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1 Contravariant Forms

Recall that there is an anti-automorphism 7 of U(g) given by o — Yas Yo = Tay R —
hq for all simple roots a. Using this transpose map we define:

Definition 1.1. A symmetric bilinear form (v,v')5; on a U(g)-module M is called
contravariant if

(u-v,0" )y = (v,7(u) - V") Vu € U(g),v,v" € M.

1.1 Basic Properties

Proposition 1.2. Suppose that U(g)-modules M, My, My have contravariant forms.
Then

(a) Distinct weight spaces My and M, of M are orthogonal.

(b) If M = U(g) - v" is a highest weight module generated by a mazimal vector v
of weight X\, then a nonzero contravariant form on M is uniquely determined up
to a scalar multiple by the nonzero value (v, v") . The radical of this form is
the unique maximal submodule N of M.

(¢) The tensor product My ® My also has a contravariant form, given by (v@w,v' ®
w') = (v, V") ar, (W, W) pg,. If the forms on M; are nondegenerate, so is the prod-
uct form.

(d) For any submodule N C M, its orthogonal space N+ := {v € M | (v,v0)a =
OVvg € N} is also a submodule.

(e) If M € O, then the summands MX for distinct central characters x are orthog-
onal.

We will prove part (b). Assuming (a), it’s enough to look at the form on a weight
space M,,. Vectors v,v' € M), can be written as v = w-v" and v/ = ' - v for some
u,u’ € U(n™). Then

(v, )ar = (u- v, 0 ) = (F, T(u)V) s

Since w maps M) into M, it’s transpose 7(u) takes M, to M), which is a one-
dimensional space spanned by vt. So, 7(u) - v’ is a scalar multiple of v and (v,v")ys
is a scalar multiple of (v, v"))s determined by the action of U(n™) on M.



Since N is a weight module which does not have A as one its weights, (v, N)y = 0.
Then for any u € U(g), we have (u-v", N)y = (v, 7(u)N) = 0. This means that N
is contained in the radical of the form. On the other hand, the radical of a nonzero
form is a proper submodule of M and must be contained in N. O

1.2 Example - Verma modules of sl,(C)

Recall that M () has weights A, A\ —2, A — 4, ... and we may choose a basis of corre-
sponding weight vectors vg,v1,vs,... such that

€T - v; = (/\—i+1)vi_1
y-vi = (i +1vip

For a contravariant form on M (\), we must have (v;,v;) = 0 for i # j. Also, for every
1> 0, we get

1 1 A—i+1

1
(vi,v5) = (zy . Uila”i) = ;(UiflaT(y) v) = ;(vzel,x v) = (Vie1,0i—1)

7

Induction shows that

oy = it 1)(Ai!i+2) O )

(It is easy to verify that a form defined using this formula is, in fact, a contravariant
form.)

Note that since distinct v; are orthogonal to each other, the form is non-degenerate
iff (v;,v;) is nonzero for all i > 0 iff A ¢ Z>0 iff M()) is simple. On the other hand, if
A€ Z70 then (v;,v;) = 0 for i > A+ 1 (vectors of weights < —\ — 2) and the radical
of the form is M (—\ — 2).

1.3 Universal Construction

Our goal is to construct contravariant forms on highest weight modules. We start by
constructing a form on U(g). Let et : U(n) - C and e~ : U(n~) — C be the maps
sending all nonconstant PBW basis elements to 0. Use the PBW theorem to define
the linear map p:=¢~ ®id®eT : U(g) =Un~) @ U(h) @ U(n) — U(h). This gives
us a symmetric bilinear form on U(g)

Clu,u) == o(r(u)u).
Since 7 is an anti-automorphism, we have
C(upu,u’) = C(u, 7(up)u')

for all ug, u,u’ € U(g).

For a weight A, let ¢\ = A o ¢ and define a form on U(g) by
CMu, ') i= pa(r(w)u).



Now consider a highest weight module M generated by maximal vector v+ of weight
A. Suppose that uy, us € U(g) satisfy uy-v™ = ug-v™. By writing u; in the PBW basis
and comparing the the components of u; - v of weight A, we obtain ¢y (u1) = @ (u2).
For any u € U(g), we get uuy - vt = uug - v and therefore ¢y (uu1) = @) (uusg). Thus,
ox(U(g)(u1 — up) is zero and (u; — usg) lies in the radical of C*. This allows us to
define a form on M by

(v, ") s == CMu, )

where v = u - vT and v =’ - v for u,u’ € U(n™). It is easy to check that this is a
nonzero contravariant form. Thus we have

Theorem 1.3. If M is a highest weight module of weight X\, there exists a (nonzero)
contravariant form (v,v")pr on M. The form is unique (up to scalar multiples) and
completely determined by (v, v )y Its radical is the unique mazimal submodule of
M. In particular, the form is nondegenerate if and only if M is the simple module
L(N). O

2 Simple Submodules of Verma Modules

Proposition 2.1. M(\) has a unique simple submodule.

Proof. Recall that as U(n™)-modules, M(\) and U(n™) are isomorphic. Under such
an isomorphism, we may identify nonzero submodules of M (\) with nonzero left ideals
of U(n™). Since U(n™) is left noetherian and does not have any zero divisors, any two
nonzero left ideals of intersect non-trivially. Thus, any two nonzero submodules of
M () must intersect non-trivially. This is impossible for distinct simple submodules.

O

Example 2.2. In case of sly(C), if A € Z>°, then the unique maximal submodule
M(—=X—2) C M(A) is simple. Otherwise, M (\) itself is simple.

3 Homomorphisms between Verma Modules

Theorem 3.1. Let A\, i € h*. Then
(a) Any nonzero homomorphism ¢ : M () — M(X) is injective.
(b) In all cases, dim Homp (M (u), M(N)) < 1.

(¢) The unique simple submodule of M(\) is a Verma module.



Proof.  (a) Let v} and vy be maximal vectors in M () and M(X), respectively.
Let u € U(n™) be such that o(v}) = u-vy. As left U(n™)-modules, M(u) =
U )vt =Um™) = U vy = M(X) so that ¢ corresponds to the map on
U(n™) given by v — «u. Since U(n~) does not have zero divisors, ¢ must be
injective.

(b) Note that any nonzero homomorphism M () — M () must descend to an iso-
morphism between the unique simple submodules of M (u) and M (X). Thus,
if 1,2 are two such homomorphisms, there exists a scalar ¢ € C such that
1 — cp9 kills L. By part (a), we conclude ¢1 — cpa = 0.

(¢) Suppose that L(u) is the unique simple submodule of M(\). Then the compo-
sition M (u) — L(p) <= M () gives a nonzero homomorphism between Verma
modules. By part (a), this is injective and M (u) = L(p).

O

Remark 3.2. Whenever there is a nonzero homomorphism M (p) — M (X), we may
write M (u) C M(A).

4 Simplicity Criterion and Embeddings

Theorem 4.1. Let A € h*.. Then M(X) = L(\) if and only if X is p-antidominant,
i.e., (\+p,aV) & Z> for all positive roots a.

Proof. We begin with integral weights.

Part (1) Suppose that M () is simple. Since A is integral, it is p-antidominant iff (A +
p,aV) ¢ 770 for all simple roots a. If this fails for some simple root, then we have
Sa'A = A—{(A+p,a’)a < A. This means that there is a nonzero homomorphism
M (sq-A) = M(\). However, such a morphism must be an embedding, which is
impossible if M () is simple.

Part (2) We know that the highest weights of composition factors of M (A) must be of
the form w- A < A with w € W. If X\ is p-antidominant, then the only weight
satisfying this constraint is A and only L(\) can occur as a composition factor.
Since dim M) = 1, we see that it occurs only once and therefore M(\) = L()).

To extend the first part of the proof to the general case, we need embeddings of the
form M (sq-A) — M () for arbitrary positive roots. It turns out that such embeddings
exist as long as sq - A < o :

Theorem 4.2. Let A € " and o > 0. If p = sq- A < A, then there exists an embedding
M(p) € M(N).

The second part of the proof can be generalized by replacing W by the reflection
subgroup Wy O



Example 4.3. For sly(C), there is a unique positive root 2 and p = 1. So, A is p-
antidominant iff (A\+1,1) = A+ 1 ¢ Z>Y iff X\ ¢ Z=°. We already know that these are
precisely the weights for which M ()) is simple.

Corollary 4.4. If X is p-antidominant, then L(\) is the unique simple submodule and
therefore a composition factor of M(w - \) for all w € Wpy).

Proof. The unique simple submodule is a Verma module whose highest weight is in
the orbit Wiy - A\. We know that A is the only p-antidominant weight in this orbit. [

5 Block Decomposition of Category O

Theorem 5.1. For a p-antidominant X\, let Oy be the subcategory of modules whose
composition factors all have highesl weights linked to A by Wy. Such Oy are precisely
the blocks of O.

Proof. Consider a Verma module M (u) and let L(\) = M () be its unique simple
submodule. By the simplicity criterion, A\ is p-antidominant. Then the composition
factors of M (), including L(\) and L(yu) lie in the same block. The highest weights
of these factors all must be in the orbit Wy - A. On the other hand, we have already
shown that any Verma module with highest weight in the orbit Wy - A has L(\) as
its unique submodule. O

6 Error in Verma’s Thesis

Warning: Section contains false results.

Verma believed that he had proved the following Lemma:

Lemma 6.1. Let M be the submodule generated by a weight vector v, of M(X). Then
the submodule M' of M generated by vectors xq - v, is either 0 or M.

However, there is gap in the proof of this Lemma and it leads to some interesting
results -

Theorem 6.2. Every submodule M of M(\) are generated by the mazimal vectors in
M.



Proof. Since M is a weight module, it’s enough to prove the theorem when M is
generated by a single weight vector v,. If = A, then M = M ()) and we are done.
Assume that the result holds for all weights p/ > u. Then the module M’ in the above
Lemma is generated by maximal weights. Either M = M’ or M’ = 0, which means
that v, is itself a maximal vector. O

Consider a composition factor M;/M;_; of M (). By the above Theorem, we may
assume that M; is generated by M;_; along with one maximal vector of weight p. This
weight vector generates a copy of M (u) in M (A) and we have M;/M;_1 = L(u). Thus,
every composition factor of M () comes from an embedding of a Verma module. This
means that every composition factor appears with multiplicity 1.



