaf

U 7→ H−ic (U,k)∨

Proof. We will evaluate HomD+(X)(kU , ωU/k[i]) = HomD+(X)(kU , a
!
U (kpt)[i]) in two different ways.

HomD+(U)(kU , a
!
U (kpt)[i]) = H i(RHom•

kU
(kU , a

!
U (kpt)) = Hi(U, a!

U (kpt))

where the last equality comes from resolving a!
U (kpt) and noting that HomkU

(kU , I) = I(U) so we are

just computing hypercohomology. On the other hand by the adjunction we also have that

HomD+(U)(kU , a
!
U (kpt)[i]) = HomD+(U)(kU [−i], a!

U (kpt)) = HomD+(pt)((aU )!(kU [−i]),kpt)
= H0(RHom•

kpt[−1]( (aU )!(kU [−i]), kpt))

By definition, to compute (aU )!(kU ) we pick an injective resolution of kU , I• → kU and apply (aU )! to

each term. But since we end up in C∗(kpt), chain complexes of sheaves over a point, this is the same as

chain complexes of k vector spaces by sending each sheaf (aU )!Ik to it’s global sections. By definition

this will yield Γc(U, Ik). Moreover as every k module is free we don’t need to derive Hom•
k

and so we

have the equality

HomD+(U)(kU , a
!
U (kpt)[i]) = H−i(Hom•

k
((0→ Γc(U, I0)→ Γc(U, I1)→ . . .),k))

= H−i(. . .→ Γc(U, I1)∨ → Γc(U, I0)∨ → 0) = H−ic (U,k)∨

Finally HiωX is isomorphic to the corresponding cohomology sheaf of the injective resolution we took

of a!
U (kU ) to obtain hypercohomology. Quotient sheaves are sheafification of the naive quotient and

thus HiωX is the sheafification of the naive presheaf for hypercohomology

U 7→ Hi(U, a!
U (kpt))

Our calculations above show that Hi(U, a!
U (kpt)) = H−ic (U,k)∨ and thus the result.

So now we have a good understanding of the cohomology sheaves of ωX/k, and in some cases this will

actually determine ωX/k. Namely first consider

Lemma 3.4. Let A be any ring. Then we have that

H i
c(Rn, A) ∼=

{
A if i = n

0 otherwise
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Proof. This is more or less results from the fact that the one point compactification Rn ∪ {∞} = Sn.

Corollary 3.5. Let k be a field and let X be an n−dimensional manifold. Then the dualizing complex

ωX/k ∈ D+(X) on X is isomorphic to H−nωX so it’s just a sheaf.

Proof. Because X is a manifold, the presheaf assigning U it’s compactly supported cohomology

U 7→ H−ic (U,k)∨

is zero for all open ball U by the above lemma except when i = −n. As open balls generate the topology

for X it follows that all cohomology sheaves except i = −n are zero. Whenever a chain complex has

cohomology only supported in one degree, it turns out that the chain complex will be quasi-isomorphic

to that single cohomology group as follows. Resolve(find a quasi-isomorphism) ωX/k → I• using a

complex of injectives. Because I−n is injective, we can split off the submodule kerd−n inside so that

I−n = ker d−n ⊕ J . Now we have a morphism of chain complexes

. . . I−n−1 ker d−n ⊕ J I−n+1 . . .

. . . 0 ker d−n/imd−n−1 0 . . .

d−n

This morphism will be a quasi-iso by our previous computation and thus we have that I• is quasi-

isomorphic to H−nωX and therefore so is ωX/k. By definition this means that H−nωX is isomorphic to

ωX/k in the derived category as desired.

Definition 3.6. Let X be an n−dimensional topological manifold. Then the orientation sheaf Lor is

the sheaf associated to the presheaf U 7→ Hn
c (U,k)∨. (This actually turns out to already be a sheaf)

Remark. We see that the above corollary shows that when X is an n−dimensional manifold, then

ωX/k ∼= Lor[n]. Moreover contrast this situation with Serre duality in algebraic geometry where given

a Cohen-Macaualy scheme we have that the dualizing sheaf ωX

� If f : X → Y is a finite morphism between locally Noetherian schemes, then ωf = f !OY .

� If X is smooth then ωX ∼= ∧nΩX .

In fact if we use Grothendieck duality the analogy becomes even more clear.

Recall in the proof of Lemma 3.3 we were able to relate (hyper)cohomology of a sheaf with compactly

supported cohomology by evaluating HomD+(X)(kU , ωU/k[i]) two different ways. To generalize this

phenomenom, we introduce

Definition 3.7 (Verdier Dual). Let X be a topological space and let F• ∈ Db(X) define DX(F•) ∈
Db(X)

DX(F•) = RHom

•(F•, ωX)

This will be a contravariant functor on Db(X).

Remark. In the special case where X is a topological manifold, we know from Corollary 3.5, that

ωX ∼= Lor[n] is just a sheaf. As a result, a little more work will then show that if F• = F is just a sheaf,

we have that

D(F•) = Hom (F ,Lor)[n]
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In the special case when F is also a local system L we have the additional isomorphism that

D(L) = Hom (L, AX)⊗ Lor[n] = L∨ ⊗ Lor[n]

In terms of representation if (M,ρ) is the monodromy representation of L, then the monodromy repre-

sentation ρ∨ corresponding to L∨ on M∨ is given by

ρ∨([γ])(ϕ)(m) = ϕ(ρ([γ])−1m) ∀ϕ ∈M∨,m ∈M

4 Constructible Sheaves

X for the most part will be a complex analytic space from now on so we have to distinguish between

real and complex dimensions at times. This means varieties do not have the Zariski topology (aka we

aren’t doing algebraic geometry) because local systems on the Zariski topology is bad. As usual to fix

this we would need to consider `−adic sheaves in the etale topology but that’s another talk.

Example 3. The pushforward of a local system is not necessarily a local system. Consider the push-

foward of a nontrivial local system L under the inclusion j : C× → C. If j∗L is a local system it is

necessarily the trivial one since π1(C) = 1. However if we compute the monodromy map for j∗L then

it will just be the monodromy map for L on C× because locally around the loop we will always be in

C× and so on sections and on stalks the computations are all on C×. Thus the monodromy map is

nontrivial but this is impossible since j∗L is supposed to be the trivial local system on C.

Unlike local systems, constructible sheaves will be preserved under pushforward.

Definition 4.1. Let X be a topological space. A stratification of X is a partially ordered set (Λ,≤) and

a collection of locally closed subsets {Xλ}λ∈Λ such that

1. X =
⊔
λ∈Λ

Xλ and Xλ =
⊔
µ≤λ

Xµ.

2. Each Xλ is a smooth connected complex manifold.

Example 4. Let G be a connected reductive group. Then we have the Bruhat decomposition for G

given by

G =
⊔
w∈W

BwB

Therefore the flag variety G/B is stratified by the B orbits on G, i.e.

G/B =
⊔
w∈W

BwB/B

BwB/B ∼= C`(w) are called Schubert cells and their closure (in either Zariski or complex analytic) satisfy

BwB/B =
⊔
x≤w

BxB/B

where ≤ is the Bruhat order on W . BwB/B are called Schubert varieties and tend to be singular.

Definition 4.2. A sheaf F ∈ mod(AX) is constructible if there exists a stratification
⊔
λ∈Λ

Xλ such that

F|Xλ is a local system of finite rank for all λ ∈ Λ.
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Definition 4.3. A complex F• ∈ Db(X,A) is constructible if all its cohomology sheaves1 HmF• are

constructible for some stratification Λ. Let

Db
c(X,A) =

{
full triangulated subcategory of Db(X,A) consisting of constructible complexes

}
Theorem 4.4 (6 functors formalism). Db

c(X) is closed under the six operations

Rf∗, Rf!, f
−1, f !, RHom ,⊗L

Corollary 4.5. The dualizing sheaf ωX is in Db
c(X). More generally D descends to a functor

D : Db
c(X,A)→ Db

c(X,A)

1If we were to ask that each term in F• is constructible, this would not be well defined in the derived category; a

different representative might actually have different sheaves, as we only know that the cohomology sheaves are the same.
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