Category \mathcal{O} : Verma's Thesis Mrudul Thatte August 28, 2020 #### 1 Contravariant Forms Recall that there is an anti-automorphism τ of $U(\mathfrak{g})$ given by $x_{\alpha} \mapsto y_{\alpha}, y_{\alpha} \mapsto x_{\alpha}, h_{\alpha} \mapsto h_{\alpha}$ for all simple roots α . Using this transpose map we define: **Definition 1.1.** A symmetric bilinear form $(v, v')_M$ on a $U(\mathfrak{g})$ -module M is called **contravariant** if $$(u \cdot v, v')_M = (v, \tau(u) \cdot v') \ \forall u \in U(\mathfrak{g}), v, v' \in M.$$ #### 1.1 Basic Properties **Proposition 1.2.** Suppose that U(g)-modules M, M_1, M_2 have contravariant forms. Then - (a) Distinct weight spaces M_{λ} and M_{μ} of M are orthogonal. - (b) If $M = U(\mathfrak{g}) \cdot v^+$ is a highest weight module generated by a maximal vector v^+ of weight λ , then a nonzero contravariant form on M is uniquely determined up to a scalar multiple by the nonzero value $(v^+, v^+)_M$. The radical of this form is the unique maximal submodule N of M. - (c) The tensor product $M_1 \otimes M_2$ also has a contravariant form, given by $(v \otimes w, v' \otimes w') := (v, v')_{M_1}(w, w')_{M_2}$. If the forms on M_i are nondegenerate, so is the product form. - (d) For any submodule $N \subset M$, its orthogonal space $N^{\perp} := \{v \in M \mid (v, v_0)_M = 0 \forall v_0 \in N\}$ is also a submodule. - (e) If $M \in \mathcal{O}$, then the summands M^{χ} for distinct central characters χ are orthogonal. We will prove part (b). Assuming (a), it's enough to look at the form on a weight space M_{μ} . Vectors $v, v' \in M_{\mu}$ can be written as $v = u \cdot v^+$ and $v' = u' \cdot v^+$ for some $u, u' \in U(\mathfrak{n}^-)$. Then $$(v, v')_M = (u \cdot v^+, v')_M = (v^+, \tau(u)v')_M$$ Since u maps M_{λ} into M_{μ} , it's transpose $\tau(u)$ takes M_{μ} to M_{λ} , which is a one-dimensional space spanned by v^+ . So, $\tau(u) \cdot v'$ is a scalar multiple of v^+ and $(v, v')_M$ is a scalar multiple of $(v^+, v^+)_M$ determined by the action of $U(\mathfrak{n}^-)$ on M. Since N is a weight module which does not have λ as one its weights, $(v^+, N)_M = 0$. Then for any $u \in U(\mathfrak{g})$, we have $(u \cdot v^+, N)_M = (v^+, \tau(u)N) = 0$. This means that N is contained in the radical of the form. On the other hand, the radical of a nonzero form is a proper submodule of M and must be contained in N. #### 1.2 Example - Verma modules of $\mathfrak{sl}_2(\mathbb{C})$ Recall that $M(\lambda)$ has weights $\lambda, \lambda - 2, \lambda - 4, \ldots$ and we may choose a basis of corresponding weight vectors v_0, v_1, v_2, \ldots such that $$x \cdot v_i = (\lambda - i + 1)v_{i-1}$$ $$y \cdot v_i = (i+1)v_{i+1}$$ For a contravariant form on $M(\lambda)$, we must have $(v_i, v_j) = 0$ for $i \neq j$. Also, for every i > 0, we get $$(v_i, v_i) = \left(\frac{1}{i}y \cdot v_{i-1}, v_i\right) = \frac{1}{i}(v_{i-1}, \tau(y) \cdot v_i) = \frac{1}{i}(v_{i-1}, x \cdot v_i) = \frac{\lambda - i + 1}{i}(v_{i-1}, v_{i-1})$$ Induction shows that $$(v_i, v_i) = \frac{(\lambda - i + 1)(\lambda - i + 2)\dots(\lambda)}{i!}(v_0, v_0)$$ (It is easy to verify that a form defined using this formula is, in fact, a contravariant form.) Note that since distinct v_i are orthogonal to each other, the form is non-degenerate iff (v_i, v_i) is nonzero for all $i \geq 0$ iff $\lambda \notin \mathbb{Z}^{>0}$ iff $M(\lambda)$ is simple. On the other hand, if $\lambda \in \mathbb{Z}^{>0}$, then $(v_i, v_i) = 0$ for $i \geq \lambda + 1$ (vectors of weights $\leq -\lambda - 2$) and the radical of the form is $M(-\lambda - 2)$. #### 1.3 Universal Construction Our goal is to construct contravariant forms on highest weight modules. We start by constructing a form on $U(\mathfrak{g})$. Let $\varepsilon^+:U(\mathfrak{n})\to\mathbb{C}$ and $\varepsilon^-:U(\mathfrak{n}^-)\to\mathbb{C}$ be the maps sending all nonconstant PBW basis elements to 0. Use the PBW theorem to define the linear map $\varphi:=\varepsilon^-\otimes id\otimes \varepsilon^+:U(\mathfrak{g})\equiv U(\mathfrak{n}^-)\otimes U(\mathfrak{h})\otimes U(\mathfrak{n})\to U(\mathfrak{h})$. This gives us a symmetric bilinear form on $U(\mathfrak{g})$ $$C(u, u') := \varphi(\tau(u)u').$$ Since τ is an anti-automorphism, we have $$C(u_0u, u') = C(u, \tau(u_0)u')$$ for all $u_0, u, u' \in U(\mathfrak{g})$. For a weight λ , let $\varphi_{\lambda} = \lambda \circ \varphi$ and define a form on $U(\mathfrak{g})$ by $$C^{\lambda}(u, u') := \varphi_{\lambda}(\tau(u)u').$$ Now consider a highest weight module M generated by maximal vector v^+ of weight λ . Suppose that $u_1, u_2 \in U(\mathfrak{g})$ satisfy $u_1 \cdot v^+ = u_2 \cdot v^+$. By writing u_i in the PBW basis and comparing the the components of $u_i \cdot v^+$ of weight λ , we obtain $\varphi_{\lambda}(u_1) = \varphi_{\lambda}(u_2)$. For any $u \in U(\mathfrak{g})$, we get $uu_1 \cdot v^+ = uu_2 \cdot v^+$ and therefore $\varphi_{\lambda}(uu_1) = \varphi_{\lambda}(uu_2)$. Thus, $\varphi_{\lambda}(U(\mathfrak{g})(u_1 - u_2))$ is zero and $u_1 - u_2$ lies in the radical of C^{λ} . This allows us to define a form on M by $$(v,v')_M := C^{\lambda}(u,u')$$ where $v = u \cdot v^+$ and $v' = u' \cdot v^+$ for $u, u' \in U(\mathfrak{n}^-)$. It is easy to check that this is a nonzero contravariant form. Thus we have **Theorem 1.3.** If M is a highest weight module of weight λ , there exists a (nonzero) contravariant form $(v, v')_M$ on M. The form is unique (up to scalar multiples) and completely determined by $(v^+, v^+)_M$. Its radical is the unique maximal submodule of M. In particular, the form is nondegenerate if and only if M is the simple module $L(\lambda)$. ### 2 Simple Submodules of Verma Modules **Proposition 2.1.** $M(\lambda)$ has a unique simple submodule. *Proof.* Recall that as $U(\mathfrak{n}^-)$ -modules, $M(\lambda)$ and $U(\mathfrak{n}^-)$ are isomorphic. Under such an isomorphism, we may identify nonzero submodules of $M(\lambda)$ with nonzero left ideals of $U(\mathfrak{n}^-)$. Since $U(\mathfrak{n}^-)$ is left noetherian and does not have any zero divisors, any two nonzero left ideals of intersect non-trivially. Thus, any two nonzero submodules of $M(\lambda)$ must intersect non-trivially. This is impossible for distinct simple submodules. **Example 2.2.** In case of $\mathfrak{sl}_2(\mathbb{C})$, if $\lambda \in \mathbb{Z}^{>0}$, then the unique maximal submodule $M(-\lambda - 2) \subset M(\lambda)$ is simple. Otherwise, $M(\lambda)$ itself is simple. ## 3 Homomorphisms between Verma Modules **Theorem 3.1.** Let $\lambda, \mu \in \mathfrak{h}^*$. Then - (a) Any nonzero homomorphism $\varphi: M(\mu) \to M(\lambda)$ is injective. - (b) In all cases, dim $\operatorname{Hom}_{\mathcal{O}}(M(\mu), M(\lambda)) \leq 1$. - (c) The unique simple submodule of $M(\lambda)$ is a Verma module. - Proof. (a) Let v_{μ}^{+} and v_{λ}^{+} be maximal vectors in $M(\mu)$ and $M(\lambda)$, respectively. Let $u \in U(\mathfrak{n}^{-})$ be such that $\varphi(v_{\mu}^{+}) = u \cdot v_{\lambda}^{+}$. As left $U(\mathfrak{n}^{-})$ -modules, $M(\mu) = U(\mathfrak{n}^{-})v_{\mu}^{+} \equiv U(\mathfrak{n}^{-}) \equiv U(\mathfrak{n}^{-})v_{\lambda}^{+} = M(\lambda)$ so that φ corresponds to the map on $U(\mathfrak{n}^{-})$ given by $u' \mapsto u'u$. Since $U(\mathfrak{n}^{-})$ does not have zero divisors, φ must be injective. - (b) Note that any nonzero homomorphism $M(\mu) \to M(\lambda)$ must descend to an isomorphism between the unique simple submodules of $M(\mu)$ and $M(\lambda)$. Thus, if φ_1, φ_2 are two such homomorphisms, there exists a scalar $c \in \mathbb{C}$ such that $\varphi_1 c\varphi_2$ kills L. By part (a), we conclude $\varphi_1 c\varphi_2 = 0$. - (c) Suppose that $L(\mu)$ is the unique simple submodule of $M(\lambda)$. Then the composition $M(\mu) \to L(\mu) \hookrightarrow M(\lambda)$ gives a nonzero homomorphism between Verma modules. By part (a), this is injective and $M(\mu) = L(\mu)$. **Remark 3.2.** Whenever there is a nonzero homomorphism $M(\mu) \to M(\lambda)$, we may write $M(\mu) \subset M(\lambda)$. ### 4 Simplicity Criterion and Embeddings **Theorem 4.1.** Let $\lambda \in \mathfrak{h}^*$.. Then $M(\lambda) = L(\lambda)$ if and only if λ is ρ -antidominant, i.e., $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all positive roots α . *Proof.* We begin with integral weights. - Part (1) Suppose that $M(\lambda)$ is simple. Since λ is integral, it is ρ -antidominant iff $\langle \lambda + \rho, \alpha^{\vee} \rangle \notin \mathbb{Z}^{>0}$ for all simple roots α . If this fails for some simple root, then we have $s_{\alpha} \cdot \lambda = \lambda \langle \lambda + \rho, \alpha^{\vee} \rangle \alpha < \lambda$. This means that there is a nonzero homomorphism $M(s_{\alpha} \cdot \lambda) \to M(\lambda)$. However, such a morphism must be an embedding, which is impossible if $M(\lambda)$ is simple. - Part (2) We know that the highest weights of composition factors of $M(\lambda)$ must be of the form $w \cdot \lambda \leq \lambda$ with $w \in W$. If λ is ρ -antidominant, then the only weight satisfying this constraint is λ and only $L(\lambda)$ can occur as a composition factor. Since dim $M_{\lambda} = 1$, we see that it occurs only once and therefore $M(\lambda) = L(\lambda)$. To extend the first part of the proof to the general case, we need embeddings of the form $M(s_{\alpha} \cdot \lambda) \to M(\lambda)$ for arbitrary positive roots. It turns out that such embeddings exist as long as $s_{\alpha} \cdot \lambda \leq \mu$: **Theorem 4.2.** Let $\lambda \in \mathfrak{h}^*$ and $\alpha > 0$. If $\mu = s_{\alpha} \cdot \lambda \leq \lambda$, then there exists an embedding $M(\mu) \subset M(\lambda)$. The second part of the proof can be generalized by replacing W by the reflection subgroup $W_{[\lambda]}$. **Example 4.3.** For $\mathfrak{sl}_2(\mathbb{C})$, there is a unique positive root 2 and $\rho = 1$. So, λ is ρ -antidominant iff $\langle \lambda + 1, 1 \rangle = \lambda + 1 \notin \mathbb{Z}^{>0}$ iff $\lambda \notin \mathbb{Z}^{\geq 0}$. We already know that these are precisely the weights for which $M(\lambda)$ is simple. Corollary 4.4. If λ is ρ -antidominant, then $L(\lambda)$ is the unique simple submodule and therefore a composition factor of $M(w \cdot \lambda)$ for all $w \in W_{[\lambda]}$. *Proof.* The unique simple submodule is a Verma module whose highest weight is in the orbit $W_{[\lambda]} \cdot \lambda$. We know that λ is the only ρ -antidominant weight in this orbit. \square ### 5 Block Decomposition of Category O **Theorem 5.1.** For a ρ -antidominant λ , let \mathcal{O}_{λ} be the subcategory of modules whose composition factors all have highest weights linked to λ by $W_{[\lambda]}$. Such \mathcal{O}_{λ} are precisely the blocks of \mathcal{O} . Proof. Consider a Verma module $M(\mu)$ and let $L(\lambda) = M(\lambda)$ be its unique simple submodule. By the simplicity criterion, λ is ρ -antidominant. Then the composition factors of $M(\mu)$, including $L(\lambda)$ and $L(\mu)$ lie in the same block. The highest weights of these factors all must be in the orbit $W_{[\lambda]} \cdot \lambda$. On the other hand, we have already shown that any Verma module with highest weight in the orbit $W_{[\lambda]} \cdot \lambda$ has $L(\lambda)$ as its unique submodule. ### 6 Error in Verma's Thesis Warning: Section contains false results. Verma believed that he had proved the following Lemma: **Lemma 6.1.** Let M be the submodule generated by a weight vector v_{μ} of $M(\lambda)$. Then the submodule M' of M generated by vectors $x_{\alpha} \cdot v_{\mu}$ is either 0 or M. However, there is gap in the proof of this Lemma and it leads to some interesting results - **Theorem 6.2.** Every submodule M of $M(\lambda)$ are generated by the maximal vectors in M. Proof. Since M is a weight module, it's enough to prove the theorem when M is generated by a single weight vector v_{μ} . If $\mu = \lambda$, then $M = M(\lambda)$ and we are done. Assume that the result holds for all weights $\mu' > \mu$. Then the module M' in the above Lemma is generated by maximal weights. Either M = M' or M' = 0, which means that v_{μ} is itself a maximal vector. Consider a composition factor M_i/M_{i-1} of $M(\lambda)$. By the above Theorem, we may assume that M_i is generated by M_{i-1} along with one maximal vector of weight μ . This weight vector generates a copy of $M(\mu)$ in $M(\lambda)$ and we have $M_i/M_{i-1} = L(\mu)$. Thus, every composition factor of $M(\lambda)$ comes from an embedding of a Verma module. This means that every composition factor appears with multiplicity 1.