
TRANSLATION FUNCTORS IN CATEGORY O

NIKOLAY GRANTCHAROV

Abstract. These notes are for a talk in a student seminar on Category O. Translation functors are
defined by tensoring with a finite dimensional g-representation and then projecting to a block. Our
goal is to describe how these functors act on integral blocks. We show they provide an equivalence
of categories between all regular integral blocks, and then describe the result of translating from
regular integral blocks to blocks parameterized by weights lying on walls.

1. Notation and Setup

We use the following setup:

• Fix a finite-dimensional Lie algebra g over C.
• Fix a triangular decomposition g = n− ⊕ h⊕ n+.
• Fix simple roots αi ∈ ∆ and positive roots Φ+ inside root system Φ ⊂ h∗ corresponding to

above choice of b.
• Let E be the Euclidean space spanned by Φ.
• Let Λ := {λ ∈ E : 〈λ, α∨〉 ∈ Z for all α ∈ Φ} be the integral weight lattice.
• Let Λ+ := {λ ∈ Λ : 〈λ, α∨〉 ∈ Z≥0 for all α ∈ Φ+} be the dominant integral weight lattice.
• Write W for Weyl group associated to g. It acts on h∗ the standard way by sαi(λ) =
λ − 〈λ, α∨i 〉αi, where sαi is simple reflection associated to simple root αi. These generate
W . The Weyl group also acts in a ρ-twisted way by the dot action: w · λ := w(λ+ ρ)− ρ.
Write the stabilizer of λ via the dot action as Wλ := StabW (λ) := {w ∈ W : w · λ = λ}. A
weight is regular if StabW (λ) = {Id}.
• Denote by Verma modules M(λ) and unique simple quotient by L(λ).
• There is a decomposition of categories O = ⊕λ∈h∗/(W,·)Oλ parameterized by central char-

acters χλ : Zg → C. When λ ∈ Λ, the subcategories Oλ are blocks, in particular in-
decomposable, and are built from the simple objects L(w · λ). In particular, there are
|W/StabW (λ+ ρ)| simple objects in Oλ.

We emphasize that all weights considered are integral. The main results may be formulated for
nonintegral weights, and the proofs are nearly identical. However we choose to omit nonintegral
weights as this forces cumbersome notation. Moreover, integral weights are the ones relevant for
study of algebraic groups since they exponentiate to characters of the torus, and so all our results
may be lifted to the G semisimple simply-connected case.

Our exposition will somewhat follow [Hum08, Ch. 7], and the proofs given are essentially the
original proofs of Jantzen in [Jan, Ch. 2]

2. Basic Properties of Translation Functors

Let λ, µ ∈ Λ be integral weights and let ν := µ− λ. Since the usual action of W acts freely and
transitively, there is unique w ∈W : ν̄ := wν ∈ Λ+.

Definition 2.0.1. Let λ, µ ∈ Λ and ν̄ as above. Define a translation functor as

Tµλ : Oλ → Oµ, TµλM := prµ(L(ν̄)⊗M).
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Proposition 2.0.1. The translation functor Tµλ is exact, commutes with duality, and takes projec-
tives to projectives.

Proof. Recall tensoring an object in category O with a finite-dimensional representation lands in
category O, and it defines an exact functor. Moreover, an exact sequence of g-modules preserves
weight spaces, hence projecting to µ block is also exact. The statement about duality follows from
the easy facts: (L(ν̄)⊗M)∨ = L(ν̄)∨⊗M∨, L(ν̄)∨ ∼= L(ν̄), and (M∨)χ ∼= (Mχ)∨. Finally, projective
tensor finite-dimensional is projective, and projecting to summand it still remains projective. �

Proposition 2.0.2. The functor Tµλ is left and right adjoint to T λµ .

Proof. By symmetry, it’s enough to prove

HomO(TµλM,N) ∼= HomO(M,T λµN).

Recall L(ν̄)∗ ∼= L(−w0ν̄), where w0 ∈W is longest element. We see −w0ν̄ = −w0wν = w0w(−ν) ∈
W (−ν) ∩ Λ+ ⇒ −w0ν̄ is dominant weight conjugate to −ν. We finish by using usual tensor-hom
adjunction (for Category O): For L finite-dimensional,

�(2.0.1) HomO(L⊗M,N) ∼= HomO(M,L∗ ⊗N).

Finally, we recall the following using lemma:

Lemma 2.0.1. Let L be finite-dimensional. Then M(λ)⊗L admits a standard filtration by Verma
modules, with the multiplicity

mult(M(λ+ µ),M(λ)⊗ L) = dimLµ

Note, given λ, µ in the dominant Weyl chamber, it is easy to compute the character of the
translation functor: If V ∈ Oλ is finite dimensional and ChV =

∑
w∈W awχ(w ·λ) for aw ∈ Z, then

chTµλL(λ) =
∑
w∈W

aw
∑

w1∈StabW (λ)/(StabW (λ)∩StabW (µ))

χ(ww1 · µ).

However, it is hard in general to describe the composition factors, even in the case V is simple. We
explore this in the subsequent sections by considering the “degeneracy” (i.e how many walls it lies
on) of a weight λ.

3. Geometry of Weyl Group

Recall that Weyl Chambers in E are the connected components of the complement of the union of
hyperplanes orthogonal to the (positive) roots. In particular, these are open in Euclidean topology
and Zariski dense. Since we are working with blocks parameterized by weights λ ∈ h∗ modulo the
W -dotted action, we must shift our origin 0 to −ρ = −

∑
α∈Φ+ α and hyperplanes to

Hα := {λ ∈ E : 〈λ+ ρ, α∨〉 = 0}.
However, we must refine Weyl chambers to allow for walls. This is done via the following definition

Definition 3.0.1. Define facet F as follows: Decompose Φ+ = Φ+
F t Φ0

F t Φ−F and require:

λ ∈ F ⇔


〈λ+ ρ, α∨〉 = 0 when α ∈ Φ0

F

〈λ+ ρ, α∨〉 > 0 when α ∈ Φ+
F

〈λ+ ρ, α∨〉 < 0 when α ∈ Φ−F .

We define the closure F̄ by removing the strictness in the inequalities, and define the upper
closure

λ ∈ F̂ ⇔


〈λ+ ρ, α∨〉 = 0 when α ∈ Φ0

F

〈λ+ ρ, α∨〉 > 0 when α ∈ Φ+
F

〈λ+ ρ, α∨〉 ≤ 0 when α ∈ Φ−F .
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Example For g = sl3, there are 13 facets. 6 come from the open Weyl chambers, 6 come from
the half lines spanned by root hyperplanes, and 1 comes from the origin, −ρ.

Observe, the Weyl chambers C are precisely the facets for which Φ0
C = ø, and the closure C̄

is a fundamental domain of W -dotted action. The facets F of C̄ for which |Φ0
F | = 1 are called

walls. Each walls lies on either upper or lower closure of C. Next observe the for a given facet F ,
the reflections corresponding to roots ±α ∈ Φ0

F generate a subgroup of W consisting of elements
which fix F pointwise. Next, observe each facet lies in the upper closure of a unique Weyl chamber.
Finally, we observe the Euclidean space E is a disjoint union of the upper closures of chambers.

We conclude this section with an important lemma which will be used several times.

Lemma 3.0.1. Suppose λ ∈ F for some facet F and µ ∈ F̄ . Let ν = µ−λ and ν̄ be the unique W
conjugate lying in Λ+. Then for all other weights ν ′ 6= ν of L(ν̄), the weight λ+ ν ′ is not linked by
W to λ+ ν = µ.

Proof. Suppose the given facet F is contained in the closure of some chamber C̄. Given two
chambers C,C ′, we define the distance d(C,C ′) to be the number of root hyperplanes Hα separating
C from C ′. Suppose for contradiction there is some ν ′ and w ∈ W : w · (λ + ν ′) = λ + ν, and
consider the ν ′ 6= ν weight of L(ν̄) which minimizes d(C,C ′), where C ′ is the closure of chamber
containing λ+ ν ′. We induct on the distance.

If d(C,C ′) = 0, then by definition C = C ′. But C ′ is fundamental domain for W -dotted action
and λ+ ν ′ 6= λ+ ν, contradiction.

Suppose d(C,C ′) > 0. Then there exists hyperplane Hα which separates C ′ and C and Hα ∩C ′
contains a wall of C ′. Say C ′ lies on positive side and C on negative: in particular

ξ ∈ F̄ ⊂ C̄ ⇒ 〈ξ + ρ, α∨〉 ≤ 0.

Write C ′′ := sα ·C ′. Since C is separated from C ′′ by same hyperplanes except Hα which separate
C from C ′,

d(C,C ′′) < d(C,C ′).

Now,

λ+ ν ∈ C̄ ′ ⇒ 〈λ+ ν ′ + ρ, α∨〉 ≥ 0⇒ sα · (λ+ ν ′) = λ− 〈λ+ ρ, α∨〉α+ sαν
′ ≤ λ+ ν ′

and combining this with λ ∈ F ⇒ 〈λ+ ρ, α∨〉 ≤ 0, we deduce

sαν
′ ≤ sαν ′ − 〈λ+ ρ, α∨〉α ≤ ν ′

Set ν ′′ := sαν
′ − 〈λ+ ρ, α∨〉α. Then we find

(3.0.1) sα · (λ+ ν ′) = λ+ ν ′′ ∈ sα · C ′ = C ′′.

And since ν, sαν are weights of L(ν̄) with sαν
′ ≤ ν ′′ ≤ ν ′ and ν ′′ being in same α string, we

conclude ν ′′ is also a weight of L(ν̄). But the minimality assumption on ν ′, and 3.0.1, and induction
hypothesis together imply ν ′′ = ν. Then sαν

′ ≤ ν ′′ ≤ ν ′ makes sαν
′ = ν since we cannot have both

ν + α and ν − α weights of L(ν̄) (since ν̄ = wν and w(ν ± α) = ν̄ ± wα < ν̄ contradiction).
Thus, ν = ν ′′ and sαν

′ = ν forces 〈λ + ρ, α∨〉 = 0. And since λ ∈ F , all ξ ∈ F also satisfy
〈ξ + ρ, α∨〉 = 0. In particular this holds for ξ = λ + ν ∈ F ⇒ 〈ν, α∨〉 = 0 and we conclude from
sαν

′ = ν that ν = ν ′, contradiction. �

4. Translation within a Facet

In the case a translation functor does not cross walls, i.e λ, µ lie in same facet, then there is an
equivalence of categories:

Theorem 4.1. Suppose λ, µ ∈ Λ belong to same facet F . Then Tµλ , T
λ
µ provide an equivalence of

categories between Grothendieck groups K(Oλ) and K(Oµ), sending [M(w · λ)] 7→ M(w · µ)] and
[L(w · λ)] 7→ [L(w · µ)].
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Proof. Recall [M(w · λ)] and [L(w · λ)] form a Z basis of K(Oλ). By theorem 5.1 (proved inde-
pendently), TµλM(w · λ) = M(w · µ) and inversely for T λµ . Thus, for an arbitrary basis element M

of Oλ, written uniquely as Z linear combination of [M(w · λ)], then Tµλ ◦ T
λ
µ : [M ] 7→ [M ] gives

isomorphism of Grothendieck groups. Since [L(w ·λ)] also form basis of K(Oλ) and the composition
must map simple to either simple or 0, the statement follows. �

Now, we can formally deduce an equivalence of categories on Grothendieck group implies equiv-
alence of categories by 6.0.1. Instead we prove it directly in our case.

Theorem 4.2. Suppose λ, µ ∈ Λ belong to same faceet F . Then Tµλ , T
λ
µ provide an equivalence of

categories between Oλ and Oµ, and the functor T λµ ◦ T
µ
λ is isomorphic to prλ.

Proof. We must show T λµ ◦ T
µ
λ is naturally isomorphic to the identity on Oλ. We induct on the

length of M . By adjointness, there is isomorphism

HomO(T λµ ◦ T
µ
λM,M) ∼= HomO(TµλM,TµλM)

Let φM correspond to identity on right. Hence by induction, the first and third vertical arrows are
isomorphisms,

0 T λµ ◦ T
µ
λN T λµ ◦ T

µ
λM T λµ ◦ T

µ
λL 0

0 N M L 0

φN φM φL

and by five lemma we conclude. �

5. Translation from facet to boundary

Theorem 5.1. Let λ, µ ∈ Λ and assume λ lies in a facet F and µ ∈ F . Then

TµλM(w · λ) ∼= M(w · µ), for all w ∈W

Proof. By lemma 2.0.1, TµλM(w ·λ) has filtration by M(w ·λ+ν ′) where ν ′ appears with multiplicity
dimL(ν̄)ν′ . Thus, M(w · µ) = M(w · λ+ ν) occurs with multiplicity once. Moreover, lemma 3.0.1
applied to w · λ and w · µ shows no other Verma’s appear. �

Corollary 5.0.1. Let λ, µ ∈ Λ and assume λ lies in a facet F and µ ∈ F . Then either TµλL(w ·λ) ∼=
L(w · µ) or 0.

Proof. There are maps M(w · λ) � L(w · λ) ↪→M(w · λ)∨. Then by exactness commutativity with
duality of Tµλ :

M(w · µ) � TµλL(w · λ) ↪→M(w · µ)∨.

So the middle term is highest weight module with weight w · µ or 0, and the injection implies if
nonzero, then it is L(w · µ). �

Example For g = sl2, we can use theorem 5.1 to show TnmL(m) = 0 ifm ∈ Z≥0 and n = −1 = −ρ.
On the other hand, TnmL(−m− 2) = L(n), so both cases of above corollary are possible.

Theorem 5.2. Let λ, µ ∈ Λ with λ ∈ F and µ ∈ F . Then

TµλL(w · λ) ∼=

{
L(w · µ) if w · µ ∈ ŵ · F
0 else.
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Proof. By above corollary, we know the image is either L(w · µ) or 0, and we know TµλM(w · λ) =
M(w · µ). Thus Tµλ must take some composition factor L(w′w · λ) of M(w · λ) to L(w · µ), where
w′w · λ ≤ w · λ. And exactness of Tµλ implies no other composition factors are sent to L(w · µ).
Thus TµλL(w′w ·λ) ∼= L(w′w ·µ) implies w′w ·µ = w ·µ, hence w′ lies in subgroup W ′ generated by
sα : α ∈ wΦ0

F .

Suppose w · µ ∈ ŵ · F . Then for α ∈ wΦ0
F , we claim sαw · λ ≥ w · λ. Indeed, for such α, we find

〈w(µ+ ρ), α∨〉 = 0⇒ 〈w(λ+ ρ), α∨〉 ≤ 0⇒ sαw · λ ≥ w · λ. Thus since W ′ is Weyl group for root
system Φ0

F , we conclude w′w · λ ≥ w · λ for all w′ ∈W ′. By above paragraph, we conclude equality
and hence L(w · λ) is unique composition factor taken to L(w · µ).

Suppose w · µ /∈ ŵ · F . Then there is some hyperplane for sα bounding w · F below. Namely,
sαw · λ ≤ w · λ. By Verma’s theorem, there is inclusion M(sαw · λ) into M(w · λ). But Tµλ maps
both into M(w · µ), since sαw · µ = w · µ. Thus it maps the quotient Q := M(w · λ)/M(sαw · λ) to
0, which thus implies the quotient TµλL(w · λ) of TµλQ is 0 �

6. Translation from boundary to interior

Recall given λ ∈ Λ, we denoted by Wλ for the stabilizer of λ in W with the dot action.

Theorem 6.1. Let λ, µ ∈ Λ with λ ∈ F and µ ∈ F . Then for all w ∈W ,

chT λµM(w · µ) =
∑

w′∈Wµ/Wλ

chM(ww′ · λ)

In particular, all Verma’s occur as quotients in a standard filtration of T λµM(w ·µ) with multiplicity
1.

Proof. We see

(T λµM(w · µ) : M(ww′ · λ)) = dim HomO(T λµM(w · µ),M(ww′ · λ)∨)

= dim HomO(M(w · µ), TµλM(ww′ · λ)∨)

= dim HomO(M(w · µ), (TµλM(ww′ · λ))∨)

= dim HomO(M(w · µ),M(ww′ · µ)∨)

The last line is 0 unless ww′ · µ = w · µ⇔ w′ ∈ Wµ, in which case it is 1. Also, ww′ · λ = w · λ⇔
w′ ∈Wλ, so the character equality follows. �

Writing each M ∈ Oµ as Z-linear combination of M(w · µ), we conclude with the assumptions
in the theorem that

(6.0.1) chTµλ T
λ
µM = |Wµ/Wλ|chM

Finally, we cite the following two general lemmas on category theory to deduce a nice corollary.

Lemma 6.0.1. [Gait, 4.27] Suppose F : C1 → C2, G : C2 → C1 are mutually adjoint exact functors
between Artinian abelian categories. Then they are mutually quasi-inverse equivalences if and only
if they define mutually inverse isomorphisms on the level of Grothendieck groups.

Given an abelian category C and a Serre subcategory A (so closed under extensions and subquo-
tients), we may define the Serre quotient C/A to be an abelian category equipped with an exact
functor quot : C → C/A such that A = Ker(quot) = full subcategory of C formed by objects A such
that quot(A) = 0.

Lemma 6.0.2. [BG, 2.4] Let F : C1 → C2 be exact functor between abelian categories which has
left adjoint F ′. Then F̄ : C/KerF → C′ is an equivalence of categories if and only if the canonical
morphism F ◦ F ′ → IdC′ is an isomorphism.
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Conjecture: these lemma imply λ ∈ F, µ ∈ F ⇒ T := Tµλ : Oλ → Oµ induces an equivalence of
categories

T : Oλ/KerT → Oµ,

where we know KerT is Serre subcategory generated by L(w · λ) for all w except w · µ ∈ ŵ · F .

We conclude with a final theorem on translations from walls. Assume λ is regular, so Wλ = {1}
and λ ∈ C lies in a chamber. Suppose µ lies in a single wall of C, the intersection C ∩ Hα for
some α ∈ Φ+. Write s = sα, so that Wµ = {1, s}, and Equation 6.0.1 implies chTµλ T

λ
µL(w · µ) =

2chL(w · µ). But there are no self extensions of simples, so

Tµλ T
λ
µL(w · µ) ∼= L(w · µ)⊕2.

Next, consider w ∈ W such that wα > 0 ⇒ w · µ ∈ ŵ · C. By Theorem 5.2, we conclude
TµλL(w · λ) = L(w · µ) and TµλL(ws · λ) = 0.

Theorem 6.2. Let λ be regular and lie in chamber C, and suppose µ lies in a single wall of C
corresponding to α > 0. Suppose w ∈W satisfies wα > 0, so `(ws) > `(w) with s = sα.

(1) There is short exact sequence

0→M(ws · λ)→ T λµM(w · µ)→M(w · λ)→ 0

(2) TopT λµM(w · µ) = L(w · λ), and the above sequence is nonsplit

(3) T λµL(w · µ) is self-dual with top and socle L(w · λ).

(4) [T λµL(w · µ) : L(w · λ)] = 2.

(5) [T λµL(w · µ) : L(ws · λ)] = 1.

(6) Suppose w′ ·λ 6= w ·λ. If [T λµL(w ·µ) : L(w′ ·λ)] > 0, then w′s ·λ < w′ ·λ and TµλL(w′ ·λ) = 0.

Proof. (1) This follows from Theorem 6.1 and fact that M(ws · λ) occurs as submodule in our
construction of standard filtration of translated Verma.
(2) Adjointness implies

HomO(T λµM(w · µ), L(w′ · λ)) ∼= HomO(M(w · µ), TµλL(w′ · λ)

which by theorem 5.2 is nonzero precisely when w′ · µ = w · µ (so w′ = w or w′ = ws) and w′ · µ
lies in upper closure ŵ′ · C. This forces w′ = w.
(3) Exactness shows T λµL(w · µ) is quotient of T λµM(w · µ), and top maps to top. Hence (2) shows

L(w ·λ) is only simple quotient of T λµL(w ·µ) and it appears with multiplicity 1. Moreover, L(w ·µ)

is self dual under ∨, and translation functors commute with duality, so T λµL(w · µ) is self dual.

(4) From (3), [T λµL(w · µ) : L(w · λ)] ≥ 1. Then we conclude from [Tµλ T
λ
µL(w · µ) : L(w · µ)] = 2.

(5) From (1), L(ws · λ) has multiplicity 1 in T λµM(w · µ) and the module M generated by maximal

vector of weight ws · λ being isomorphic to M(ws · λ). Thus [T λµL(w · µ) : L(ws · λ)] ≤ 1. If M was

in kernel of surjection T λµM(w · µ) → T λµL(w · µ), there would be just a single composition factor

L(w · λ) in T λµL(w · µ), contradicting (4). So M has nonzero image, forcing T λµL(w · µ) to have
composition factor L(ws · λ).
(6)If w′ = ws, w′s · λ − w · λ < ws · λ = w′ · λ. So T λµL(w′ · λ) = 0. In the case w′ 6= w,ws, we

have L(w′ · µ) not isomorphic to L(w · µ). Then [T λµL(w · µ) : L(w′ · λ)] > 0 ⇒ [Tµλ T
λ
µL(w · µ) :

TµλL(w′ · λ] > 0. But TµλL(w′ · λ) is either 0 or L(w′ · µ) and L(w′ · µ) not isomorphic to L(w · µ),
so the first option holds. This then forces w′s · λ < w′ · λ by 5.2. �
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