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Today, I hope to introduce you to a lot of interesting quantum mechanics through
the lens of a representation theoretic problem.

1. Quantum information

First: what is quantum information? Quantum information is the study of how
we can use quantum systems to represent and process information. A major goal,
for instance, is to build a quantum computer.

The basic model in quantum information is the ‘simplest’ quantum system – that
of a qubit.

Definition 1.1. (The qubit model). A qubit is a vector in C2. We endow C2

with a preferred basis, |`y, the spin up state and |´y, the spin down state.
A quantum operation on a qubit will be a unitary transformation, i.e. a matrix

in Up2q, the group of two-by-two matrices so that M :M “ 1.

The qubit models, for instance, the spin of an electron. Recall the electron is a
spin 1{2 particle, meaning its spin lives in the defining representation C2 of SUp2q.

An electron’s spin can be controlled with a magnetic field. So here, quantum
operations can be encoded as suitable changes in the magnetic field.

The qubit model is useful because it is simple and allows us to use some of the
intution we might have for the ’bits’ of classical computing, but also because it is
practical. We can build lots of spin 1/2 particles, or things that are for all intents
and purposes spin 1/2 particles, like the nucleons you discussed when investigating
isospin. Electrons might be too hard to control to be the best practical building
blocks for a quantum computer, but lots of these other spin 1/2 particles could very
well be promising options.
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2. Multi-qubit systems

Lots of problems in quantum information let you apply the tools of group and
representation theory. I will focus on a really basic one which allows us to discuss
interesting representation theory and physics as we solve it.

Our situation. Say that someone hands us n qubits clumped together. What
can we say about them? For instance, helium has two electrons. What can we say
about them?

(1) Well, n qubits live in pC2qbn.
(2) From the perspective of representation theory, the best we can do is write

down all the natural group actions on this space, and study how they act.
(3) The swap action. We could swap the qubits, if we liked, and ask how that

changed our description of them. So there is a natural action of Sn, the group
of permutations of n elements, which swaps the order of our qubits.

A basis of pC2qbn is given by n-fold tensor products of qubits, v1 b ¨ ¨ ¨ bvn.
Here,

SWAP pσqpv1 b v2 b ¨ ¨ ¨ b vnq “ vσp1q b vσp2q b ¨ ¨ ¨ b vσpnq

For instance, if p12q is the element which swaps one and two,

SWAP pp12qqpv1 b v2q “ v2 b v1

(4) Quantum operation action. We could try to apply the same quantum
operation to all of them. We might be able to do better, for instance by
applying different unitary gates to different qubits, but if, for instance, our
qubits are all electrons really close together, as in the case of helium, that
could be hard – maybe the best we can do is apply the same magnetic field
to all of them.

But, at least, we can apply the same quantum operation to all our qubits.
Given a unitary matrix U , this action reads

QOpUqpv1 b v2 b ¨ ¨ ¨ b vnq “ pUv1q b pUv2q b ¨ ¨ ¨ b pUvnq

Now, notice that the two actions commute. That is, QOpUqSWAP pσq “
SWAP pσqQOpUq. Hence, we can upgrade these two different actions to a single
action of the product group Up2q ˆ Sn, defined by

QOˆSWAP pUˆσqpv1b¨ ¨ ¨bvnq “ QOpUqSWAP pσqpv1b. . . q “ SWAP pσqQOpUqpv1b. . . q

So,
Goal. We would like to understand the irreducible representations of Up2q ˆ Sn

on pCdqbn, and then understand what those irreducible representations tell us about
the physics of n qubits.
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To understand these irreps, we’ll stop talking about physics for a while, and focus
on the mathematics.

3. Tensor powers

A very general and powerful duality, called Schur-Weyl duality, gives a beautiful
and general answer to the problem. For the sake of simplicity, we’ll work it out in
examples.

Example 3.1. Let n “ 2, so we’re investigating the decomposition of pC2q b pC2q
into S2 ˆ Up2q representations.

S2 is abelian, so has only one-dimensional irreducible representations. There are
two of them.

‚ The symmetric representation, sending x Ñ x (This corresponds to the the
diagonal subspace x b y ` y b x Ñ x b y ` y b x.

‚ The antisymmetric representation, sending x Ñ ´x. (This corresponds to
the antidiagonal subspace, v b w ´ w b v Ñ w b v ´ v b w).

The subspaces of C2 bC2 irreducible under the action of S2 are so important that
they have names.

Definition 3.2. S2C2, the second symmetric power of C2, is the subspace of
C2 b C2 generated by symbols like x b y ` y b x. (The subspace on which S2 acts
trivially.)

Λ2C2, the second exterior power of C2, is the subspace of C2 b C2 generated
by symbols like x b y ´ y b x. (The subspace on which S2 acts as ´1.)

Now, we’d like to split Λ2C2 and S2C2 into further irreducible representations of
Up2q. But it turns out Λ2C2 and S2C2 are already irreducible representations
of Up2q, namely the spin 1 one representation and the spin zero representation.

So we found a correspondence:

antisymmetric rep of S2 ðñ Λ2C2 rep of Up2q

symmetric rep of S2 ðñ S2C2 rep of Up2q

Example 3.3. Let n arbitrary, so we’re investigating the decomposition of pC2qbn

into Sn ˆ Up2q representations.

Recall 3.3.1. Recall that you know a lot about SUp2q representations, which are
effectively the same as su2 representations: they are labelled by spin, a half-integer
s. For each such s, there is a 2s` 1-dimensional representation generated by raising
and lowering operators.
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Clearly, SUp2q Ă Up2q. So for the moment we will study irreducible represen-
tations of the SUp2q action on pC2qbn. How do these decompose into irreducible
representations?

Example 3.4. Consider C2 b C2. It has a natural tensor product basis |`y b
|`y , |`y b |´y , |´y b |`y , |´y b |´y.

If SUp2q acts by Upv1 b v2q “ pUv1q b pUv2q, the Lie algebra acts by Lpv1 b v2q “
pLv1q b v2 ` v1 b pLv2q (because of the product rule for differentiation).

So the raising operator E is no longer diagonal in the normal tensor product basis,
for instance

Ep|´y b |´yq “ pE |´yq b |´y ` |´y b pE |´yq “ |`y b |´y ` |´y b |`y

In fact, if we apply

Ep|`y b |´y ` |´y b |`yq “ 2 |`y |`y

Which suggests we define a new basis on C2 b C2:

|`y |`y

|`y |´y ` |´y |`y

|´y |´y

|`y |´y ´ |´y |`y

The first three basis elements, as just shown, form a spin 1 subspace conventionally
called by physicists the triplet. It corresponds to S2C2 in our previous example.

The state |`y |´y´|´y |`y is a spin 0 subspace, called the singlet. It corresponds
to Λ2C2 in our previous example.

So we have:
Spin 1{2 b Spin 1{2 “ Spin 1 ‘ Spin 0

In general, it suffices to compute Spin 1/2 b Spin k. Index the states of Spin k
from |0y, the lowest state, to 2k, the highest state. Now, applying raising operators
starting from the lowest state |0yb|´y will give you a chain of length 2k`1, because

Ep|0y b |´yq “ |1y b |´y ` |0y b |`y

Ep|1y b |´y ` |0y b |`yq “ |2y b |´y ` 2 |1y b |`y

Ejp|0y b |´yq “ |jy b |´y ` j |j ´ 1y b |`y

So inside Spin 1/2 b Spin k Ą Spin k + 1/2, a 2k ` 2-dimensional subspace.
The lowest state not included in this chain is |1y b |´y ´ |0y b |`y.
We can compute

Ep|1y b |´y ´ |0y b |`yq “ |2y b |´y

Ejp|1y b |´y ´ |0y b |`yq “ |j ` 1y b |´y ` pj ´ 1q |jy b |`y
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So this is a chain of length 2k. We can count dimensions:

dimpSpinp1{2qbSpinpkqq “ 2p2k`1q “ 4k`2 “ 2k`p2k`2q “ dimpSpinpk´1{2qq`dimpSpinpk`1{2qq

so this is everything. So

Proposition 3.5.

Spin 1/2 b Spin k “ Spin k-1/2 ‘ Spin k+1/2

Now we can use this to compute inductively the irreducible representations of
pC2qbn:

p Spin 1/2qn “ pSpin 1/2qn´2pSpin 1 ‘ Spin 0q

“ p Spin 1/2qn´3pSpin 3/2 ‘ 2 ¨ Spin 1/2q

“ p Spin 1/2qn´4pSpin 2 ‘ 3 ¨ Spin 1 ‘ 2 ¨ Spin 0q

“ p Spin 1/2qn´5pSpin 5/2 ‘ 4 ¨ Spin 3/2 ‘ 5 ¨ Spin 1/2q

The numbers appearing are interesting and complicated. They are given by the

Catalan triangle, Cpn, kq “ pn`kq!pn´k`1q!
k!pn`1q! .

How do these representations transform under the symmetric group? We gave the
simplest example earlier. Here is the next one.

Example 3.6. Spinp1{2q3 “ Spinp3{2q‘2Spinp1{2q. How does it decompose under
S3?

‚ Well, S3 has a natural 3D representation on C3, permuting basis vectors
e1, e2, e3. Is this irreducible? Notice that it preserves the sum of the coeffi-
cients: if λ1e1 ` λ2e2 ` λ3e3 is a state, then λ1 ` λ2 ` λ3 is left invariant. So
it’s reducible: we can split it as a 2D representation spanned by the subspace
λ1 `λ2 `λ3 “ 0, which has basis x1 ´x2, x2 ´x3, and a remaining 1D trivial
subspace spanned by x1 `x2 `x3. We call the 2D representation defined here
the defining representation.

‚ This splitting, it turns out, is exactly like what we have here. Spinp3{2q
is constructed starting with the symmetric state |´y |´y |´y and symmetric
raising operators, so it transforms trivially under the symmetric group.

‚ The two Spinp1{2qs are formed by a preferred choice of basis: each is a
spin 0 in two of the vectors and a spin 1/2 in the other. The spin 0s are
antisymmetric in e1 ´ e2, e2 ´ e3, so it turns out they transform into each
other under the defining representation of S3! So we have

Spinp1{2q3 “ Spinp3{2q ‘ DefiningpS3q b Spinp1{2q
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In general, it turns out that for any pCdqbn, a representation of the unitary group
uniquely labels a representation of the symmetric group, and there is a map between
the two, called the Schur transform. This is called Schur-Weyl duality, and is
used in quantum information theory to study the statistical properties of random
qubits. But this story is a little too complicated for us to delve into.

4. Composite particles

However, there are lots of down-to-earth physical problems we can now solve.

Example 4.1. What is the total spin of the nucleus of molecular hydrogen? Note,
the nucleus is composed of two protons, and protons are spin 1/2.

The answer is that the spin can be 1 or 0. Parahydrogen is hydrogen with a
spin 0 nucleus. Orthohydrogen is hydrogen with a spin 1 nucleus.

For small molecules and atoms, the energy coming from spin is roughly

ES9SpS ` 1q

where S denotes the total spin. Warning, this is just an approximation which gets
poor very quickly.

So it turns out that parahydrogen has slightly lower energy than orthohydrogen,
by about 1.06kJ{mol.

Example 4.2. Covalent bonding means when elements bind together by sharing
electrons. For instance, the hydrogen molecule is formed by two electrons shared
between two nuclei.

Because, by assumption, the two nuclei ’share’ the electrons, we shouldn’t be able
to distinguish between them. So they should live in a spatially trivial representation
of S2.

Remember that due to the spin statistics-theorem, when I swap two fermions
– particles of noninteger spin– in space, I pick up a ´ sign. So we actually want
the hydrogen electron to live in an antisymmetric representation of S2. The two
minus signs will then cancel each other. That means the electrons are in a spin 0
representation.

Example 4.3. Why does helium not like to form covalent bonds with hydrogen?
Here’s a super over-simplified explanation. It has one proton and two electrons. The
lowest energy state for the electrons of helium is for them to live in a spin 0 state.

If I add an electron,

Spinp1{2q b Spinp0q “ Spinp1{2q

So the electron can’t pair up simply to form a spin 0 state. One of them would have
to be excited to live in a higher spin state, which is energetically costly.
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5. Entanglement

Remark 5.1. Physicists say that the states |`y |´y ` |´y |`y , |`y |´y ´ |´y |`y are
entangled states because they cannot be decomposed into a tensor product u b v,
where u is a state of the first qubit and v is a state of the second qubit.

On the other hand, |`y |`y and |´y |´y are unentangled states.

The existence of entangled states is weird. Two electrons can be distant from each
other, but still ’interact’ with each other through entanglement. This is sometimes
colourfully called ’spooky action at a distance’.


