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1 Contravariant Forms

Recall that there is an anti-automorphism τ of U(g) given by xα 7→ yα, yα 7→ xα, hα 7→
hα for all simple roots α. Using this transpose map we de�ne:

De�nition 1.1. A symmetric bilinear form (v, v′)M on a U(g)-module M is called

contravariant if

(u · v, v′)M = (v, τ(u) · v′) ∀u ∈ U(g), v, v′ ∈M.

1.1 Basic Properties

Proposition 1.2. Suppose that U(g)-modules M,M1,M2 have contravariant forms.

Then

(a) Distinct weight spaces Mλ and Mµ of M are orthogonal.

(b) If M = U(g) · v+ is a highest weight module generated by a maximal vector v+

of weight λ, then a nonzero contravariant form on M is uniquely determined up

to a scalar multiple by the nonzero value (v+, v+)M . The radical of this form is

the unique maximal submodule N of M.

(c) The tensor product M1⊗M2 also has a contravariant form, given by (v⊗w, v′⊗
w′) := (v, v′)M1(w,w

′)M2 . If the forms on Mi are nondegenerate, so is the prod-

uct form.

(d) For any submodule N ⊂ M, its orthogonal space N⊥ := {v ∈ M | (v, v0)M =
0∀v0 ∈ N} is also a submodule.

(e) If M ∈ O, then the summands Mχ for distinct central characters χ are orthog-

onal.

We will prove part (b). Assuming (a), it's enough to look at the form on a weight

space Mµ. Vectors v, v
′ ∈ Mµ can be written as v = u · v+ and v′ = u′ · v+ for some

u, u′ ∈ U(n−). Then

(v, v′)M = (u · v+, v′)M = (v+, τ(u)v′)M

Since u maps Mλ into Mµ, it's transpose τ(u) takes Mµ to Mλ, which is a one-

dimensional space spanned by v+. So, τ(u) · v′ is a scalar multiple of v+ and (v, v′)M
is a scalar multiple of (v+, v+)M determined by the action of U(n−) on M.
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Since N is a weight module which does not have λ as one its weights, (v+, N)M = 0.
Then for any u ∈ U(g), we have (u · v+, N)M = (v+, τ(u)N) = 0. This means that N
is contained in the radical of the form. On the other hand, the radical of a nonzero

form is a proper submodule of M and must be contained in N.

1.2 Example - Verma modules of sl2(C)

Recall that M(λ) has weights λ, λ− 2, λ− 4, . . . and we may choose a basis of corre-

sponding weight vectors v0, v1, v2, . . . such that

x · vi = (λ− i+ 1)vi−1

y · vi = (i+ 1)vi+1

For a contravariant form on M(λ), we must have (vi, vj) = 0 for i 6= j. Also, for every
i > 0, we get

(vi, vi) =

(
1

i
y · vi−1, vi

)
=

1

i
(vi−1, τ(y) · vi) =

1

i
(vi−1, x · vi) =

λ− i+ 1

i
(vi−1, vi−1)

Induction shows that

(vi, vi) =
(λ− i+ 1)(λ− i+ 2) . . . (λ)

i!
(v0, v0)

(It is easy to verify that a form de�ned using this formula is, in fact, a contravariant

form.)

Note that since distinct vi are orthogonal to each other, the form is non-degenerate

i� (vi, vi) is nonzero for all i ≥ 0 i� λ /∈ Z>0 i� M(λ) is simple. On the other hand, if

λ ∈ Z>0, then (vi, vi) = 0 for i ≥ λ+ 1 (vectors of weights ≤ −λ− 2) and the radical

of the form is M(−λ− 2).

1.3 Universal Construction

Our goal is to construct contravariant forms on highest weight modules. We start by

constructing a form on U(g). Let ε+ : U(n) → C and ε− : U(n−) → C be the maps

sending all nonconstant PBW basis elements to 0. Use the PBW theorem to de�ne

the linear map ϕ := ε− ⊗ id⊗ ε+ : U(g) ≡ U(n−)⊗ U(h)⊗ U(n)→ U(h). This gives
us a symmetric bilinear form on U(g)

C(u, u′) := ϕ(τ(u)u′).

Since τ is an anti-automorphism, we have

C(u0u, u
′) = C(u, τ(u0)u

′)

for all u0, u, u
′ ∈ U(g).

For a weight λ, let ϕλ = λ ◦ ϕ and de�ne a form on U(g) by

Cλ(u, u′) := ϕλ(τ(u)u
′).
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Now consider a highest weight module M generated by maximal vector v+ of weight

λ. Suppose that u1, u2 ∈ U(g) satisfy u1 ·v+ = u2 ·v+. By writing ui in the PBW basis

and comparing the the components of ui · v+ of weight λ, we obtain ϕλ(u1) = ϕλ(u2).
For any u ∈ U(g), we get uu1 · v+ = uu2 · v+ and therefore ϕλ(uu1) = ϕλ(uu2). Thus,
ϕλ(U(g)(u1 − u2) is zero and (u1 − u2) lies in the radical of Cλ. This allows us to

de�ne a form on M by

(v, v′)M := Cλ(u, u′)

where v = u · v+ and v′ = u′ · v+ for u, u′ ∈ U(n−). It is easy to check that this is a

nonzero contravariant form. Thus we have

Theorem 1.3. If M is a highest weight module of weight λ, there exists a (nonzero)

contravariant form (v, v′)M on M. The form is unique (up to scalar multiples) and

completely determined by (v+, v+)M . Its radical is the unique maximal submodule of

M. In particular, the form is nondegenerate if and only if M is the simple module

L(λ).

2 Simple Submodules of Verma Modules

Proposition 2.1. M(λ) has a unique simple submodule.

Proof. Recall that as U(n−)-modules, M(λ) and U(n−) are isomorphic. Under such

an isomorphism, we may identify nonzero submodules ofM(λ) with nonzero left ideals

of U(n−). Since U(n−) is left noetherian and does not have any zero divisors, any two

nonzero left ideals of intersect non-trivially. Thus, any two nonzero submodules of

M(λ) must intersect non-trivially. This is impossible for distinct simple submodules.

Example 2.2. In case of sl2(C), if λ ∈ Z>0, then the unique maximal submodule

M(−λ− 2) ⊂M(λ) is simple. Otherwise, M(λ) itself is simple.

3 Homomorphisms between Verma Modules

Theorem 3.1. Let λ, µ ∈ h∗. Then

(a) Any nonzero homomorphism ϕ :M(µ)→M(λ) is injective.

(b) In all cases, dimHomO(M(µ),M(λ)) ≤ 1.

(c) The unique simple submodule of M(λ) is a Verma module.
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Proof. (a) Let v+µ and v+λ be maximal vectors in M(µ) and M(λ), respectively.

Let u ∈ U(n−) be such that ϕ(v+µ ) = u · v+λ . As left U(n−)-modules, M(µ) =

U(n−)v+µ ≡ U(n−) ≡ U(n−)v+λ = M(λ) so that ϕ corresponds to the map on

U(n−) given by u′ 7→ u′u. Since U(n−) does not have zero divisors, ϕ must be

injective.

(b) Note that any nonzero homomorphism M(µ) → M(λ) must descend to an iso-

morphism between the unique simple submodules of M(µ) and M(λ). Thus,
if ϕ1, ϕ2 are two such homomorphisms, there exists a scalar c ∈ C such that

ϕ1 − cϕ2 kills L. By part (a), we conclude ϕ1 − cϕ2 = 0.

(c) Suppose that L(µ) is the unique simple submodule of M(λ). Then the compo-

sition M(µ) � L(µ) ↪→ M(λ) gives a nonzero homomorphism between Verma

modules. By part (a), this is injective and M(µ) = L(µ).

Remark 3.2. Whenever there is a nonzero homomorphism M(µ) → M(λ), we may

write M(µ) ⊂M(λ).

4 Simplicity Criterion and Embeddings

Theorem 4.1. Let λ ∈ h∗.. Then M(λ) = L(λ) if and only if λ is ρ-antidominant,

i.e., 〈λ+ ρ, α∨〉 /∈ Z>0 for all positive roots α.

Proof. We begin with integral weights.

Part (1) Suppose that M(λ) is simple. Since λ is integral, it is ρ-antidominant i� 〈λ +
ρ, α∨〉 /∈ Z>0 for all simple roots α. If this fails for some simple root, then we have

sα ·λ = λ−〈λ+ρ, α∨〉α < λ. This means that there is a nonzero homomorphism

M(sα ·λ)→M(λ). However, such a morphism must be an embedding, which is

impossible if M(λ) is simple.

Part (2) We know that the highest weights of composition factors of M(λ) must be of

the form w · λ ≤ λ with w ∈ W. If λ is ρ-antidominant, then the only weight

satisfying this constraint is λ and only L(λ) can occur as a composition factor.

Since dimMλ = 1, we see that it occurs only once and therefore M(λ) = L(λ).

To extend the �rst part of the proof to the general case, we need embeddings of the

formM(sα ·λ)→M(λ) for arbitrary positive roots. It turns out that such embeddings

exist as long as sα · λ ≤ µ :

Theorem 4.2. Let λ ∈ h∗ and α > 0. If µ = sα ·λ ≤ λ, then there exists an embedding

M(µ) ⊂M(λ).

The second part of the proof can be generalized by replacing W by the re�ection

subgroup W[λ].
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Example 4.3. For sl2(C), there is a unique positive root 2 and ρ = 1. So, λ is ρ-
antidominant i� 〈λ+1, 1〉 = λ+1 /∈ Z>0 i� λ /∈ Z≥0. We already know that these are

precisely the weights for which M(λ) is simple.

Corollary 4.4. If λ is ρ-antidominant, then L(λ) is the unique simple submodule and

therefore a composition factor of M(w · λ) for all w ∈W[λ].

Proof. The unique simple submodule is a Verma module whose highest weight is in

the orbit W[λ] ·λ. We know that λ is the only ρ-antidominant weight in this orbit.

5 Block Decomposition of Category O

Theorem 5.1. For a ρ-antidominant λ, let Oλ be the subcategory of modules whose

composition factors all have highest weights linked to λ by W[λ]. Such Oλ are precisely

the blocks of O.

Proof. Consider a Verma module M(µ) and let L(λ) = M(λ) be its unique simple

submodule. By the simplicity criterion, λ is ρ-antidominant. Then the composition

factors of M(µ), including L(λ) and L(µ) lie in the same block. The highest weights

of these factors all must be in the orbit W[λ] · λ. On the other hand, we have already

shown that any Verma module with highest weight in the orbit W[λ] · λ has L(λ) as
its unique submodule.

6 Error in Verma's Thesis

Warning: Section contains false results.

Verma believed that he had proved the following Lemma:

Lemma 6.1. Let M be the submodule generated by a weight vector vµ of M(λ). Then
the submodule M ′ of M generated by vectors xα · vµ is either 0 or M.

However, there is gap in the proof of this Lemma and it leads to some interesting

results -

Theorem 6.2. Every submodule M of M(λ) are generated by the maximal vectors in

M.

5



Proof. Since M is a weight module, it's enough to prove the theorem when M is

generated by a single weight vector vµ. If µ = λ, then M = M(λ) and we are done.

Assume that the result holds for all weights µ′ > µ. Then the moduleM ′ in the above

Lemma is generated by maximal weights. Either M = M ′ or M ′ = 0, which means

that vµ is itself a maximal vector.

Consider a composition factor Mi/Mi−1 of M(λ). By the above Theorem, we may

assume thatMi is generated byMi−1 along with one maximal vector of weight µ. This
weight vector generates a copy ofM(µ) inM(λ) and we haveMi/Mi−1 = L(µ). Thus,
every composition factor ofM(λ) comes from an embedding of a Verma module. This

means that every composition factor appears with multiplicity 1.
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