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0 Symmetries

Many mathematical objects and physical systems possess symmetries. A circle stays
the same no matter how it is rotated; a rotation by θ for any angle θ is therefore a
symmetry of the circle. On the other hand, a square stays the same only under rotation
by multiples of π. From this simple example we see that, broadly, symmetries should
be separated into two types.

1. The rotation symmetry of the circle is continuous: one can start with the un-
rotated circle and apply a given rotation by θ in a continuous fashion, without
affecting the circle.

2. The rotation symmetry of the square is discrete: one cannot get from an unro-
tated square to a square rotated by (some multiple of) π in a continuous fashion.

In real life, common continuous symmetries include translations and rotations. Discrete
symmetries are less obvious, but include time reversal (flipping the arrow of time),
charge conjugation (swapping what we call positive vs negative charge), and translations
in lattices (like for crystals/metals). It is important to study both continuous and
discrete symmetries. The study of symmetry, in mathematics, is called representation
theory.

Once we understand the symmetries of an object, the powerful machinery of repre-
sentation theory kicks in and allows us to draw marvelous conclusions about the object
itself. This is especially useful in physics, where often the symmetries are more obvi-
ous/intuitive than whatever conclusions we draw from them.

Example 0.1. The three-dimensional space we live in has translation and rotation
symmetries. Then Noether’s theorem, which we will see later, immediately implies the
conservation of momentum and energy. Together with reflection symmetries, these sym-
metries form what is called the “Euclidean group” of symmetries of three-dimensional
space.

Example 0.2. Three-dimensional space belongs to four-dimensional spacetime. In
spacetime, it turns out there are additional symmetries which mix space and time
called “Lorentz transformations”. The statement that spacetime has these extra sym-
metries is the only postulate underlying the entire theory of special relativity. Putting
the Lorentz transformations together with the usual Euclidean symmetries gives the
“Poincaré group” of symmetries of four-dimensional spacetime.

Note that all these symmetries we just stated are continuous symmetries. Indeed,
because many fundamental objects in physics are continuous objects, many of the inter-
esting applications of representation theory to physics involve continuous symmetries.
However continuous symmetries are more difficult to study than discrete symmetries.
Hence we will begin with discrete symmetries, which are slightly less physically relevant,
in order to familiarize ourselves with the basic objects of representation theory.
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1 Groups

The first step in representation theory is to understand the structure of the set of
symmetries of a given object. This set, which we’ll call G, has some very special
structure, which we’ll discuss abstractly now. First, if g1 and g2 are two symmetries in
G, then

applying g1, then applying g2, is itself a symmetry of the object.

We’ll denote this composite symmetry by g2g1. (In this notation, we apply symmetries
from right to left, e.g. g1 is applied first. This is just a notational choice.) So the
composition g2g1 of two symmetries is still a symmetry, and therefore still belongs to
the set G. Second,

applying a symmetry in reverse is still a symmetry.

In other words, if there is a symmetry g which takes the object from state A to state B,
then there is an inverse symmetry which takes the object from state B back to state A.
We’ll denote this inverse symmetry by g−1. Finally, there is always a trivial symmetry,
obtained by doing nothing to the object. The operation of doing nothing is always a
symmetry, by definition.

Most sets do not have these two interesting structures, but we see that sets of
symmetries always do. So, in order to study symmetries, we give a name to sets with
such structures: they are called groups.

1.1 Definitions and first examples

Definition 1.1. A group G is a set that has a group operation ?. More precisely,
this means that for any two elements a and b in G, we can apply the operation ? to
them to obtain an element a ? b. This operation must satisfy some axioms:

1. there must be an identity element e of G such that e ? x = x for all x;

2. the group operation must be associative, i.e. (a ? b) ? c = a ? (b ? c);

3. every element x must have an inverse, i.e. an element x−1 such that x ?x−1 = e.

It is common to call the inverse x−1 because we often pretend the group operation is
“multiplication” and refer to the group operation as a “product”.

Many familiar objects that do not necessarily arise from the study of symmetries
have group structures, with various group operations. It is important to note that,
although the notation we use for abstract groups is “multiplicative”, sometimes the
group operation may be addition, or some other operation. So we often write (G, ?) to
mean a group G with the group operation ?, to make it clear what the group operation
is. When it is clear from context, we sometimes just refer to the group as G.
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Example 1.2. The set of integers, called Z, forms a group using addition as the group
operation. (To be precise, we should write (Z,+).) Clearly, given two integers x and y,
their sum x+ y is still an integer.

1. The identity element is 0, because 0 + x = x for any integer x.

2. The operation of addition is associative, because (x+ y) + z = x+ (y + z) for all
integers x, y, z.

3. The inverse of an integer x is the integer −x (which always exists), because x +
(−x) = 0.

Exercise. Show that Z with multiplication as the group operation is not a group. Is it
possible to “fix” Z so that it is?

Exercise. Let Z/n denote the group of integers modulo n, using addition modulo n
as the group operation. In other words, it is the set {0, 1, 2, . . . , n− 2, n− 1} where the
result of the group operation on a and b is the remainder of a+ b upon dividing by n.
Check that Z/n is a group.

Example 1.3. Given an object, its symmetry group is the group of all symmetries
of the object, using composition as the group operation. The identity element e for this
operation is always the symmetry which takes the object and does nothing to it; every
object clearly has such a symmetry. The inverse of a symmetry is the symmetry “in
reverse”.

There are many structural properties which are already illustrated by these exam-
ples. For example, groups whose elements are numbers usually have the following very
special property. It is important to emphasize that most groups, particularly symmetry
groups, do not have this property!

Definition 1.4. A group G is abelian if

x ? y = y ? x

for every x and y in G. We say the group operation is commutative.

We also want to speak about the size of groups, namely how many elements they
contain. It is possible of course for a group to contain infinitely many elements, like Z,
so we usually only talk about the size of finite groups.

Definition 1.5. The number of elements, or cardinality or order, of a group G is
written |G|. We say G is finite or infinite depending on its cardinality.
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1.2 The dihedral group

One simple yet very interesting example of a symmetry group is the symmetry group
of a regular polygon with n (equal) sides. Its symmetry group is called the dihedral
group, and written Dn. To reduce confusion when studying Dn, it is best to label each
corner of the polygon with a number, to keep track of what each symmetry does.

The first step in understanding Dn is to identify some of its elements, and to give
names to them.

1. There are n different symmetries obtained by rotation.
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The first one is the identity element e. If we call the second one r, note that the
other rotations are just compositions of r with itself. So the rotation symmetries
are

e, r, r2, r3, . . . , rn−1.

Note that rn = e, which is the statement that rotating a full 360◦ is the same as
not doing anything. From this we can tell that r−1 = rn−1.

2. There is a symmetry given by flipping the polygon across a fixed axis, which we’ll
take to be the x-axis for simplicity.
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Call this symmetry s. Note that s2 = e, since flipping twice is the same as not
doing anything.

What about flips across other lines? In the same way that all rotations are obtained
by compositions of r, those other flips may be obtained by an appropriate composition
of r and s. For example, for the hexagon, flipping across the line between 2 and 5 is
the same as the composition rsr.
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Exercise. Check that rs is not the same symmetry as sr, and therefore conclude that
the dihedral group is not abelian.

Exercise. Check that rs = sr−1. Conclude that rks = sr−k for any integer k.

We can use this last exercise to obtain a full description of the dihedral group as
follows. Suppose we are given a complicated composition of r and s, like

r27srsr8s3.

Any such expression can be simplified into the form rk or srk for some integer k using
the following two steps.

1. Use that rn = e and s2 = e to simplify the exponents.

2. “Move” all the occurrences of s to the front using rks = sr−k.

Example 1.6. Let’s simplify r27srsr8s3 for the hexagon. Since r6 = e and s2 = e, we
get

r27srsr8s3 = r3srsr2s.

Then we move the first s to the front:

(r3s)rsr2s = (sr−3)rsr2s = sr−2sr2s.

Moving the second s now gives

s(r−2s)r2s = s(sr2)r2s = r4s.

Finally, moving the last s gives

r4s = sr−4 = sr2.

So even though we can write down very complicated compositions of rotations and
flips, after simplifying we see that Dn actually only contains 2n elements:

1. n rotations e, r, r2, . . . , rn−1;

2. n rotations-with-a-flip s, sr, sr2, . . . , srn−1.

This makes a lot of sense, because any symmetry of the n-gon must take the corner
labeled 1 to some position. We can use rotations to place the 1 there. Then we are left
with only two possibilities: either the numbers of corners adjacent to the 1 are already
correct, in which case we have identified the symmetry as rk for some k, or the numbers
are flipped, in which case we apply an extra flip to get srk.

Definition 1.7. Any element in the dihedral group can be written as a composition of
r and s, so we say Dn is generated by r and s. The rules we impose on how multiple
r and s interact are called relations, and we identified three:

rn = e, s2 = e, rs = sr−1.

A full description of Dn is given by a presentation using generators and relations,
written

Dn = 〈r, s | rn = e, s2 = e, rs = sr−1〉.

7



1.3 The symmetric group

A more complicated example of a symmetry group is the symmetry group of n indis-
tinguishable objects, e.g. point particles. Such objects may be permuted in any order,
and all permutations are symmetries. We label the objects from 1 to n, in which case
permutations look like

1 2 3 4 5 6  3 2 6 4 1 5

This symmetry group is called the symmetric group, and written Sn. We can imme-
diately note that it consists of n! elements. One way to write elements is to just list the
permuted labels under the original labels, like(

1 2 3 4 5 6
3 2 6 4 1 5

)
for the above example. (We will see however that writing elements like this isn’t the
best way to uncover the hidden structures in Sn.)

We can ask for a generators-and-relations presentation of Sn like we did for Dn, and
the first step is to identify some special kinds of elements and give names to them.

1. For any two labels i and j, we can consider the permutation which swaps i and j
and leaves everything else alone. Such permutations are called transpositions,
and are written (i, j).

2. More generally, given a sequence of labels i1, i2, . . . , im, we can consider the per-
mutation which sends i1 to i2, and i2 to i3, and so on, and im back to i1. Such
permutations are called cycles, and are written (i1, i2 . . . , im). The length of a
cycle is the number of items involved in it.

Theorem 1.8. Sn is generated by transpositions.

Proof. Given any permutation σ in Sn, if we can sort out its items in increasing order
using just transpositions (to get to the identity element e), then the inverse sequence
of transpositions is equal to σ. But sorting is easy: the first transposition should swap
the first element in σ with 1, the second should then swap the second element with 2,
etc.

Exercise (Hard). Show that Sn is actually generated by adjacent transpositions σi =
(i, i+ 1) for 1 ≤ i < n, and that their compositions are governed by the relations

• σ2i = e for all i;

• σiσj = σjσi when |i− j| > 1;

• σiσi+1σi = σi+1σiσi+1 for all i.
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Because of the theorem, it is useful to write elements of Sn as compositions of
transpositions. But this can often become cumbersome to write. Instead, we write
them as compositions of cycles, due to the following exercise.

Exercise. Show that cycles are just shorthand for compositions of transpositions, be-
cause

(i1, i2, . . . , im) = (i1, i2)(i2, i3) · · · (im−1, im).

To decompose a given permutation σ into a product of cycles, it is easiest to start
with the label 1 and write down the sequence 1, σ(1), σ(σ(1)), . . . until we return to 1;
this forms a cycle. Then take the next smallest label not included in this cycle, and
form a new cycle starting with it, and so on. Note that sometimes there will be cycles
of length 1, which we omit writing.

Example 1.9. Consider the permutation σ =

(
1 2 3 4 5 6 7
3 4 1 6 2 5 7

)
in S7.

1. There is a cycle 1→ 3→ 1. This is written (1, 3).

2. The next smallest number not involved in a cycle so far is 2. There is a cycle
2→ 4→ 6→ 5→ 2. This is written (2, 4, 6, 5).

3. The next smallest number not involved in a cycle so far is 7. There is a cycle
7→ 7. This is a length-1 cycle and we do not write it.

4. There are no more labels not involved in a cycle, so we are done.

Hence σ = (1, 3)(2, 4, 6, 5).

Note that it does not matter which order we compose disjoint cycles, i.e. cycles that
involve no common labels. Disjoint cycles commute with each other.

1.4 Homomorphisms

Now we return to discussing groups more abstractly. Given a group G, it is conceptually
helpful to consider its “multiplication” table, where we write down all products of
elements in the group. The convention we will use is to multiply the row element by
the column element, not vice versa.

Example 1.10. The symmetric group S2 (of two objects) has two elements, with the
following multiplication table.

e (1, 2)

e e (1, 2)
(1, 2) (1, 2) e

Example 1.11. The group Z/2 (of integers mod 2) also has two elements, with the
following multiplication table.
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0 1

0 0 1
1 1 0

Note that, in some sense, we’ve written the same multiplication table twice but
with elements renamed. The way to translate between S2 and Z/2 while preserving the
multiplication table is

e↔ 0, (1, 2)↔ 1.

Using this dictionary, the two groups are actually equivalent. This notion of equivalence
is expressed mathematically as follows.

Definition 1.12. Let G and H be two groups, with group operations ?G and ?H . We
say G and H are isomorphic, written

G ∼= H,

if there exists a function f : G→ H which:

1. is a bijection, i.e. a one-to-one correspondence between the elements of the two
sets;

2. is a homomorphism, meaning that

f(a ?G b) = f(a) ?H f(b).

If we view f as a “dictionary” between elements of G and H, being a homomorphism
means that the dictionary is compatible with the group operations in G and H, and
being an isomorphism means the dictionary covers all elements of G and H.

Exercise. Show that D3 is isomorphic to S3.

Exercise. Show that Dn cannot be isomorphic to Sn for n > 3, using cardinality.

Importantly, it is possible for f : G → H to be a homomorphism without being an
isomorphism. One trivial way is to send everything in G to the identity element eH in
H. Then clearly

f(a ?G b) = eH = f(a) ?H f(b).

Example 1.13. Consider the map f : Z/2→ D3 given by

0 7→ e, 1 7→ s.

This is not an isomorphism because Z/2 is much smaller than D3. But it is a homo-
morphism. The most important check is

f(1 + 1) = e = s2 = f(1)f(1).

The existence of this homomorphism means that there is a copy of Z/2 hiding inside
D3.
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Definition 1.14. A subset H ⊂ G which itself is a group is called a subgroup of G.
This is written H ≤ G.

Exercise. Show that, in D3, the elements e, r, r2 form a subgroup isomorphic to Z/3.
On the other hand, show that e, r, sr2 does not form a subgroup. Are there any other
subgroups of D3 that we haven’t found yet?

Suppose we want to specify a homomorphism f : G → H, and G has generators a,
b, and c. Then it is actually enough to specify what f(a), f(b), and f(c) are. This is
because any element in G can be written as some product of a, b, and c, and therefore
e.g.

f(a7b11c−3) = f(a)7f(b)11f(c)−3.

So a homomorphism is fully specified by what it does to generators.

Example 1.15. A homomorphism φ : Z → Z is completely determined by the integer
φ(1). This is because

φ(n) = φ(1 + · · ·+ 1︸ ︷︷ ︸
n times

= φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
n times

= nφ(1).

We also speak about generators of a subgroup. For example, the set of even integers
forms a subgroup of Z. It is often written 2Z, because it is generated by the element 2.

1.5 Operations on groups

Whenever we define a type of mathematical object (e.g. a group) along with some notion
of equivalence (e.g. isomorphism of groups), we can start asking about classification.
Namely,

can we classify all the different objects of this type?

If the answer turns out to be yes, then usually the result is that every such object is
built from a small collection of basic building blocks. In our case, this means we require
a way to build a bigger group using two smaller ones.

Definition 1.16. Given two groups G and H, their product G×H is the group whose
elements are pairs (g, h) with g ∈ G and h ∈ H, and group operation given by

(g1, h1) ? (g2, h2) = (g1 ?G g2, h1 ?H h2).

Example 1.17. The group Z/2× Z/2 has elements

{(0, 0), (0, 1), (1, 0), (1, 1)}

and multiplication table
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(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

.

Note that even though it has order 4, it is not isomorphic to Z/4. One way to see this
is that every element in Z/2 × Z/2 becomes zero when added to itself, but this is not
true for every element of Z/4.

Exercise. Show that Z/2× Z/3 is isomorphic to Z/6.

Exercise. Show that Z/n×Z/m is isomorphic to Z/nm whenever gcd(n,m) = 1. Hint:
construct an isomorphism

φ : Z/nm→ Z/n× Z/m

by picking wisely what φ(1) should be.

A related operation that will also be relevant is the “inverse” operation to taking
the product: the quotient. In some sense, this operation takes a group H and a group
that looks like G×H and produces just G. If G is a group and H ≤ G is a subgroup, we
can construct the quotient G/H. The idea is to forcibly make everything in H equal
to the identity element e, thereby “getting rid of” H in G.

Example 1.18. Take the subgroup 2Z ≤ Z. In the quotient Z/2Z, all even integers
are equivalent to 0. This is exactly the same group as what we have been calling Z/2,
which we now recognize is shorthand for Z/2Z.

In the quotient Z/2Z, the two elements are 0 and 1. In Z, they correspond to
the subsets of even and odd integers respectively. In the context of quotients, such
subsets are called cosets, and are written like g ?H. Since the group operation is often
multiplication, this is usually abbreviated as gH.

Example 1.19. For 2Z ≤ Z, the cosets of even and odd integers are

0 + 2Z = {0 + 2n | n ∈ Z}, 1 + 2Z = {1 + 2n | n ∈ Z}.

Note that 0 + 2Z = 2 + 2Z = 4 + 2Z = · · · . Addition can be done on cosets directly, e.g.

(1 + 2Z) + (1 + 2Z) = (1 + 1) + 2Z = 2 + 2Z = 0 + 2Z.

This is the same as writing 1 + 1 = 0 in Z/2Z.

Abstractly, we can treat elements of G/H as cosets, and the group operation in the
quotient G/H is defined to be the group operation on cosets: to define x ? y in G/H
is the same as defining xH ? yH in G. This is slightly problematic, because in general
there is no good reason for xH ? yH to be a coset at all! We would like to define

xH ? yH
?
= (x ? y)H
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but in general this is not true. The problem would be solved if Hy = yH, so that

xHyH = xyHH = xyH.

Here we used that H is a subgroup, so the product of any two elements of H remains
in H, and so H ?H = H.

Definition 1.20. A subgroup H ≤ G is normal if gH = Hg for any element g ∈ G.
We write H / G to mean H is a normal subgroup of G.

Definition 1.21. Given a normal subgroup H/G, the quotient G/H has a well-defined
group operation, given by

g1H ?G/H g2H = (g1 ?G g2)H.

Example 1.22. Take G = S3 and the subgroup H = {e, (1, 2)}. The (distinct) cosets
of H in G are

eH = (1, 2)H = {e, (1, 2)}
(1, 3)H = (1, 2, 3)H = {(1, 3), (1, 2, 3)}
(2, 3)H = (1, 3, 2)H = {(2, 3), (1, 3, 2)}.

However H is not normal, because

H(1, 3) = {(1, 3), (1, 3, 2)} 6= (1, 3)H.

This makes G/H fail to be a group. For example, we can check that

(1, 2, 3)H(1, 2, 3)H = {e, (1, 2), (2, 3), (1, 3, 2)},

which is not a coset at all.

Exercise. Show that in S3, the subgroup H generated by (1, 2, 3) is a normal subgroup.
What is the quotient S3/H?

1.6 Lagrange’s theorem

Understanding cosets is useful for more than studying quotients. In this section we’ll
see an application, in the context of finite groups. In finite groups we can count things
like number of elements.

Suppose we have any subgroup H ≤ G. Then all the cosets of H have the same
number of elements. For example, elements of eH and gH are related to each other
by multiplying by g. So there are a total of |G|/|H| cosets, each of size |H|. This
immediately implies the following.

Theorem 1.23 (Lagrange). For any subgroup H ≤ G, the order of H divides the order
of G.

13



Definition 1.24. The index of the subgroup H ≤ G is the number

[G : H] = |G|/|H|.

So |G| = [G : H]|H|.

In particular, we can apply Lagrange’s theorem to subgroups generated by a single
element. Given g ∈ G, the subgroup it generates is usually denoted 〈g〉. Studying
properties 〈g〉 is helpful for studying properties of g itself.

Definition 1.25. A (sub)group G is cyclic if it is generated by a single element. The
order of an element g of a group is the size of the cyclic subgroup it generates, i.e. the
smallest integer n ≥ 1 such that

gn = e.

Corollary 1.26. The order of an element g ∈ G divides |G|.

Proof. Let H = 〈g〉 be the subgroup generated by g. Then the order of g is the order
of H, by definition. But Lagrange’s theorem says |H| divides |G|.

Lagrange’s theorem can be viewed as a vast generalization of Fermat’s little theorem
from number theory, which says that for any integer a and any prime p,

ap ≡ a mod p.

This is actually Lagrange’s theorem applied to the group (Z/p)×, defined as follows.

Definition 1.27. Given the group (Z/n,+), we can form its associated group of units,
denoted (Z/n)×.

• Its elements are the integers in Z/n that have multiplicative inverses, i.e. those x
such that there exist y with xy = 1.

• Its group operation is multiplication.

Exercise. Check that if p is a prime, (Z/p)× consists of all the elements of Z/p except
0.

Exercise (Hard). How many elements are in (Z/n)× for an arbitrary integer n ≥ 2?

We can use Lagrange’s theorem to prove Fermat’s little theorem as follows. In
(Z/p)×, every non-zero element must generate the whole group, because the order of
every non-trivial subgroup divides the prime p. So the order of every non-zero element
is |(Z/p)×| = p− 1. This means that every non-zero element a satisfies

ap−1 = e,

which is the same thing as saying ap−1 ≡ 1 mod p. Multiplying both sides by a gives
Fermat’s little theorem.
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1.7 Classification

Now we can return to the problem of classifying different types of groups. The simplest
type we can start thinking about are the finite and abelian ones. It is clear that Z/n
and products of Z/n’s are finite abelian groups, while Z (infinite) and S3 (non-abelian)
are not. If we start listing the non-isomorphic finite abelian groups of small order, it
turns out we get

cardinality non-isomorphic groups

1 1
2 Z/2
3 Z/3
4 Z/2× Z/2 and Z/4
5 Z/5
6 Z/2× Z/3
7 Z/7
8 (Z/2)3 and Z/2× Z/4 and Z/8
...

...

.

It is not obvious why they are all products of Z/n’s. In fact this empirical observation
is true in general.

Theorem 1.28 (Classification of finite abelian groups). Any finite abelian group is
isomorphic to

Z/n1 × · · · × Z/nk
for some integers n1, . . . , nk ≥ 2 which are all prime powers.

Even though this only classifies a very special type of group, the proof of this theorem
is already somewhat intricate, and we will skip it. The complexity of group theory is
evident even in this special case.

We can go further and now ask for a classification of all finite groups, regardless of
whether they are abelian. In the non-abelian case it turns out there are different ways to
“take the product” of two groups, called semidirect products. So trying to decompose a
group G into a product is not the best approach. Instead, we can write a composition
series for G. This is a sequence

1 = H0 / H1 / H2 / · · · / Hn = G

of normal subgroups such that Hi is a largest possible normal subgroup of Hi+1. Equiv-
alently, Hi+1/Hi is a simple group.

Definition 1.29. A group G with no normal subgroups aside from 1 and itself is called
simple.

Finite simple groups are the building blocks for finite (non-abelian) groups. Unlike
the abelian case, where the building blocks have a nice classification, the classification
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of finite simple groups involves 18 infinite families and 26 sporadic groups. The classifi-
cation was a major mathematical milestone, “completed” in February 1981 (with some
minor holes that were patched by 2004). The complete proof of the classification spans
over 10,000 pages and is spread out across 500 or so papers. There is a current ongoing
project to simplify and coalesce the proof into a 12-volume series, expected in 2023.

2 Representations of groups

The classification of even just the finite simple groups should indicate that groups in
general are extremely complicated objects. The deep insight of representation theory is
that

a rich and fruitful way to study groups is by interpreting them as symmetries
of some object, i.e. to examine their actions on objects.

While we can study an object by understanding its symmetry group, this insight says
that, conversely, we can understand groups in general by making them act by symmetries
on objects.

One immediately runs into a problem with this train of thought: the objects being
acted on may be more complicated than the groups! It turns out, for various reasons,
that we should only consider group actions on linear objects. This is like how we often
use a linear approximation to a function instead of the function itself, because the linear
approximation is much simpler. For example, in physics, we often use the small-angle
approximation sin(x) ≈ x for small angles x. The mathematical formalism for the
“linear object” we want is a vector space.

Definition 2.1. A vector space is a group (V,+) (always using addition as the group
operation) and a scalar multiplication operation called ·.

• Elements in V are called vectors, usually called v or w.

• Scalar multiplication defines how to multiply a vector by a real (or complex)
number, called a scalar. We call V a vector space “over the real numbers” (or
“over the complex numbers”).

• Scalar multiplication must satisfy some axioms:

a · (b · v) = (ab) · v
1 · v = v

a · (v + w) = a · v + a ·w
(a+ b) · v = a · v + b · v.

Example 2.2. Let Rn denote the set of all points in n-dimensional space, i.e. all
points x = (x1, x2, . . . , xn) for arbitrary real numbers x1, . . . , xn. Given a point, we can
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interpret it as the vector which starts at the origin 0 and ends at x. Vectors in Rn are
usually written like

x =


x1
x2
...
xn

 .

1. Two vectors x and y can be added entry-wise. For example, in R3, 3
−1
0

+

 1
5

3/2

 =

 4
4

3/2

 .

2. A scalar is a real number. We multiply a vector by a scalar by multiplying each
entry by the scalar. For example, in R3,

3 ·

1
2
3

 =

3
6
9

 .

Then one can verify that Rn is a vector space over the real numbers.

Exercise. Define Cn as all n-dimensional vectors with complex numbers as entries.
Show that Cn is a vector space over the complex numbers.

For the purposes of this course, it doesn’t hurt to pretend that any vector space
is Rn or Cn for some n. Most of the time whether we use the real numbers R or the
complex numbers C makes no difference.

If we want to make a group G act by symmetries on a vector space V , we better
first understand symmetries of V . Such symmetries had better preserve the vector
space structure of V , just like how symmetries of a square shouldn’t “break apart” the
structure of the square. Namely, if we view a symmetry as a function φ : V → V , it
better be that

φ(v + w) = φ(v) + φ(w)

φ(a · v) = a · φ(v)
(1)

for any vectors v,w ∈ V and scalar a.

Definition 2.3. A function φ : V → W satisfying the conditions (1) is called an ho-
momorphism of vector spaces. (Note that a vector space homomorphism is a group
homomorphism which preserves scalar multiplication.) If W = V , it is an endomor-
phism.

Also, a symmetry must be reversible, i.e. the function φ must have an inverse, called
φ−1, such that

φ(φ−1(v)) = v = φ−1(φ(v)). (2)
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Definition 2.4. A vector space homomorphism φ : V →W is an isomorphism if there
exists a function φ−1 : W → V satisfying (2). If W = V , it is an automorphism.

In other words, to make G act on V is the same as making elements of G correspond
to automorphisms of V . To do so, we must develop some tools and notation to work
with automorphisms of V , and more generally homomorphisms of vector spaces. This
is the purpose of linear algebra.

2.1 Linear algebra

Given a vector space V , one can pick a basis for it. A basis is, in some sense, a choice of
what “coordinate system” to use for V . For example, moving one unit north and then
three units east is the same as moving two units northeast and one unit southeast, but
in the former we used {north, east} as the coordinate system and in the latter we used
{northeast, southeast}.
Definition 2.5. A basis of a vector space V is a set {v1,v2, . . . ,vn} of vectors in V
such that:

1. (linearly independent) there is no way to write vk as some combination

a1v1 + a2v2 + · · ·+ ak−1vk−1

for any scalars a1, . . . , ak−1;

2. (spanning) every vector v ∈ V can be written in terms of vectors in the basis, in
the form

v = a1v1 + a2v2 + · · ·+ anvn

for some scalars a1, . . . , an.

Example 2.6. There is a standard basis for Rn, given by {e1, e2, . . . , en} where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

Then we can rewrite any vector as
a1
a2
· · ·
an

 = a1e1 + a2e2 + · · ·+ anen.

This is the true meaning of the vector notation. By default, the entries of a vector
tell us what combination of standard basis vectors to take. However, there are many
different choices for a basis of V in general. A vector v ∈ V may “look” different in
different bases.
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Example 2.7. Consider the vector v =

(
1
3

)
∈ R2. It is, by default, written in the

standard basis {e1, e2}.

• In the basis {v1,v2} where v1 =

(
1
1

)
and v2 =

(
1
−1

)
, it is

(
2
−1

)
= 2v1 − 1v2.

• In the basis {w1,w2} where w1 =

(
2
3

)
and w2 =

(
−1/2

0

)
, it is

(
1
2

)
= v1 + 2v2.

In this way, after choosing a basis we can encode any vector in an n-dimensional
vector space using n numbers, called the coordinates of the vector. (Choosing a
basis is the same as choosing an isomorphism V ∼= Rn.) Similarly, we can encode
an endomorphism φ of an n-dimensional vector space using n2 numbers as follows.
If the basis is {vi}, then φ is completely specified (using linearity) by the n vectors
φ(v1), . . . , φ(vn). We put the coordinates of these vectors as columns in a matrix:

φ =

φ(v1) φ(v2) · · · φ(vn)

 .

Definition 2.8. The entry on the i-th row and j-th column of a matrix M is denoted
Mij .

Given an arbitrary vector v = a1v1 + · · ·+ anvn, linearity says

φ(v) = a1φ(v1) + · · ·+ anφ(vn).

We can express this resulting vector using just the matrix for φ, whose entries we’ll
denote by φij :

φ(v) =


b1
b2
...
bn

 =


φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n

...
...

. . .
...

φn1 φn2 · · · φnn



a1
a2
...
an

 ,

where the i-th entry of the resulting vector is

bi = φi1a1 + φi2a2 + · · ·+ φinan.

This is called matrix-vector multiplication.

19



Exercise. Formulate the analogous rule for how to multiply two matrices, in order to
compute the composition of two endomorphisms of V .

Remember that we want groups to act by automorphisms of V , not just by endo-
morphisms. In other words, we need a tool to determine whether the endomorphism
specified by a matrix M is invertible or not. The idea is to view M as the endomor-
phism sending the original basis vectors v1, . . . ,vn to the vectors given by its columns
w1, . . . ,wn; as long as {wi} are linearly independent, the inverse map is

w1 7→ v1, . . . , wn 7→ v1.

One way to systematically check for linear independence is to use the following numerical
invariant of a matrix.

Definition 2.9. The determinant of a matrix M, written det(M), is essentially the
volume of the parallelepiped formed by the column vectors of M.

1. If M is upper triangular, i.e. Mij = 0 if i > j, then

det(M) = M11M22 · · ·Mnn.

2. If M is not upper triangular, row-reduce it until it is in upper triangular form,
and then use (1). Row-reducing M means we can apply any of the following
operations:

• add a multiple of one row to a different row, which leaves det(M) unchanged;

• swap two rows, which multiplies det(M) by −1;

• multiply a single row by a scalar c, which also multiplies det(M) by c.

Theorem 2.10. The determinant det(M) is non-zero if and only if M is invertible.

Example 2.11. We can compute a formula for the determinant of an arbitrary 2 × 2
matrix, since they are small enough. Let

M =

(
a b
c d

)
.

This is not in row-reduced form, so let’s row-reduce it.

1. Add −c/a times the first row to the second row, to get

N =

(
a b
0 d− bc/a.

)
.

This doesn’t change the determinant, i.e. det(M) = det(N).

2. Now N is upper triangular, so

det(N) = a · (d− bc/a) = ad− bc.
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So det(M) = ad− bc.
Exercise. The −c/a in the above example means we must assume a 6= 0. How should
we fix the example so it actually works for all possible matrices, not just those with
a = 0?

The determinant is useful for much more than just measuring linear independence.
It turns out to be an invariant of matrices. This means that if two matrices M and
N actually represent the same endomorphism but in different bases, we will still have
det(M) = det(N), even though the matrices M and N may look completely different.

Example 2.12. Take the endomorphism φ : R2 → R2 which takes a vector and rotates
it counterclockwise by π/2.

• In the standard basis e1, e2, it is represented by the matrix

M =

(
0 −1
1 0

)
,

whose columns are φ(e1) and φ(e2).

• In the basis v1 =

(
2
1

)
and v2 =

(
1
2

)
, it is represented by the matrix

N =

(
4/3 5/3
−5/3 −4/3

)
.

This is because

φ(v1) =
4

3
v1 −

5

3
v2

φ(v2) =
5

3
v1 −

4

3
v2.

Note that M 6= N, but because they both come from the same endomorphism,

det(M) = 0 · 0− (−1) · 1 = (4/3) · (−4/3)− (−5/3) · (5/3) = det(N).

It is not easy to find other numerical invariants of matrices. Suppose we have a
function f which takes a matrix M and gives a number. Then f being an invariant
means

f(M) = f(P−1MP)

for any invertible matrix P. We call the operation

M 7→ P−1MP

conjugation by P. The idea is that P is a change of basis matrix, namely a “dictionary”
to translate from one basis to another. To apply M in a different basis, we first translate
to that basis, apply M, and then translate back. So M and P−1MP both express the
same endomorphism, but in different bases.
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Exercise. A change of basis matrix P from the standard basis to a new basis v1, . . . ,vn
is given by writing v1, . . . ,vn as the columns of P. Check in the previous example that

N = P−1MP.

For an n× n matrix, it turns out there are exactly n different invariants. (They are
different in the sense that they are linearly independent.) Aside from the determinant,
the most useful one is also the simplest one.

Definition 2.13. The trace of a matrix M is the quantity

tr(M) = M11 +M22 + · · ·+Mnn.

Exercise. Show that tr(MN) = tr(NM) for any two matrices M and N. This imme-
diately shows tr is an invariant, because

tr(P−1MP) = tr(MPP−1) = tr(M).

2.2 Definitions and first examples

Now we return to making groups act on vector spaces. Recall that they should act
by automorphisms. The collection of all automorphisms of V forms a group, using
composition as the group operation. The identity matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is the identity element.

Definition 2.14. Let V be an n-dimensional vector space. The group of automorphisms
of V is called GL(V ), or GL(n). Equivalently,

GL(n) = {invertible n× n matrices}.

A representation of a group G is a group homomorphism

ρ : G→ GL(n)

for some n. The dimension of the representation is n.

One way to think about a representation is that we “represented” each element in
G with a matrix, in such a way that multiplying the matrices gives exactly the same
result as multiplying the elements in G. The matrix corresponding to an element g ∈ G
encodes exactly how g is supposed to act on vectors.
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Example 2.15. There is a 2-dimensional representation S2 → GL(2) given by

e 7→ I =

(
1 0
0 1

)
, (1, 2) 7→ S =

(
0 1
1 0

)
.

One can check that this is a homomorphism, basically because S2 = I. As an action on
vectors, we therefore have

e ·
(
a1
a2

)
= I

(
a1
a2

)
=

(
a1
a2

)
(1, 2) ·

(
a1
a2

)
= S

(
a1
a2

)
=

(
a2
a1

)
.

In other words, in this representation, e is the symmetry which does nothing (as ex-
pected) and (1, 2) is the symmetry which swaps the two entries of a given vector. This
is exactly the original symmetry we used to define Sn, and for this reason this repre-
sentation is called the permutation representation.

Exercise. To define the (n-dimensional) permutation representation for Sn in general,
it suffices to say what the generators (i, j) do in terms of matrices. Describe the matrix
which takes a vector and swaps only its i-th and j-th entries.

The key distinction between this permutation representation and the original defini-
tion of Sn is that the original definition acted on just n indistinguishable objects. The
set of all possible configurations of those objects has no linearity properties; it makes
no sense to “add” two configurations. Now we have made S2 act on vectors, where it
makes sense to take two vectors and add them.

Example 2.16. For any group G and any GL(n), there is always the n-dimensional
trivial representation given by

g 7→ I,

the identity matrix.

Example 2.17. Define a 2-dimensional representation ρ : D3 → GL(2) as follows.

• The rotation r acts on vectors in R2 by rotating them by 2π/3. As a matrix,

ρ(r) =

(
−1/2 −

√
3/2√

3/2 −1/2

)
,

because rotation sends

e1 7→
(−1/2√

3/2

)
, e2 7→

(
−
√

3/2
−1/2

)
.

• The flip s acts on vectors in R2 by flipping them across the x-axis. As a matrix,

ρ(s) =

(
1 0
0 −1

)
.
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Since D3
∼= S3 via

r 7→ (1, 2, 3), s 7→ (1, 2),

this also defines a 2-dimensional representation of S3.

Given a representation G → GL(V ), it is common to work with formulas which
express the action of g ∈ G on vectors v ∈ V as g ·v. For example, the previous example
has

r ·
(

1
0

)
=

( −1/2

−
√

3/2

)
.

We will constantly switch between thinking of G→ GL(V ) as an assignment of matrices
to group elements, and as a way to equip vectors in V with an action by elements in G.
In the latter way of thought, we often just say “V is a representation”, since V and the
G-action it carries is the most important piece of data.

2.3 Sums and reducibility

To begin understanding representations, we should have a notion of building up new
representations from simpler ones, like we did for groups.

Definition 2.18. Let φ : G → GL(V ) and ρ : G → GL(W ) be two representations of
G. Define the direct sum V ⊕W to be the vector space arising from the product of
the two groups (V,+) and (W,+). In other words, its elements are pairs (v,w), with
element-wise addition and scalar multiplication. Then V ⊕W is also a representation
of G, because we can define the G-action as

g · (v,w) = (g · v, g ·w).

Formally, the resulting representation is

φ⊕ ρ : G→ GL(V ⊕W ).

Example 2.19. Let φ : S3 → GL(3) be the permutation representation, and ρ : S3 →
GL(2) be the trivial representation. The direct sum of these two representations is a
new representation

φ⊕ ρ : S3 → GL(5),

where, for example,

(φ⊕ ρ)((1, 2, 3)) =


0 0 1
1 0 0
0 1 0

1 0
0 1

 .

This is because

φ((1, 2, 3)) =

0 0 1
1 0 0
0 1 0

 , ρ((1, 2, 3)) =

(
1 0
0 1

)
.
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In general, one way to think about direct sum is that we take the two original
matrices A and B and form a new block-diagonal matrix, where the blocks are A and B
and everything else is zero. In this way, it is very easy to tell when a given representation
can be written as a direct sum: it can be if and only if, in some basis, all the matrices
associated to group elements split as block-diagonal matrices.

Definition 2.20. Let V be a representation. A sub-representation is a subspace
W ⊂ V (like a subgroup, but with vector spaces) which is itself a representation of G.

In other words, given w ∈ W , every action by elements in G must remain in W .
This is very restrictive. For example, consider the representation of D3 on R2. The

subspace W = {
(
x
0

)
}, i.e. everything on the x-axis, is indeed a subspace, but

r ·
(

1
0

)
=

( −1/2

−
√

3/2

)
/∈W.

So W does not give a sub-representation. On the other hand, given a representation
V = W1 ⊕W2, each Wi is clearly always a sub-representation.

Definition 2.21. A representation is called irreducible if it has no non-trivial sub-
representations. We often abbreviate “irreducible representation” as “irrep”.

If W is a sub-representation of V , we would like to conclude that V decomposes as
V = W ⊕W ′ where W ′ is some other sub-representation. Then it would be true that
any representation decomposes as a direct sum of irreps, and we could study only the
irreps as building blocks of all representations. Unfortunately this is not true for all
groups.

Example 2.22. Consider the representation φ : R→ GL(2) given by

x 7→
(

1 x
0 1

)
.

Then the x-axis is a sub-representation, but there is no complementary subspace which
is also a sub-representation. So φ has non-trivial sub-representations but cannot be
written as ρ1 ⊕ ρ2.

Theorem 2.23 (Maschke’s theorem). If G is a finite group, then every representation
of G decomposes into irreducible representations.

Groups with this property are called semisimple. Later when we study the rep-
resentation theory of Lie groups, which are infinite groups, we’ll see that semisimple
Lie groups are particularly nice. For now, since finite groups are all semisimple by the
theorem, we can think of all representations as built from irreps via direct sum.
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2.4 Morphisms

In the same way that a group homomorphism captures the appropriate notion of a
“function preserving group structure”, a morphism of representations captures the no-
tion of a “function preserving G-action”. More rigorously, given two representations V
and W , we would like a function T : V →W to preserve:

• the linear vector space structure of V and W , i.e. ρ should be a linear map;

• (new) the G-action on V vs. the G-action on W , since both vector spaces are
representations of G.

Definition 2.24. A morphism of representations (or an intertwiner) between two
representations φ1 : G→ GL(V ) and φ2 : G→ GL(W ), is a linear transformation

T : V →W

such that
Tφ1(g) = φ2(g)T for every g ∈ G.

One way intertwiners arise is as follows. Suppose we defined a representation
φ1 : G → GL(V ) by picking some matrices corresponding to generators, but then we
decided to do a change of basis on V . Then the matrices defining φ1 will changed as
well, to give a new representation φ2 : G → GL(V ) on the same vector space. If the
change of basis matrix is P, then this means

P−1φ2(g)P = φ1(g).

Rearranging, we see that P is an intertwiner between φ1 and φ2, by definition.

Definition 2.25. Two representations are equivalent if there exists an invertible in-
tertwiner between them.

Using this notion of equivalence on irreps gives the following fundamental result in
representation theory. It essentially says that there’s no way to intertwine between two
truly different irreps. The caveat is that we must work with the complex numbers C, and
vector spaces with complex scalars. This is so that we can guarantee every polynomial
has a solution.

Theorem 2.26 (Schur’s lemma). Let V and W be two irreps of G. If φ : V → W is
an intertwiner, then:

1. either φ is an isomorphism, or φ = 0;

2. if V = W , then φ = λI for some constant λ ∈ C.

The proof is straightforward, but requires slightly more linear algebra than we have
covered. We will present it as a series of exercises.
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Exercise. Prove the first part of Schur’s lemma as follows.

1. Show that the kernel of φ is a sub-representation of V . Since V is irreducible,
conclude that φ is either injective or zero.

2. Show that the image of φ is a sub-representation of W . Since W is irreducible,
conclude that φ is either surjective or zero.

3. Conclude that either φ is an isomorphism, or φ = 0.

Exercise. Prove the second part of Schur’s lemma as follows.

1. Explain why φ must have at least one eigenvalue λ ∈ C, with some eigenvector v.

2. Explain why φ− λI is still an intertwiner, and why it cannot be an isomorphism.

3. Apply the first part of Schur’s lemma to φ− λI to conclude that φ = λI.

We will see later why Schur’s lemma is of crucial importance to quantum physics. For
now, we should think of it as follows. Suppose we took a representation φ : G→ GL(V )
and broke it up into irreps

φ(g) =


φ1(g) 0 · · · 0

0 φ2(g) · · · 0
...

...
. . .

...
0 0 · · · φk(g)


and all the irreps are inequivalent to each other. Then the only possible things an
intertwiner T : V → V can do are:

• multiply each block φi(g) by some scalar λi;

• shuffle around the order of the blocks. (This can essentially be ignored, since it is
equivalent to just re-ordering the vectors in the basis.)

Corollary 2.27. Any irrep of an abelian group is one-dimensional.

Proof. Let φ : G → GL(V ) be an irrep of an abelian group G. Since G is abelian,
all the operators φ(g) for g ∈ G commute with each other. By definition, this means
φ(g) : V → V is an intertwiner. Schur’s lemma then tells us φ(g) = λI for some
constant λ. Since this is true for all g ∈ G, the entire group G must act by only scalar
multiplication. The only way for such a representation to have no subreps (i.e. to be
irreducible) is if it is one-dimensional.
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2.5 Tensors and duals

There are two more important operation on representations that we need to introduce.
If the direct sum ⊕ is thought of as “addition” of reps, then one new operation ⊗ should
be thought of as “multiplication” of reps. (We will try to make this analogy more precise
later.) As with ⊕, first we need to define what V ⊕W is as a vector space, and then
specify how G acts on it.

Definition 2.28. Given two vector spaces V and W , their tensor product V ⊗W is
a new vector space consisting of elements called

v ⊗w for v ∈ V, w ∈W.

These elements can be:

• added one coordinate at a time, i.e.

v1 ⊗w + v2 ⊗w = (v1 + v2)⊗w

v ⊗w1 + v ⊗w2 = v ⊗ (w1 + w2);
(3)

• multiplied by a scalar in either coordinate, i.e.

c(v ⊗w) = (cv)⊗w = v ⊗ (cw)

for any scalar c.

The elements v ⊗ w of a tensor product are called tensors. Tensors should be
thought of as a generalization of vectors. In particular, while vectors are linear objects,
tensors are multi-linear objects. This means that they are linear in “one coordinate at
a time”, like in (3), but not in all coordinates simultaneously:

v1 ⊗w1 + v2 ⊗w2 6= (v1 + v2)⊗ (w1 + w2).

(This should be compared to how addition works in V ⊕W .) Indeed, the rhs should
actually be expanded as

(v1 + v2)⊗ (w1 + w2) = v1 ⊗ (w1 + w2) + v2 ⊗ (w1 + w2)

= (v1 ⊗w1 + v1 ⊗w2) + (v2 ⊗w1 + v2 ⊗w2) .

Exercise. Show, from the definition, that if V has basis {vi | i = 1, 2, . . . ,m} and W
has basis {wj | j = 1, 2, . . . , n}, then V ⊗W has basis

{vi ⊗wj | i = 1, . . . ,m, j = 1, . . . , n}.

So dim(V ⊗W ) = dim(V ) dim(W ).

Tensors and tensor calculus famously form the foundations of Einstein’s general rel-
ativity, in which objects like the curvature of spacetime (due to gravity) are represented
by tensors.
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Definition 2.29. If V and W are representations of G, then so is V ⊗W via the action

g · (v ⊗ w) = (g · v)⊗ (g · w).

We call V ⊗W the tensor product of representations.

The final operation we need to introduce is, at the level of matrices, essentially the
transpose operation. At the more abstract level of vector spaces and linear transfor-
mations between them, it is called taking the dual. The idea is to view a transposed
vector

vT =
(
v1 v2 · · · vn

)
not as a vector, but rather as a linear function on vectors. In other words, vT is actually
something which takes a vector w and produces a scalar vTw.

Definition 2.30. The dual of a vector space V is called V ∨. Its elements are linear
functions f : V → R.

• (Addition) Given two functions f, g ∈ V ∨, their sum f + g is the function such
that

(f + g)(v) = f(v) + g(v).

• (Scalar multiplication) Given a function f ∈ V ∨ and a scalar c,

(cf)(v) = cf(v).

If V is a representation of G, then so is V ∨ via the action

(g · f)(v) = f(g−1 · v). (4)

Exercise (Technical). Verify that we really need g−1 in (4) in order to have

(g1g2) · f = g1 · (g2 · f).

If we put g instead, we would have

(g1g2) · f = g2 · (g1 · f),

which is not the same and does not make V ∨ a valid representation.

Given a vector space V with basis {vi}, the dual vector space V ∨ has the same
dimension and has a dual basis {fi} such that

fi(vj) =

{
1 i = j

0 otherwise.

Using this dual basis, we can see that linear transformations A : V → W are secretly
tensors of a special kind. Namely, if A(vi) = wi for basis elements vi, then

A = f1 ⊗w1 + f2 ⊗w2 + · · ·+ fn ⊗wn.
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This is because

A(vi) = f1(vi)⊗w1 + · · ·+ fn(vi)⊗wn

= 0⊗w1 + · · ·+ 1⊗wi + · · ·+ 0⊗wn

= 1⊗wi.

Here we are identifying 1 ⊗W ⊂ V ⊗W with the space W itself. In this manner, the
study of linear transformations becomes the study of tensors in V ∨ ⊗W .

3 Quantum mechanics

Now we have enough machinery to be able to appreciate how representation theory
and quantum physics interact. Every type of object we have discussed so far (groups,
vector spaces, representations, etc.) all have specific interpretations in the context of
quantum physics. Of course, they have meaning in classical physics as well, but the
biggest application of representation theory lies solidly in the quantum world. In fact
one can say that

quantum mechanics is essentially linear algebra, and quantum mechanics in
the presence of symmetries is essentially representation theory.

3.1 Quantum states

What is a quantum state? First we must understand classical states. Suppose we have
a point particle moving around on a unit circle. Then its classical state is completely
specified by a unit vector x and its velocity v (which must be perpendicular to x). We
don’t need to specify its acceleration, jerk, etc. because Newton’s second law F = ma
computes its acceleration from the information of what forces are applied to it. So the
classical state of the particle is the pair (x,v). The set of such pairs of vectors, where
x is a unit vector and v is perpendicular to x, is called the state space.

The double slit experiment showed us that quantum states are very different from
classical states. In essence, the experiment showed that it is possible for a particle to
“interfere” with itself, in the same way that waves can. The only way this can happen
is if the state of the particle were actually composed of several pieces. If we write |x〉
to denote the state where the particle is at position x, then we can consider states like

1

2
|x〉+

1

2
|y〉 , (5)

which means that the particle has a 50% chance of being at x and a 50% chance of
being at y. (In fact, to make the particle behave like a wave, we should assign it some
probability f(x) of being in any state |x〉, for all real numbers x. This function f is the
wave function.)

The takeaway from the double slit experiment is that quantum states, unlike classical
states, can be added together (with some probabilities) to create a superposition of
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states. For example, the state (5) is very different from the state |x+ y〉, whatever
x+ y means. This means that whatever the quantum state space is, it has a notion of
addition, and also scalar multiplication.

Definition 3.1. The state space of a quantum system is sometimes called the Hilbert
space of the system, and denoted H. It is an axiom of quantum mechanics that H
must be a vector space. A quantum state is a vector in H.

There are two technicalities arising from how to interpret the scalar coefficients as
probabilities.

1. For mathematical simplicity, we allow scalars to be complex numbers. A coeffi-
cient of z = x + iy ∈ C is actually interpreted as the probability |z|2 = x2 − y2,
not just z. This is called Born’s rule. We call the original z the amplitude.
Born’s rule is usually taken as an axiom of quantum mechanics; I don’t know any
satisfying explanation for why the quadratic function |z|2 should be the proba-
bility as opposed to e.g. some linear function like x + y, other than that in the
wavefunction language it is what agrees with experiment.

2. How do we interpret a state like |x〉 + |y〉, where the total probability is 2? The
answer is to ignore normalization, in the sense that we look at the coefficient of
each term, and divide it by the total of all coefficients. So for all intents and
purposes, |x〉+ |y〉 is exactly the same state as (5), which should be written as

1√
2
|x〉+

1√
2
|y〉 .

Mathematically, the operation of declaring vectors in a vector space equivalent up
to multiplying by an overall scalar is called taking the projectivization of the
vector space H, denoted PH. Technically the quantum state space is PH, not H.

Example 3.2. Consider a quantum particle on the circle S1. Let ψ be its wavefunction:
given a point z ∈ S1, the quantity ψ(z) is the probability that the particle is at the
point z. Note that whatever function ψ is, the total probability∫

S1

|ψ(z)|2 dz

should be a finite number (so we can normalize by it). This quantity is called the L2

norm of ψ and written ‖ψ‖L2 . The Hilbert space in this case is therefore

H = L2(S1) =
{
ψ : S1 → C

∣∣ ‖ψ‖L2 <∞
}
.

In general, a particle in a space X should have Hilbert space L2(X), whose elements
are complex-valued functions on X with finite L2 norm.
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3.2 Symmetries

Many physical systems have symmetries. Suppose there is a symmetry group G of a
given physical system. Then, in particular, its Hilbert space H must also be acted on
by G. This means H is a representation of G, and decomposes into irreps:

H = H1 ⊕H2 ⊕ · · · .

Like with summation notation
∑

, this is sometimes written

H =
⊕
n

Hn.

Irreps are physically very meaningful, because for a given system, different types of
particles belong to different irreps.

Example 3.3. The circle S1 has a rotational symmetry, forming a symmetry group
called U(1). This is the group consisting of elements eiθ for 0 ≤ θ < 2π, with (complex)
multiplication as the group operation. Then H = L2(S1) becomes a representation of
U(1), where

eiθ · ψ(z) = ψ(e−iθz).

How does L2(S1) decompose as a U(1)-representation? Since U(1) is abelian, Schur’s
lemma says all irreps must be one-dimensional. So an irrep is spanned by a single
function ψ(z). This means that to find an irrep, we must look for a function ψ(z) such
that

ψ(e−iθx) = αψ(x) for all θ, (6)

for some constant α (which may depend on θ). For clarity, note that any point z ∈ S1

is of the form eiφ, so we may as well write ψ(φ) instead of ψ(z). In this notation, the
equation is

ψ(φ− θ) = αψ(φ) for all θ.

Exercise. Show that, for any given integer n, the function ψ(eiφ) = einφ satisfies the
property (6).

It follows that irreps of L2(S1) are the 1-dimensional subspaces spanned by the
functions ψ(eiφ) = einφ. We denote these subspaces by Ceinφ. Putting everything
together yields the following.

Proposition 3.4 (Fourier decomposition). As U(1)-representations,

L2(S1) =
⊕̂

n∈Z
Ceinφ.

The hat on top of ⊕ is a technicality arising from L2(S1) being infinite-dimensional;
since we mostly work with finite-dimensional reps, we won’t comment on what the hat
means.
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Proposition 3.4 is quite powerful. Note that a function ψ(φ) on the circle S1 can be
interpreted as a function f(x) which is 2π-periodic, i.e. one which satisfies

f(x+ 2π) = f(x).

Then the proposition says any 2π-periodic function can be decomposed as a sum of the
form

f(x) =
∑
n∈Z

αne
inx

for some coefficients αn. This is known as Fourier decomposition, and the αn are
called Fourier coefficients. The decomposition of L2(S1) into irreps is essentially the
theory of Fourier series.

Exercise. The sphere is denoted S2, and its group of (rotational) symmetries is called
SO(3). (Another name for U(1) is SO(2), and in general SO(n + 1) acts on the n-
dimensional sphere Sn.) We can consider the decomposition of L2(S2) into irreps,
as SO(3) representations. Unlike irreps in L2(S1), the functions which form irreps in
L2(S2) are not simple. They are called spherical harmonics.

1. Read a little about spherical harmonics to convince yourself that they aren’t simple
functions.

2. Explain why rep theory tells us we shouldn’t expect spherical harmonics to be nice
simple functions. (Hint 1: Schur’s lemma. Hint 2: there is a crucial difference
between U(1) and SO(3) as groups.)

Note that for L2(S1), each irrep is classified by an integer n. For L2(S2), it turns out
we need two integers m, ` to classify vectors in irreps; this is why spherical harmonics
are functions called Y m

` . This is because the irrep labeled by ` is actually (2` + 1)-
dimensional, so m = 1, 2, . . . , 2`+ 1 labels which basis vector we pick in the irrep. the
In general, in the context of quantum physics, the data needed to specify which irrep
to consider are called quantum numbers.

Example 3.5 (Atomic orbitals). Orbital states of electrons in atoms are described by
spherical harmonics and the rep theory of SO(3) acting on L2(S2), because electrons
orbit in spherical shells around the nucleus. In addition to the quantum numbers ` and
m, electrons have an additional quantum number n, called the energy . Just like how
1 ≤ m ≤ 2`+1, we have 0 ≤ ` < n. In physics/chemistry we call these irreps subshells
and give them specific names.

1. The 1s subshell corresponds to the irrep labeled by n = 1 and ` = 0, which has
dimension 2` + 1 = 1. Therefore there is only one state called 1s inside the 1s
orbital. In general this is true for the 2s, 3s, . . . orbitals too.

2. The 2p subshell corresponds to the irrep labeled by n = 2 and ` = 1, which has
dimension 2`+ 1 = 3. Hence we have states called 2p1, 2p2, 2p3.
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3. The 3d subshell corresponds to the irrep labeled by n = 3 and ` = 2, which has
dimension 2`+ 1 = 5. Hence we have states called 3d1, 3d2, 3d3, 3d4, 3d5.

Electrons prefer to be in the lowest-energy unoccupied state. The energy of a state in a
subshell is primarily determined by n, but also depends on ` due to screening effects.
The ordering in which states are actually filled up is

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, . . . .

3.3 Observation

Part of what makes quantum mechanics unintuitive is that superpositions of states exist.
The other part is the idea that

measuring something about the state of a system changes the state of the
system.

This is known as wavefunction collapse. Its most famous experimental evidence is in
the double slit experiment, where it was found that if sensors were installed at the slits
to record which slit the photon actually went through, the interference effect disappears.
In layman’s terms, “observing” the photon caused it to “collapse” from being a wave
to being a particle. However, there is a more paradigmatic experiment which better
illustrates the concept.

Stern–Gerlach experiment. In 1922 Stern and Gerlach shot silver atoms through
a strong (vertical) magnetic field. If the atoms were classical particles, modeled as
(spinning) magnetic dipoles, their interaction with the magnetic field means they would
be deflected away from their original path by a (vertical) distance which depends on
the orientation of the dipole. In particular, one expects a continuous distribution in the
angle of deflection. The actual result is that all atoms were deflected by exactly either
half a unit up or down, with no other possibilities.

y

|↑y〉

|↓y〉

Schematically we represent this setup as a “Stern–Gerlach box” in the y direction. It
turns out many elementary particles, including the silver atoms, have a quantum number
called spin whose value is 1/2, with the corresponding irrep being two-dimensional. The
two states |↑y〉 and |↓y〉, called “spin up” and “spin down” in y, form a basis of this
irrep. Later we’ll see how spin arises as the quantum number for a more complicated
relative of the SO(3) symmetry of space, called SU(2).

We can also imagine a Stern–Gerlach box in the x direction, i.e. so that the magnetic
field is horizontal. As with the y box, half the incoming particles will be spin up in x,
denoted |↑x〉, and the other half will be spin down in x, denoted |↓x〉. Schematically we
draw this as follows.
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x

50% |↑x〉

50% |↓x〉
y

50% |↑y〉

50% |↓y〉

A more interesting configuration is to shoot only |↑y〉 states into a x box. If we think
classically and imagine the particles as magnetic dipoles again, just knowing that the
y component of the dipole moment points up tells us nothing about the x component.
So we expect a half/half outcome, which is what we get.

y

x50%

50%

25%

25%

Just as a sanity check (which will be important later), we can shoot only |↑y〉 states
into another y box.

y

y50%

50%

50%

0%

So far there is no quantum weirdness, because we have chosen to do fairly simple se-
quences of measurements. The simplest configuration where something strange happens
is the following one.

y

x50%

50%

y25%

25%

??

??

One expects 25% and 0%, because we have already measured y and kept only the |↑y〉
particles. But in reality, we get 12.5% and 12.5%. It is as if the x measurement
“destroyed” the state of being spin up in y.

The only consistent way to deal with such phenomena is to accept, as one of the
axioms of quantum mechanics, that if a measurement tells us a system is in a state
|v〉, then even if the system were in a superposition before the measurement, after the
measurement it is firmly, 100% in the state |v〉. We call these pure states, as opposed
to mixed states like

a |v〉+ b |w〉 .
The probability amplitude that such a mixed state becomes a pure state |u〉 upon
measurement is given by the inner product

a〈u|v〉+ b〈u|w〉.
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This can be thought of as the “dot product” of vectors, for finite-dimensional Hilbert
spaces.

In the context of the Stern–Gerlach experiment, recall that we said |↑y〉 and |↓y〉
form a basis for the two-dimensional irrep containing the state. It turns out that

|↑x〉 =
1√
2
|↑y〉+

1√
2
|↓y〉

|↓x〉 =
1√
2
|↑y〉 −

1√
2
|↓y〉 .

Measurement of spin in y is incompatible with measurement of spin in x, because these
are two different bases!

Exercise. The mathematical way of expressing how measurements work encodes a
measurement as a linear transformation A : H → H. If H is finite-dimensional, A can
be thought of as a matrix. Then possible values of the measurement, along with the
resulting collapsed state, are encoded as pairs of eigenvalues and eigenvectors of A.
Read a little about how this works, and write down (in the standard basis) the matrices
corresponding to the Stern–Gerlach y and x boxes.

3.4 Entanglement

If the Hilbert space of a one-particle system is H, what happens if we consider a system
with two such (identical) particles? In particular, what is the Hilbert space of the two-
particle system? The naive guess is H⊕H, the direct sum, which turns out to be wrong.
The right answer is the tensor product H⊗H.

Example 3.6. Consider a particle on the real line R. Its Hilbert space is

H1-particle = L2(R),

consisting of states |ψ〉 where ψ(x) is a wavefunction. If we have two particles on the
real line, the composite state should be some wavefunction ψ(x, y) which depends on
both the position x of the first particle and the position y of the second particle. So we
should have

H2-particle = L2(R2).

One can show mathematically that

L2(R2) = L2(R)⊗ L2(R).

(This is true more generally for L2(X × Y ), not just R2)

The structure of the tensor product H⊗H has some interesting consequences when
we think about measurement. Consider the states in the Stern–Gerlach experiment,
namely the two-dimensional H for a spin-1/2 particle. For simplicity fix either the
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x basis or the y basis, and write |↑〉 and |↓〉 as a basis for H. Then a basis for the
two-particle Hilbert space is

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 .
Here |↑↑〉 means |↑〉 ⊗ |↑〉. Now imagine constructing a superposition

1√
2
|↑↑〉+

1√
2
|↓↓〉 .

This is called a Bell state, which is where the two particles are “maximally entangled”.
Quantum entanglement is the general term used when the state of one part of the
system is not independent of the state of another part.

To understand what this means, imagine creating such an entangled state in the lab
and then separating the two particles by a very large distance, e.g. by putting the other
particle in a different galaxy. When we measure the particle in the lab, as usual we
have a 50% chance of getting spin up or down. But regardless of what result we get, the
moment we perform the measurement we know the other particle must be in the same
state, because of wavefunction collapse. This collapse of the state of the other particle
happens instantaneously, without reference to the speed of light. Such a phenomenon
was first considered by Einstein, Podolsky, and Rosen in 1935, and was known as the
EPR paradox because it seems to involve faster than light effects, contradicting the
theory of relativity.

Exercise. Convince yourself that the EPR paradox is not actually a paradox, because
no information is being transmitted faster than light. (Hint: imagine trying to use an
entangled pair to communicate; how do you control what information is being received
on the other side?)

3.5 Time evolution

Given a state |v〉 ∈ H, how do we evolve it forward in time? Suppose we want to move
forward in time by t units. Then there must be some operator Ut : H → H which takes
a state and produces the new state after time t.

• Since H is a vector space, Ut should preserve this structure. So Ut is a linear
operator.

• Since quantum states are supposed to be normalized to 1, i.e. have total proba-
bility 1, the time evolution operator Ut should not change the norms of vectors.

• We should have UtUs = Ut+s.

Definition 3.7. Working with vector spaces and norms over C, a linear operator which
preserves norms of vectors is called unitary. The space of all unitary operators on a
vector space V is denoted U(V ), or U(n) if dimV = n <∞.
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Hence the time evolution operators Ut are a collection of unitary operators satisfying
UtUs = Ut+s for all t, s ∈ R. Such a collection of operators forms a subgroup of the
group of all unitary operators. This subgroup contains elements which are specified by a
single parameter t. In general, such subgroups are called one-parameter subgroups.

Proposition 3.8. All one-parameter subgroups of U(V ) are of the form

Ut = exp(iHt)

for some linear (but not unitary) operator H : V → V .

Here when we write the exponential of a matrix, we mean to take the matrix expo-
nential. This just means to write exp(x) as the series 1 + x + x2/2 + · · · , and to plug
in the matrix into the series.

Definition 3.9. The matrix H is called the Hamiltonian of the quantum system, and
governs its time-evolution.

The way to summarize all this is to view the state |v〉 of the system as a function
of time, i.e. |v(t)〉, and to take as an axiom of quantum mechanics that

i
d

dt
|v(t)〉 = H |v(t)〉 ,

called the Schrödinger equation. This is a differential equation for the unknown v(t),
and has the unique solution

|v(t)〉 = eiHt |v(0)〉 .
In our notation, this is exactly saying the time-evolution operator is Ut = eiHt.

Suppose now that the quantum system has a G-symmetry, so H is a representation
of G. Then the time evolution operator Ut should preserve the symmetry, in the sense
that

Ut(g · |v〉) = g · (Ut |v〉).
By definition, this means Ut is an intertwiner. One way to think about this is to
remember the action of g is by linear operators. If φ : G → GL(H) is the rep, then Ut

being an intertwiner means it commutes with all the operators φ(g).
Schur’s lemma says intertwiners H → H cannot do very much beyond multiplying

irreps by scalars. Since we normalize states, multiplication by an overall scalar does not
change states. Hence if we decompose

H =
⊕
n

Hn

into irreps, then Ut preserves each Hn. Namely, the type of a state, where “type” here
means which irrep of this decomposition it lives in, is unchanged by time evolution.

This argument can be repeated for any linear operator A : H → H which commutes
with the Hamiltonian H (and therefore with Ut). Quantities and measurements arising
from such operators A are therefore unchanged over time, and give rise to conservation
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laws. For example, the eigenspaces of H have eigenvalues which are the energies of
those states. That H commutes with itself says that energy is conserved over time.

The only way to change the “type” of a state is via an operator H → H which is not
an intertwiner. In other words, only operators which do not commute with H can cause
energy levels, or other conserved quantities, to change. In the symmetry group SO(3, 1)
of spacetime, it turns out Lorentz boosts do not commute with H in general. Hence the
apparent energy of a system changes depending on which relativistic reference frame we
use. This forms the basis for mass-energy equivalence in the theory of relativity.

4 Lie groups and their representations

The symmetry groups we encountered so far in our discussion of physics were all infinite
groups. This is typical in physics because symmetries in the real world are usually
continuous. In fact, these infinite symmetry groups are usually have more structure
than just the group structure: they are also geometric spaces. For example, we saw that
U(1), the group of rotational symmetries of the circle S1, is essentially S1 itself with a
group operation. So first, we need to clarify what is meant by “geometric space”.

Definition 4.1. A real (or complex) (smooth) manifold M is a space which is locally
isomorphic to Rn (or Cn). Here, “locally” means if we zoom in far enough around any
point in M . The dimension of the manifold is the integer n.

Example 4.2. To get a feel for what it means to be a smooth manifold, here are some
two-dimensional smooth manifolds (also called surfaces):

1. (real) the sphere S2;

2. (real) the torus, i.e. donut, T 2;

3. (real) the real plane R2;

4. (complex) the complex plane C2;

5. (complex) the complex version of the sphere, given by x2 + y2 + z2 = 1 in C3.

Note that since C ∼= R2, a complex manifold of dimension n is also a real manifold of
dimension 2n.

Example 4.3. Here are some (real) spaces which are not smooth surfaces:

1. (wrong dimension) R3, since it has the wrong dimension;

2. (singularity) the quadric cone x2 + y2 = z in R3, since no region around the cone
point (0, 0, 0) looks anything like R2;

3. (boundary) the square [0, 1]× [0, 1], because zooming in on points in the boundary
cannot yield anything like R2, which has no boundary.
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Definition 4.4. A Lie group is a group which is also a smooth manifold.

To understand more deeply the symmetries of nature, we must therefore understand
the representation theory of certain Lie groups. The general theory for arbitrary Lie
groups is fairly hard. First we’ll restrict our attention to certain types of Lie groups.
Then we’ll see that studying their reps is almost the same as studying the reps of an
associated object called the Lie algebra.

4.1 Matrix Lie groups

Most Lie groups arising in nature come from matrices. More precisely, most of them
arise as subgroups of GL(n), the group of all invertible n×n matrices. Such Lie groups
are called matrix Lie groups. (Since they are all Lie groups on their own, they are
all Lie subgroups of GL(n), not just subgroups.)

Example 4.5. Let GL(n,R) be the group of invertible real n× n matrices.

• The orthogonal group O(n) is the Lie subgroup of all matrices preserving the
norm ‖v‖2 = v21 + · · ·+ v2n of vectors. Equivalently, it is all matrices A such that
ATA = I. These matrices are called orthogonal.

• The special linear group SL(n,R) (or SL(n) when it is clear from context what
scalars we use) is the Lie subgroup of all matrices with det A = 1.

• The special orthogonal group SO(n) is the Lie subgroup which is the inter-
section O(n) ∩ SL(n), i.e. all orthogonal matrices with determinant 1. We saw it
before as the rotational symmetry group of the sphere Sn−1.

Example 4.6. Let GL(n,C) be the group of invertible complex n× n matrices.

• The unitary group U(n) is the Lie subgroup of all matrices preserving the norm
‖v‖2 = |v1|2 + · · ·+ |vn|2, where |z|2 = zz̄ for complex numbers. Equivalently, it
is all matrices A such that A†A = I.

• The definitions of SL(n,C) and SU(n) are analogous to the real case.

To see why these matrix groups are actually Lie groups, i.e. why they are smooth
manifolds, we start with GL(n,R). By taking an n×n matrix and “flattening” it into an
n2 × 1 vector, we can interpret the set of invertible matrices as a subset of Rn2

, which
is clearly a smooth manifold. Only very special matrices are not invertible, namely
those with det = 0, and removing them from Rn2

is like removing a curve from R2: the
resulting space is still a smooth manifold, of the same dimension. Of course, the same
argument works with GL(n,C).

For other matrix Lie groups, we view them as being “cut out by equations” in the
smooth manifold GL(n). For example, SL(n) ⊂ GL(n) is the subset defined by the
equation det A = 1, just like S1 ⊂ R2 is defined by x2 + y2 = 1.
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Proposition 4.7 (Regular value theorem). Let M be a smooth manifold of dimension
n. If a function f : M → R has non-zero gradient ∇f at all points where f = 0, then
the subset of all such points is a smooth submanifold of dimension n− 1.

Applying the regular value theorem to the function f(A) = det A − 1 in GL(n)
immediately shows that SL(n) is also a manifold, but of dimension

dimR SL(n) = dimR(GL(n))− 1 = n2 − 1.

We write dimR to clarify that we mean real dimension.

Exercise. Check that the equation ATA = I defining O(n) is actually a system of
n(n+ 1)/2 distinct equations. Conclude that

dimRO(n) =
n(n− 1)

2
.

Exercise. Explain why

dimR SL(n,R) = dimR GL(n,R)− 1

but dimR SO(n) = dimRO(n).

Exercise. Show that U(1) ∼= SO(2), as Lie groups. Compute that dimR U(n) = n2 and
show that U(n) and SO(n+ 1) are not isomorphic for n > 1.

4.2 Tangent spaces

Studying representations of Lie groups is much harder than studying representations of
finite (or discrete) groups. This is because now there are infinitely many elements in
the group, which interact with each other in some highly non-linear way. For example,
SO(2) is the same as a circle, geometrically. But Lie groups are very special geometric
spaces. The key observation is the following.

Lie groups are homogeneous spaces: no matter where in the space you are,
the surrounding region looks exactly the same.

In technical terms, this is because given two points g1, g2 ∈ G, there is a symmetry of G
itself given by multiplying (in G) by g2g

−1
1 . This multiplication transports everything

around the point g1 to stuff around the point g2.
It should not be too surprising, then, that to study a Lie group G is nearly the same

as studying some region U around the identity element e ∈ G. In fact, by the same
argument, we can make U as small as we want. By shrinking U further and further,
at some point it becomes basically a bent piece of the ordinary flat space RN . By that
point, U is indistinguishable from the “linear approximation” to G at e, which is an
example of a tangent space.

Definition 4.8. Given a manifold M , the tangent space at p ∈M is the space of all
tangent vectors at p. This tangent space is written TpM .
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Example 4.9. Consider the circle S1, thought of as the unit circle in the plane. The
tangent space at the point p = (1, 0) is a vertical line. We say

T(1,0)S
1 = R1.

Note that S1 ∼= SO(2) is also a Lie group, and therefore homogeneous. This is reflected
in how actually TpS

1 = R1 for any point p ∈ S1.

The tangent space TpM is the linear approximation to the manifold M at the point p.
It generalizes the idea of the tangent line to a curve, from calculus, to higher dimensions.
The following observation is very important.

Proposition 4.10. TpM is a vector space of dimension dimM .

One way to compute TpM is to find all the possible tangent vectors at p. If we
consider a curve x(t) such that x(0) = p, i.e. passing through p at time t = 0, then
∇x(0) is a tangent vector at p.

Example 4.11. For the circle S1, since all points are of the form eiθ, curves passing
through p = (1, 0) are of the form

z(t) = eif(t)

for any function f : R→ R such that f(0) = 0. Hence

z′(t) = eif(t)f ′(t)

and plugging in t = 0 gives z′(0) = f ′(0). Since f can be any function, f ′(0) can be any
real number. So the space of all possible tangent vectors is R, exactly as we saw earlier.

One can perform this exact same procedure for Lie groups. We’ll do it for matrix
Lie groups, where we can start by finding Te GL(n) and use it to describe TeG for other
matrix Lie groups G ⊂ GL(n). Note that for matrix Lie groups, the identity element is
the identity matrix I.

Proposition 4.12. The tangent space Te GL(n) is the vector space of all n×n matrices,
called Matn.

Proof. We saw earlier that dim GL(n) = n2. It is not hard to see that Matn ∼= Rn2
also

has dimension n2. Hence if we can show that any n × n matrix can arise as a tangent
vector in Te GL(n), then we have shown Te GL(n) = Matn.

Let X be an n×n matrix. Consider the matrices A(t) = I+tX. For small enough t,
these matrices are all invertible. So A(t) is a curve in GL(n) passing through A(0) = I,
which is the identity element of the group. Since

A′(0) = X,

it follows that X is a tangent vector.
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Now suppose G ⊂ GL(n) is a matrix Lie group. It will consist of invertible n × n
matrices satisfying some conditions, expressed as certain equations, e.g. ATA = I for
the orthogonal group O(n), or det(A) = 1 for SL(n). Each such constraint on the group
element A puts a corresponding constraint on the tangent vector X = A′(0), given
precisely by the derivative of the equation.

Example 4.13. Consider the group O(n) of orthogonal matrices. Let A(t) be a curve
whose tangent vector at t = 0 is X. Since A(t) is a curve in O(n),

A(t)TA(t) = I

for all t. The derivative of this equation with respect to t, by the product rule, is

A′(t)TA(t) + A(t)TA′(t) = 0.

At t = 0 we have A′(0) = X and A(0) = I. Hence plugging in t = 0 gives

XT + X = 0.

It follows that
TeO(n) = {X ∈ Matn(R) | XT = −X}.

Such matrices are called skew-symmetric, because symmetric matrices are those where
XT = X (without the minus sign).

Exercise. Differentiate the constraint for U(n) to show

TeU(n) = {X ∈ Matn(C) | X† = −X}.

These are skew-Hermitian matrices.

Exercise. It is a fact that, as polynomials in the variable t,

det(I + tX) = 1 + tr(X)t+ · · ·

where the dots are higher-degree terms in t. Use this to show

Te SL(n) = {X ∈ Matn | tr(X) = 0}.

These are traceless matrices.

4.3 Lie algebras

To better study the tangent spaces TeG, we need to be more careful about which curves
x(t) we use. It turns out that, for theoretical purposes, there are better curves to use
than things like I + tX. Ideally we want some curve x(t) such that

1. x′(0) = X, but more importantly,

2. x(t) ∈ G for all t ∈ R, not just for small enough t around t = 0.
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For example, if in GL(1) we wanted a curve with tangent vector
(
−1
)
, it is true that

for sufficiently small t the curve 1 + t · (−1) is invertible, i.e. non-zero. But once we get
to t = 1, suddenly the curve “falls outside” of GL(1).

Proposition 4.14. For matrix Lie groups G, the curve

x(t) = exp(tX)

has these two properties, where exp is the matrix exponential.

Definition 4.15. The matrix exponential is analogous to the exponential of a scalar,
which as a series is

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · .

The exponential of a matrix Z is obtained by plugging Z into this series:

exp(Z) = I + Z +
Z2

2!
+

Z3

3!
+ · · · .

For us, it is not important how to actually compute exp(Z); it suffices to know its
definition via series. Note that

exp(tX) = I + tX + · · · ,

where · · · are higher-degree terms in t which can be thought of as “corrections” to the
naive curve I + tX.

Exercise. Show that etAesA = e(t+s)A by matching coefficients in t.

Exercise. Show that eAeB 6= eA+B in general, by checking that the t2 terms don’t
match. (Hint: remember that in the expansion

(A + B)2 = A2 + AB + BA + B2

it is not true that AB = BA.)

Now remember that Lie groups are more than just manifolds; they have a group
structure. Given two elements A,B ∈ G we can always multiply them to get AB.
What does this mean at the level of tangent vectors? In other words, given two curves
A(t) = exp(tX) and B(t) = exp(tY), we should be able to write

A(t)B(t) = exp(tX) exp(tY) = exp(Z(t))

for some matrix-valued function Z(t).

Proposition 4.16.

exp(tX) exp(tY) = exp
(
t (X + Y) + t2 (XY −YX) + · · ·

)
(7)

where · · · means higher-degree terms in t.
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Definition 4.17. The commutator or Lie bracket of two matrices X and Y is

[X,Y] = XY −YX.

So the t2 term in the formula (7) is exactly [X,Y]. If it and all other higher-
degree terms were zero, then the group multiplication would exactly become addition
in the tangent space. Hence the t2 and higher-degree terms are actually measuring
the discrepancy between G and its linear approximation TeG. The main contribution
to this discrepancy is measured by the commutator, and the commutator is the most
important structure on TeG.

Definition 4.18. A Lie algebra is a vector space V together with a commutator
operation [v,w] on vectors.

Example 4.19. The Lie algebra associated to a Lie group G is denoted g. In general,
Fraktur letters are used to denote Lie algebras: the Lie algebra of GL(n) is gl(n), the
Lie algebra of O(n) is o(n), the Lie algebra of SL(n) is sl(n), etc.

In other words, the tangent space g = TeG of a Lie group is not just a vector
space: it is a Lie algebra. The commutator turns out to capture everything about group
multiplication, not just the t2 term, because of the following (fairly deep) theorem.

Theorem 4.20 (Baker–Campbell–Hausdorff formula). All higher-order terms in (7)
can actually be written purely in terms of the commutator.

Because of this theorem, to understand representations of the Lie group G, it
(mostly) suffices to understand representations of its associated Lie algebra g. In some
sense, a Lie algebra representation is like a linear approximation to a Lie group repre-
sentation. This is why the two concepts are subtly different, as follows.

Definition 4.21. A Lie algebra representation is a homomorphism of Lie algebras

ρ : g→ gl(n) = Matn .

In English, this means an assignment of an n×n matrix (not necessarily invertible!) to
every element of the Lie algebra g, such that computing the commutator of X,Y ∈ g is
the same as computing the commutator of the matrices ρ(X), ρ(Y ).

4.4 SU(2) and SL(2,C)

It is highly instructive to see all this theory in the case of the Lie group SU(2). This is
because SU(2) is basically the simplest non-abelian Lie group (and also we’ll see later
that it is very important in physics). Recall that SU(2) consists of all complex 2 × 2
matrices A satisfying:

1. (special linear) det A = 1.

2. (unitary) A†A = I;
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Exercise (Lie algebra). Show that the Lie algebra su(2) consists of all 2× 2 matrices

X =

(
a b
c d

)
such that a+ d = 0 and (

ā c̄
b̄ d̄

)
= −

(
a b
c d

)
where x̄ means complex conjugation.

In other words, a = −d must be purely imaginary, and if b = β+iγ then c = −β+iγ.
Write a = iα so that d = −iα. Putting this together, all matrices in su(2) are of the
form

X = α

(
i 0
0 −i

)
+ β

(
0 1
−1 0

)
+ γ

(
0 i
i 0

)
(8)

for real scalars α, β, γ ∈ R. This is the proof of the following.

Proposition 4.22. The Lie algebra su(2), as a real vector space, has a basis

Z =

(
i 0
0 −i

)
, U =

(
0 1
−1 0

)
, V =

(
0 i
i 0

)
.

Exercise. Compute the commutation relations

[Z,U] = 2V, [U,V] = 2Z, [V,Z] = 2U. (9)

From the general theory we discussed, to understand the representation theory of
SU(2) is (mostly) the same as understanding the representation theory of su(2). From
the proposition and the exercise, an n-dimensional representation ρ : su(2) → Matn is
just a choice of three n× n matrices

ρ(Z), ρ(U), ρ(V)

which must satisfy the commutation relations (9). Abstractly, we think of su(2) as
the vector space spanned by symbols Z,U,V satisfying the prescribed commutation
relations.

Exercise. Check that the homomorphism ρ : su(2)→ Mat3 given by

ρ(Z) =

0 −2 0
2 0 0
0 0 0

 , ρ(U) =

0 0 0
0 0 −2
0 2 0

 , ρ(V) =

 0 0 2
0 0 0
−2 0 0


is a three-dimensional representation of su(2), sometimes called the spin-1 representa-
tion. Explain why it is an irrep.

Exercise. Explain why our construction of su(2) automatically gives a two-dimensional
representation, which is called the spin-1/2 representation. Explain why it is an irrep.
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Exercise (Hard). Find a four-dimensional irrep of su(2).

For convenience, and also because the general theory works out easier this way, we
will take the complex vector space with these basis elements Z,U,V. This means we
are allowed to take α, β, γ to be complex scalars in (8). Of course, this new vector space
is much bigger than the previous su(2). For example, it contains

iZ =

(
−1 0
0 1

)
,

which is not in su(2).

Definition 4.23. If V is a real vector space with basis {e1, . . . , en}, then the com-
plexification of V is often called VC and is defined as the complex vector space with
the same basis.

Exercise (Hard). Show that VC = V ⊗ C, viewing C as a two-dimensional real vector
space with basis {1, i}.

The representation theory of g is literally the same as the representation theory of
gC, as long as in the latter case we use complex vector spaces. In the case of su(2), we
can pick a slightly better basis for the complexification:

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

Exercise. Check that H,E,F can be written in terms of Z,U,V, and vice versa, using
complex scalars. Hence they form a basis of su(2)C. Then check the commutators

[H,E] = 2E, [H,F] = 2F, [E,F] = H. (10)

Exercise. Show that su(2)C ∼= sl(2,C).

It turns out that the commutation relations (10) for sl(2,C) are significantly better
to work with than the commutation relations (9) for su(2). In some sense, H can be used
to “label” vectors in a representation. Let V be a finite-dimensional irrep of sl(2,C),
and suppose v ∈ V is an eigenvector for H, namely

Hv = λv.

The eigenvalue λ is called the weight of v. Then, because of our very special choice of
basis for sl(2,C), the key observation is we can systematically create new vectors in V
with higher or lower weights.

Proposition 4.24. If Hv = λv, then the new vector w = Ev satisfies

Hw = (λ+ 2)w.
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Proof. Using the commutation relation [H,E] = 2E,

Hw = HEv = (2E + EH)v = 2w + Eλv = (2 + λ)w.

For this reason, E is often called a raising operator. Similarly, applying F lowers
the weight. It is no coincidence that we called H the same name as the Hamiltonian:
in physics, raising and lowering operators usually raise or lower the energy of a state,
and the energy is just the eigenvalue of the Hamiltonian.

Theorem 4.25. All k-dimensional irreps of sl(2,C) have a basis of the form

v, Fv, F2v, . . . , Fk−1v

where v has weight k − 1. Hence they are all isomorphic. In other words, sl(2,C) has
exactly one distinct irrep for every dimension k > 0.

Proof sketch. Let V be a finite-dimensional irrep. It turns out that H is always repre-
sented by a diagonalizable matrix, so V splits into eigenspaces:

V =
⊕
λ

Vλ.

Pick an eigenvector v with highest weight λ, so that there are no weights larger than λ
in this decomposition. Then Ev = 0, because otherwise it would be a vector with even
higher weight. Now consider the sequence

v, Fv, F2v, . . . . (11)

At some point, Fmw = 0. Otherwise we would keep producing distinct (linearly inde-
pendent) vectors in V , and V would be infinite-dimensional.

Suppose this process produced m + 1 < k vectors and we failed to generate the
remaining vectors in V . Then actually the sub vector space generated by the vectors in
(11) form a non-trivial sub-representation, contradicting that V is an irrep. Hence (11)
must span all of V , and therefore gives a basis of V .

The weight of v is computed as follows. Suppose Hv = λv. Then

0 = EFkv = (H + FE)Fk−1v = (λ− 2(k − 1))Fk−1v + FEFk−1v.

One can now repeat this process on EFk−1v, and so on. The end result is

0 = ((λ− 2(k − 1)) + (λ− 2(k − 2)) + · · ·+ (λ− 2 · 0)) v.

Since v 6= 0, it must be that

0 = kλ− 2
k(k − 1)

2
.

Solving, λ = k − 1.
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This theorem describes all irreps of sl(2,C). Namely, there is a k-dimensional one
for every positive integer k, and we visualize it as a sequence of eigenvectors of H related
by the raising and lowering operators E and F.

k − 1k − 3k − 5· · ·−k + 3−k + 1

FFFFF

EEEEE

4.5 Semisimple theory

This beautiful picture of how sl(2,C) looks actually generalizes to a fairly big class of
Lie algebras, called the semisimple Lie algebras. The idea is that

semisimple Lie algebras are built from many copies of sl(2,C), which can
interact with each other in some non-trivial but highly-restricted ways.

The smallest semisimple Lie algebra is sl(2,C). All others have higher dimension. So
there are multiple raising/lowering operators, denoted Eα and Fα as α ranges over
something called the root system. Similarly, there are multiple Hamiltonians Hα.

Exercise (Hard). Consider sl(3,C). By analogy with sl(2,C), write down a basis

H12,H23,E12,E13,E23,F12,F13,F23

for sl(3,C) such that:

1. {H12,E12,F12} is a copy of sl(2,C);

2. {H23,E23,F23} is a copy of sl(2,C);

3. {H13,E13,F13} is a copy of sl(2,C), where H13 = H12 + H23;

4. all the H commute with each other, i.e.

[H12,H23] = [H12,H13] = [H13,H23] = 0.

To understand an irrep V of sl(2,C), we decomposed V into eigenspaces for H, each
labeled by an eigenvalue λ. Now there are multiple Hα and they all commute, so we
can decompose V into eigenspaces for all of them. Each such eigenspace will be labeled
by eigenvalues (λα)α, one for each Hα. Such a collection of eigenvalues is still called a
weight.

Example 4.26. For sl(3,C), irreps are classified by two integers (k12, k13) (the eigen-
values of H12 and H23).

• E12 and F12 raises/lowers k12 by ±2.
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• E23 and F23 raises/lowers k23 by ±2.

• E13 and F13 raises/lowers (k12, k23) by (±1,±1).

Hence, to understand a semisimple Lie algebra g, it suffices to understand how all
these sl(2,C)’s are packaged together in g. It turns out one only needs to understand
the collection of sl(2,C)’s corresponding to linearly independent H’s. For example, in
sl(3,C), it suffices to understand how

{H12,E12,F12} and {H23,E23,F23}

interact. How {H13,E13,F13} fits into sl(3,C) is fully determined by this.

Definition 4.27. Let g be a semisimple Lie algebra, with a choice of linearly inde-
pendent Hamiltonians Hα. The Cartan matrix of a semisimple Lie algebra g is the
matrix C whose αβ-th entry is the scalar Cαβ such that

[Hα,Eβ] = CαβEβ.

Note that this immediately implies

[Hα,Eβ] = −CαβEβ.

Example 4.28. The Cartan matrix for sl(2,C) is the 1×1 matrix C =
(
2
)
, since there

is only one Hamiltonian H and [H,E] = 2E.

Exercise. Show that the Cartan matrix for sl(3,C) is

C =

(
2 −1
−1 2

)
.

Exercise (Hard). Show that the Cartan matrix for sl(4,C) is

C =

 2 −1 0
−1 2 −1
0 −1 2

 .

Any semisimple Lie algebra has an associated Cartan matrix, and the Cartan ma-
trix determines everything about the Lie algebra. From the general structure theory
of semisimple Lie algebras, Cartan matrices must satisfy certain crystallographic rela-
tions. These relations are very strict, to the point where it is straightforward to classify
semisimple Lie algebras by writing down all possible Cartan matrices. This is usually
expressed in a graphical form, as follows.

Definition 4.29. The Dynkin diagram associated to a Cartan matrix C is the graph
drawn as follows.

1. Draw a vertex corresponding to each row/column, i.e. each sl(2,C).
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2. Connect vertex i and vertex j with CijCji edges.

3. If Cij 6= Cji, label the edge(s) with an arrow pointing toward j if Cji > Cij , and
an arrow pointing toward i otherwise.

Example 4.30. Here are the Dynkin diagrams associated to sl(2,C) and sl(3,C).

Theorem 4.31 (Classification of semisimple Lie algebras). Every semisimple Lie alge-
bra is given by one of the following Dynkin diagrams.

An · · ·

Bn · · · >

Cn · · · <

Dn · · ·

E6, E7, E8 · · ·

F4 >

G2 <

Here, n is the number of vertices in the Dynkin diagram, also called the rank of the
Lie group/algebra. The A,B,C,D families are infinite and are called the classical Lie
groups/algebras. They are easy to describe as matrix Lie groups:

An = sl(n+ 1,C), Bn = so(2n+ 1,C), Cn = sp(2n,C), Dn = so(2n,C).

On the other hand, E,F,G are exceptional, and it is difficult to describe them in terms
of matrices. For example, although G2 is rank two, its smallest irrep is 7-dimensional.

The representation theory of semisimple Lie algebras is essentially a generalization
of the sl(2,C) picture. Every finite-dimensional irrep consists of “chains” of vectors
obtained by raising/lowering from a vector with highest weight.

Definition 4.32. A vector v ∈ V is highest weight of weight (λα)α if

Hαv = λαv, Eαv = 0

for all α. A representation V is a highest weight rep if it has a highest weight vector.

Theorem 4.33 (Reps of semisimple Lie algebras). Every finite-dimensional irrep of a
semisimple Lie algebra is a highest weight rep. Two such irreps with the same highest
weight are always isomorphic.

Hence to talk about a specific irrep of a semisimple Lie algebra, it suffices to specify
a highest weight. For sl(2,C), this means to specify an integer k ≥ 1. For sl(3,C), this
means to specify a pair of integers (k1, k2) with k1, k2 ≥ 1.
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5 Particle physics

It is time to put together all the theory we have learned, in order to discuss modern
particle physics. The current state-of-the-art model is called the standard model.
From a representation-theoretic perspective, there is a 1-particle state space

HStandard Model = Hquarks ⊕Helectron ⊕ · · ·

consisting of all known fundamental particles, andH is a representation of some group G
which represents all known symmetries in nature obeyed by the fundamental particles.
This means we must identify all the relevant symmetries. Such symmetries come in two
types: spacetime symmetries and gauge symmetries. So H will be a rep of a huge group

GStandard Model = Gspacetime ×Ggauge.

Each G-irrep in H is a fundamental particle, and is therefore labeled by quantum
numbers for all the different “Hamiltonians” H in G. We’ll see that these quantum
numbers are:

• spin, coming from the group SO(3, 1) of rotational symmetries in Gspacetime;

• energy/momentum, coming from the group R3,1 of translations in Gspacetime;

• hypercharge, weak isospin, and color, coming from the gauge group Ggauge =
U(1)× SU(2)× SU(3).

5.1 Spacetime symmetries

Definition 5.1. Let R3,1 denote a four-dimensional vector space with coordinates
(x, y, z, t) where lengths of vectors are measured using the Lorentzian norm

‖v‖23,1 = x2 + y2 + z2 − t2.

(The superscript in R3,1 comes from there being 3 plus signs and 1 minus sign.) In the
same way that orthogonal group O(n) is the Lie group of all matrices preserving norms
in Rn, define the Lorentz group O(3, 1) to be the Lie group consisting of all 4 × 4
invertible matrices preserving the Lorentzian norm ‖v‖2.

That (flat) spacetime is R3,1 instead of R4 is Einstein’s great insight, forming the
basis for the theory of special relativity. Hence we should think of O(3, 1) as the group
of “relativistic” rotational symmetries. A caveat is that symmetries should preserve the
orientation of space(time), so actually we want to take SO(3, 1) instead of O(3, 1). This
has to do with preserving left- vs right-handedness.

Definition 5.2. The Poincaré group is the Lie group of all symmetries of spacetime,
generated by SO(3, 1) and all translations (in both space and time).
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Since translations all commute with each other and the representation theory of
abelian groups is not very interesting, we’ll focus on the SO(3, 1) part of the Poincaré
group. There is a subgroup SO(3) ⊂ SO(3, 1) which consists of rotations of just the
space component R3. This is ordinary rotational symmetry. One can compute that

dim so(3, 1)− dim so(3) = dim so(4)− dim so(3) = 3,

so there is an additional 3-dimensional collection of “relativistic rotations” which mix
space and time. These are Lorentz boosts.

Exercise. Show that in R2, the rotations

J(θ) =

(
cos θ sin θ
− sin θ cos θ

)
are the elements of SO(2), by explicitly checking that ‖J(θ)v‖2 = ‖v‖2. Analogously,
show that in R1,1, the “Lorentz boosts”

K(θ) =

(
cosh θ sinh θ
sinh θ cosh θ

)
are the elements of SO(1, 1), by explicitly checking that ‖K(θ)v‖21,1 = ‖v‖21,1. Here sinh
and cosh are the hyperbolic sine and cosine.

Exercise (Hard). Use the preceding exercise to write down matrices for:

• the three rotations Jx(θ),Jy(θ),Jz(θ) around x, y, z in SO(3, 1);

• the three Lorentz boosts Kx(θ),Ky(θ),Kz(θ) along x, y, z in SO(3, 1).

Differentiate these generators at θ = 0 to get a basis jx, jy, jz,kx,ky,kz for the Lie
algebra so(3, 1). Check that their commutators are

[jx, jy] = jz, [kx,ky] = −jz,

[jx,ky] = kz, [jy,kx] = −kz,

[jx,kx] = 0,

and all cyclic permutations of (x, y, z) thereof.

As with su(2) vs sl(2,C), we should complexify so(3, 1) to get so(3, 1)C. After
complexification, i.e. after permitting the use of complex scalars, a clever change of
basis to take is

Ak =
1

2
(Jk + iKk), Bk =

1

2
(Jk − iKk).

This basis is nice because the A’s become “unrelated” to the B’s, as can be seen by
checking commutators.
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Exercise. Check that

[Ax,Ay] = iAz, [Bx,By] = iBz, [Ax,Bx] = 0 (12)

and all cyclic permutations of (x, y, z) thereof.

Proposition 5.3.
so(3, 1)C ∼= sl(2,C)⊕ sl(2,C).

Proof. The commutation relations (12) show that the A form a copy of su(2)C, by
comparing with the commutation relations (9). (One can always rescale the basis to
get rid of scalars.) The complexification is necessary because we are allowing complex
scalars. Finally, we showed previously that su(2)C ∼= sl(2,C). Hence the A form a copy
of sl(2,C), and so do the B.

Since irreps of sl(2,C) are specified by a single number k, it follows that irreps of
so(3, 1)C are specified by a pair of numbers k1, k2. These numbers are known as spin.

5.2 Spin: fermions and bosons

Recall that we classified all irreps of sl(2,C): there is one for every dimension k ≥ 1,
consisting of a chain of states which can be raised or lowered by E and F.

Definition 5.4. The k-dimensional irrep of sl(2,C), which has highest weight vector
of weight k − 1, is called the spin (k − 1)/2 irrep.

A fundamental particle is an irrep V in the standard model state space H. In
particular, V is a representation of the group of spacetime symmetries sl(2,C)×sl(2,C).
Hence, in addition to other quantum numbers, V is labeled by two spins sL and sR.
(The L and R stand for “left” and “right”.)

Definition 5.5. A fundamental particle V is a left-handed Weyl spinor if (sL, sR) =
(1/2, 0), and similarly is right-handed if (sL, sR) = (0, 1/2).

Note that this whole business with having both sL and sR arises only because we
take relativity into account, so that SO(3, 1) is the rotational symmetry group. If we
neglect relativity, then SO(3) is the rotational symmetry group, and one can show

so(3)C = su(2)C = sl(2,C).

Then there is only one spin s.

Definition 5.6. For convenience, in the relativistic setting, we say that the spin (sL, sR)
irrep of so(3, 1)C has spin s = sL + sR.

All known matter particles, like electrons and quarks, have spin 1/2 in this sense.
Since both (1/2, 0) and (0, 1/2) have spin 1/2, this means all matter particles come in
two flavors: left- and right-handed. So there is a “left-handed electron” and a “right-
handed electron”.
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Spin is deeply related to the Pauli exclusion principle. To understand this, we take a
short detour. Given a specific fundamental particle, we can take two of it and consider
a two-particle state v⊗w. This is distinct from w⊗ v, but only barely. Swapping two
identical particles should not change any observable quantity of the system, so at least

‖v ⊗w‖2 = ‖w ⊗ v‖2.

This means that v ⊗w = eiθ · (w ⊗ v) for some θ. In other words, swapping particles
multiplies the state by eiθ. Swapping twice multiplies by e2iθ. But swapping twice
returns to the original state, so e2iθ = 1. It follows that θ = 0, π, and so

v ⊗w = ±w ⊗ v.

Definition 5.7. Given a specific kind of fundamental particle:

1. if v ⊗w = +w ⊗ v, the particle is a boson;

2. if v ⊗w = −w ⊗ v, the particle is a fermion.

The distinction between bosons and fermions is extremely important, because of the
case when v = w. A fermionic particle must then satisfy

v ⊗ v = −v ⊗ v,

and the only way for this to happen is if v ⊗ v = 0. In other words, it is impossible to
have two fermionic particles in exactly the same state. This is often stated as the Pauli
exclusion principle. On the other hand, there can be many bosons all in the exact
same state.

Theorem 5.8 (Spin-statistics theorem). Particles with integer spin are bosons, and
particles with half-integer spin are fermions.

Since all (known) matter particles are spin 1/2, they must all obey the Pauli exclu-
sion principle.

5.3 Gauge theories

So far, we have discussed external symmetries of fundamental particles; these symme-
tries come from symmetries of spacetime itself. It turns out that fundamental parti-
cles also have internal symmetries, much like how a sphere has a rotational symmetry
because of its shape and not because of any spacetime symmetries. These internal
symmetries are called gauge symmetries.

To understand what gauge symmetries are, it helps to revisit an piece of history.
In the early 20th century, physicists were struggling to understand the strong force.
This is the force which binds protons and neutrons together in the nucleus of an atom.
It is strong only at short distances (≈ 10−15 m) and overcomes the electric repulsion
between the positively charged protons. Neutrons experience the strong force as well,

55



since they are also bound to the nucleus. In 1932, Heisenberg proposed that the proton
and neutron were actually two different states of the same particle, called a nucleon,
to explain why the strong force acts on both (almost) identically. The state of a nucleon
would then be

α1 |proton〉+ α2 |neutron〉 ,
and Heisenberg believed there were physical processes which could change protons into
neutrons. Soon after, Yukawa predicted that such processes were mediated by another
particle, now called the pion. Such a particle was discovered, and comes in three kinds:
π+ (positive charge), π0 (neutral), and π− (negative charge). Nucleons interact with
pions in processes which preserve electric charge:

π− + p→ n, π+ + n→ p, π0 + p→ p, π0 + n→ n.

Other physicists quickly caught on to this idea, and proposed that under this model
for the strong force, protons and neutrons should be interchangeable. In other words,
there must be a symmetry p ↔ n which swaps protons with neutrons. Because of lin-
earity (or superposition), this symmetry must actually allow (almost) arbitrary changes
of basis

αp+ βn↔ α′p+ β′n.

This change of basis can be written as a 2 × 2 matrix. Quantum mechanics dictates
that such a physical process actually must be a matrix in SU(2), so the state space of a
nucleon should have an SU(2) gauge symmetry. The nucleon was declared to be the
spin-1/2 rep under this SU(2),

• the proton was the isospin up (or I3 = 1/2) state, and

• the neutron was the isospin down (or I3 = −1/2) state.

For this symmetry to truly be a symmetry of the model, isospin must be conserved
across interactions. This means that for pions,

I3(π
+) = 1, I3(π

0) = 0, I3(π
−) = 1.

If Hnucleon = C2 is the state space of a nucleon, interaction with a pion is therefore an
intertwiner

Hnucleon → Hnucleon.

In fact, we can view the pions π+, π− as raising/lowering operators. In this way, pions
act on Hnucleons in the same way that su(2)C = sl(2,C) does. Actually,

Hpion
∼= sl(2,C).

Note also that Hpion is itself an SU(2)-irrep in this model. Since it is 3-dimensional, it
must be the spin-1 rep.
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Exercise (Hard). Show that the matrix Lie group SU(2) acts on its own Lie algebra
su(2) by conjugation:

g ·X = gXg−1,

where g ∈ SU(2) and X ∈ su(2). (This actually works for any Lie group and associated
Lie algebra and is called the adjoint rep.) Hence su(2) is an irrep for SU(2). Explain
why it is the spin-1 irrep.

This exercise is how one would go about predicting the existence of three pions,
along with their isospins.

Today, we know that the isospin “symmetry” is only approximate, because pro-
tons and neutrons are not fundamental particles. Instead, they are made of quarks.
Specifically,

p = uud, n = udd

where u is an up quark and d is a down quark. Since protons have charge +1 and
neutrons have charge 0, it is not hard to figure out that

charge(u) =
2

3
, charge(d) = −1

3
.

In the same manner as for the isospin model of protons and neutrons, it turns
out that each type of quark has an SU(3) gauge symmetry. This is the true gauge
symmetry group for the strong force. Each up/down quark therefore comes in three
colors: r (red), g (green), and b (blue). In other words, the state of an up quark is of
the form

α1 |ur〉+ α2 |ug〉+ α3 |ub〉 ,
where ur, ug, ub are red, green and blue up quarks, and similarly for down quarks. (The
superscripts are just labels, not actual exponents.) Note that the naming is not because
quarks have actual color; they are just labels for the various states.

The SU(3) strong force is mediated by fundamental particles called gluons, just
like the isospin model had pions as mediators. They live in the adjoint rep su(3)C, just
like pions lived in the adjoint rep su(2)C. Interactions between gluons and quarks are
SU(3)-intertwiners Hquark → Hquark.

Exercise. Check that dim su(n) = n2 − 1. Conclude that there are eight “distinct”
gluons.

So the existence of gauge symmetries helps us in two ways: it organizes “equivalent”
particles (e.g. red/green/blue quarks) together, but also helps describe fundamental
forces. For example, when we say the strong force is mediated by the gluon, this means
quarks are held together within the nucleus by an attractive force arising from the
exchange of gluons between quarks. For this reason, we say the strong force is an SU(3)
gauge theory.
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5.4 The standard model

We can now describe the standard model. It describes all fundamental particles and all
four fundamental forces except gravity. (There is no known quantum theory for gravity
yet.) The remaining three fundamental forces are all described by gauge theories.

• Electromagnetism is an U(1) gauge theory, mediated by the photon γ;

• The weak force is an SU(2) gauge theory, mediated by the W+, W− and Z
bosons.

• The strong force, as we have seen, is an SU(3) gauge theory, mediated by eight
gluons g. (There are no conventional names for the eight “distinct” states.)

All particles which mediate forces are bosons, and we do not consider them as matter
particles. There is an additional boson which mediates an interaction by which particles
gain mass; this is the Higgs boson and the Higgs mechanism. It has spin 0, and
all the other bosons have spin 1. Hypothetically, a quantum theory of gravity would
involve a spin-2 mediator particle called the graviton.

Al fundamental matter particles are irreps of the symmetry group G = Gspacetime ×
Ggauge. Aside from energy/momentum, we have identified that G consists of four groups.

• The rotational symmetry SO(3, 1) of spacetime, whose irreps are labeled by spins
(sL, sR). Since all particles is spin-1/2, namely sL+sR = 1/2, it suffices to specify
whether they are left-handed or right-handed.

• The U(1) gauge group of electromagnetism, whose irreps are labeled by the hy-
percharge Y .

• The SU(2) gauge group of the weak force, whose irreps are labeled by the weak
isospin I3.

• The SU(3) gauge group of the strong force, whose irreps are labeled by two quan-
tum numbers. There is no name in physics for these quantum numbers: all matter
either is unchanged by color symmetry and therefore belongs to the trivial rep C,
or is some kind of quark and therefore belongs to the standard rep C3.

At this point, it is important to recognize that the hypercharge Y is not the electric
charge Q of a particle, but rather obeys the Gell-Mann–Nishijima formula

Q = I3 + Y/2.

For example, the up and down quarks have I3 = 1/2 and I3 = −1/2 respectively,
and therefore both have hypercharges Y = 1/3. The reason for this weird relationship
between Q and Y stems from a small lie in the story so far: it is not true that the
photon is a basis of u(1)C and the W±, Z bosons form a basis of su(2)C. Instead, the
generators are

B ∈ u(1)C, W1,W2,W3 ∈ su(2)C,
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and the more familiar particles are linear combinations

γ = W3 +
B

2
, Z = W3 −

B

2
, W± = W1 ∓ iW2

inside u(1)C ⊕ su(2)C. This combined U(1) × SU(2) gauge theory is called the elec-
troweak or Weinberg–Salam theory, and is valid at high energies. At low energies,
electroweak symmetry breaking “ruins” part of this symmetry, and preserves only
a U(1) subgroup corresponding to the photon. Importantly, this U(1) is not the one
corresponding to B, but rather to γ, and this is the source of the distinction between
charge and hypercharge. Consequently, the W± and Z bosons are also not the “correct”
states to realize the SU(2) symmetry.

The Standard Model. We can now write down the first generation of particles in
the standard model. Some notation: CY denotes the one-dimensional U(1)-irrep with
hypercharge Y .

Chirality Name Symbol Y I3 U(1)× SU(2) rep SU(3) rep

Left Neutrino νL −1 +1
2 C−1 ⊗ C2

C

Left Electron e−L −1 −1
2 C

Left Up quarks urL, u
g
L, u

b
L

1
3 +1

2 C 1
3
⊗ C2 C3

Left Down quarks drL, d
g
L, d

b
L

1
3 −1

2 C3

Right Neutrino νR 0 0 C0 ⊗ C C

Right Electron e−R −2 0 C−2 ⊗ C C

Right Up quarks urR, u
g
R, u

b
R

4
3 0 C 4

3
⊗ C C3

Right Down quarks drR, d
g
R, d

b
R −2

3 0 C− 2
3
⊗ C C3

An immediate observation is that the weak force only acts on left-handed particles!
All the right-handed ones have zero isospin and belong to the trivial irrep for the
SU(2) gauge group of the weak force. This was a shocking discovery called the parity
violation of the weak force.

Another observation is that the right-handed neutrino is not acted on by any of the
fundamental forces. Actually, the right-handed neutrino is a hypothetical particle that
has not yet been experimentally observed, but is strongly believed to exist because all
other particles in the standard model come in left- and right-handed pairs.

It turns out this table is not all known fundamental particles. In the 1930s, a fun-
damental particle much heavier but otherwise completely identical to the electron was
discovered experimentally. It was called the muon µ−, and it came with its correspond-
ing muon neutrino νµ. A few decades later, a pair of overweight up/down quarks,
also otherwise identical to the up/down quarks, were discovered and called the charm
and strange quarks. Today we know of three generations of the standard model. Each
generation consists of exactly the same reps, but successively heavier and heavier.
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First generation Second generation Third generation

Name Symbol Name Symbol Name Symbol

Up quark u Charm quark c Top quark t

Down quark d Strange quark s Bottom quark b

Electron neutrino νe Muon neutrino νµ Tau neutrino ντ

Electron e− Muon µ− Tau τ−

Finally, it turns out every fermion has an associated anti-particle. If a particle is
given by an irrep V , then the anti-particle corresponds to the dual representation V ∨.
In a very precise sense, an anti-particle can be viewed as the particle itself but traveling
backward in time.

6 Beyond the standard model

The standard model successfully provides a unified description of three out of four
fundamental forces, except gravity (which does not have a quantum theory yet), and
all known fundamental particles. In the quest to find a unified “theory of everything”,
it is important to ask:

what constraints are imposed by quantum field theory (QFT) on gauge
groups and fundamental particles?

We can then try to expand or generalize the standard model while still satisfying these
theoretical constraints, and see if the resulting theories can be supported by experiment.
Such constraints come in two forms:

1. constraints on quantum numbers (like spin) of fundamental particles;

2. constraints on possible gauge groups of new or (further) unified forces.

To understand these constraints requires an understanding of how interacting QFTs
work. Here, “interacting” means that every type of particle/field described by the
theory has a non-trivial interaction with at least one other particle/field.

6.1 Perturbation theory and renormalization

Interacting QFTs work as follows. Every probability amplitude that we want to com-
pute can be expressed as a sum of amplitudes of Feynman diagrams. A Feynman
diagram is a pictorial representation of certain interactions between certain fundamen-
tal particles. Usually the vertical axis is time, and the horizontal axis is space. Here
are Feynman diagrams for some fundamental interactions in the standard model.
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d

u W−

u

u

Mathematically, Feynman diagrams are objects called graphs: they consist of vertices
(the interactions) which are connected by edges (the propagating particles). One can
make a list of all allowed vertices in the standard model, and they will all involve either
three or four particles for reasons we will explain shortly.

The output of a QFT is are probability amplitudes for given physical scenarios. Usu-
ally one feeds into the QFT a set of incoming particles with some momenta, and asks
for the probability amplitude of a set of outgoing particles with some other momenta.
(Here, “momentum” means 4-momentum, i.e. a velocity (k0, k1, k2, k3) in spacetime.)
A popular example is electron-electron scattering: we want to find the probability
amplitude of two electrons with momenta k1,k2 going in and two electrons with mo-
menta k3,k4 going out. The key idea is that, because we don’t know what happens
between “going in” and “going out”, we are allowed to fill in any Feynman diagram
using allowed vertices in the standard model.

?

k1

k2

k3

k4

= + + + 2× +

+ 2× + 2× + · · ·

This is analogous to the Taylor series expansion of functions:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · .

For Feynman diagrams, the number of loops is like the degree of x. The more loops,
the less a diagram contributes to the total sum. In the Feynman diagram expansion of
Compton scattering above, the first diagram has no loops (called a tree-level diagram),
the next four are one-loop, and the remaining are two-loop. The process of computing
amplitudes in this way is called perturbation theory.

The Feynman rules describe how to compute the amplitude of a given Feynman
diagram. The recipe is simple.

• Since we don’t know the momenta of all internal edges, we need to integrate over
all possible momenta for those edges, keeping in mind that each interaction must
conserve momentum.
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• Every edge contributes a propagator to the integrand. If the edge is a spin-s
particle with momentum k and (rest) mass m, its propagator is roughly of the
form

k2s

|k|2 −m2
. (13)

However, it is very easy for such integrals to diverge! We can pinpoint two causes of
divergences in the following examples.

Example 6.1 (Propagator divergence). For particles of spin s = 1, there will be inte-
grals that look like ∫

R4

|k|2
|k|2 −m2

dk.

As |k|2 → ∞, the mass m2 is negligible, and we can approximate the integrand as
|k|2/|k|2 = 1. But the integral of 1 over an infinite volume diverges. Of course, this
problem gets worse for spin s > 1.

We’ll explain how to deal with this kind of divergence, for spin ≥ 1 particles, after
we deal with the next kind, which is a more sophisticated problem.

Example 6.2 (Loop divergence). Consider a toy QFT, called φ4 theory, where the
only type of particle is a spin-0 massive particle which interacts with itself via 4-particle
vertices. The only 1-loop diagram is

k1

k2

k

k1 + k2 − k

k3

k4

The amplitude of this diagram is (up to some constant factors)

δ(k1 + k2 − k3 − k4)

∫
R4

1

|k|2 +m2

1

|k1 + k2 − k|2 +m2
dk.

(The δ-function is just enforcing the condition that k1+k2 = k3+k4.) But this integral
can be approximated by ∫

R4

1

|k|4 dk ∝
(∫ ∞
−∞

1

k
dk

)4

=∞.

The arduous work to systematically remove the second type of divergence was done
in the 1970s, under the name of renormalization. The key idea behind renormalization
is that the naive ideas of propagators and interactions are not accurate. A particle
propagating from point a to point b can undergo all kinds of journeys, including self-
interactions. These self-interactions change the propagator, and also the coupling
constants of the theory, which describe things like electric charge and mass of particles.
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The actual propagators, electric charges, masses, etc., called dressed quantities, are not
equal to the original bare quantities. But the bare quantities are what appear in the
theory. Hence it is necessary to “shift” the parameters of the original theory to get the
physically correct theory. In terms of Feynman diagrams, this “shift” of the parameters
of the theory essentially creates artificial vertices called counterterm vertices which
turn out to exactly cancel the divergences in the original theory.

The counterterm vertices themselves are controlled by some fixed but unknown cou-
pling constant, which then must be measured experimentally. For a given QFT to be
renormalizable, then, the “shifting” of the theory must only produce finitely many
counterterm vertices. Heuristically, a renormalizable theory has divergences which all
stem from a finite number of Feynman diagrams. If there are infinitely many countert-
erms, we would have to run an infinite number of experiments to obtain all the coupling
constants, and hence the theory loses predictive power.

Example 6.3. For the φ4 theory of the previous example, one can show combinatorially
that the only way for a Feynman diagram to diverge is if it contains the one-loop diagram
in the previous example as a sub-diagram. Hence the φ4 theory has two counterterm
vertices.

The first cancels the divergence from the 4-particle interaction, and the second corrects
the propagator.

Both the electroweak and the strong force turn out to have finitely many coun-
terterms. However, one can do a fairly straightforward count of the number of k’s in
the numerator vs denominator and show that for spin ≥ 2 particles, infinitely many
counterterms will be necessary. This leads us to conclude that

a renormalizable QFT cannot involve fundamental particles of spin ≥ 2.

The problem with developing a quantum theory of gravity is that its mediator
particle, the graviton, is necessarily spin 2. This comes from the theory of general
relativity, where gravity is described by the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν = 8πTµν .

On the left hand side are terms representing the curvature of spacetime, which dictates
the gravitational field. The rhs is a quantity called the stress-energy tensor, which
represents the matter/energy content in spacetime. In particular, it is a (2, 0)-tensor,
which means that

Tµν ∈ (V ⊗ · · · ⊗ V )︸ ︷︷ ︸
2 times

⊗ (V ∗ ⊗ · · · ⊗ V ∗)︸ ︷︷ ︸
0 times

.
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Here V is the natural 4-dimensional representation of so(3, 1) = su(2) ⊕ su(2), called
the vector representation or the spin-1 rep. It follows that elements of V ⊗V are either
spin-0 or spin-2. Spin-0 quantities are scalars, and so Tµν is spin-2. In other words, the
gravitational field is spin-2, and therefore the mediator particle must be as well.

In contrast, the classical theory of electromagnetism is described by Maxwell’s equa-
tions

∂νF
µν = µ0J

µ

where F is the electromagnetic field strength, Jµ is the four-current, and µ0 is a
coupling constant called the permeability of space. The current Jµ carries only one
index, and therefore is spin-1.

Now we can return to discussing the divergence in the propagator (13) for spin ≥ 1.
It turns out this divergence can be canceled out as long as there is a corresponding
conserved quantity, called a current, of the same spin in the theory. We say that the
particle couples to the conserved current. For example, the divergence in the spin-1
propagator for the photon is dealt with by the conserved current Jµ. There is a similar
current for the weak force, and the stress-energy tensor is the conserved current for the
spin-2 graviton. In principle, a spin-3/2 particle is also renormalizable, but there is
no current for it to couple to. This explains why all matter in the standard model is
spin-1/2.

6.2 Grand unification

One direction in which we can explore physics beyond the standard model is to ask why
the symmetry group of the standard model is

GStandard model = Gspacetime ×Ggauge, Ggauge = U(1)× SU(2)× SU(3).

Why are symmetries nicely separated into external and internal ones, and why are there
no symmetries which mix them? For example, in the world of finite groups, there are
two groups of order four: Z2 × Z2 and Z4. Could it be that GStandard Model is more like
Z4 than Z2×Z2? The famous “no-go theorem” of Coleman and Mandula in 1967 gives
a negative answer to this question.

Theorem 6.4 (Coleman–Mandula). A non-trivial interacting quantum field theory (sat-
isfying very mild assumptions) must have symmetry group

G = Gspacetime ×Ggauge,

i.e. with no “mixing” of the two.

Since we have already identified Gspacetime, the only remaining possibility is to gen-
eralize Ggauge to something bigger than but still containing U(1)×SU(2)×SU(3). This
has the added benefit of unifying different forces into a single force with a single gauge
group, in the same way that U(1)×SU(2) is the gauge group of the unified electroweak
force. Starting in the 1970s, physicists called such a hypothetical theory a grand uni-
fied theory (GUT).
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Call the GUT gauge group GGUT. In gauge theory, the only gauge groups we
can use are semisimple Lie groups, whose Lie algebras are conveniently classified in
Theorem 4.31. Whatever GGUT is, it is built from these possibilities and contains the
standard model’s U(1)× SU(2)× SU(3). We discuss some proposed GUTs.

SU(5) model. This is the most famous GUT, also called the Georgi–Glashow
model. The simple Lie group SU(5) is the smallest which contains the standard model,
via

U(1)× SU(2)× SU(3)→ SU(5)

(γ,A,B) 7→
(
γ3A 0

0 γ−2B

)
.

Strictly speaking, this is not an inclusion because it is not one-to-one: all elements of
the form

(γ, γ−3I, γ2I) ∈ U(1)× SU(2)× SU(3)

are sent to I ∈ SU(5). These form a Z6. So, for the SU(5) theory to work, this Z6 must
act trivially on everything in the standard model. Incredibly, the way hypercharges are
arranged makes it so that the standard model passes this stringent test perfectly.

Unfortunately, the SU(5) theory was eventually discarded because of the following
reason. The standard model representation embeds into an rep of SU(5) called ∧∗C5,
the exterior algebra of the defining representation. In particular, this means quarks are
combined with electrons and neutrinos in a single irrep. Different particle types living
in the same irrep must have mechanisms, coming from the adjoint rep su(5), which
transform one type into another, like how the weak force’s su(2) contains W bosons
which transform up quarks to down quarks and vice versa. Hence the SU(5) allows
for quarks to decay into electrons and neutrinos. Specifically, this allows for proton
decay, a phenomenon which looks schematically like

p→ e+ + 2γ.

However, proton decay has never been observed, and experiments show that the half-life
of a proton is at least 1034 years. But the SU(5) theory has a maximum proton half-life
of 1031 years.

SO(10) theory. There is a natural embedding SU(5) → SO(10), by viewing C5 as
R10. Then the irrep ∧∗C5 for the SU(5) theory embeds into the spin-1/2 irrep V of
SO(10). This SO(10) theory has several advantages over the SU(5) theory.

• Since V is an irrep, it explains why a right-handed neutrino is necessary. Strictly
speaking, a right-handed neutrino is not necessary at all for either the standard
model or the SU(5) theory.

• It incorporates the earlier Pati–Salam model based on SU(4)×SU(2)L×SU(2)R,
which unifies the electrons/neutrinos with quarks by adding a new “color” for

65



electrons/neutrinos and enlarging SU(3) to SU(4). The two copies of SU(2) cor-
respond to a “left-handed weak force” and a “right-handed weak force”.

• Its maximum proton half-life is 1035 years, which is above the current experimental
lower bound.

Unfortunately, there are other reasons why both the SU(5) and SO(10) theories are
questionable. By unifying different particles into the same irrep, both theories predict
non-trivial relations between masses of various fundamental particles:

mdown quark ≈ 9melectron, mstrange quark ≈ mmuon, mbottom quark ≈ 3mtau muon,

called the Georgi–Jarlskog mass relations. These masses have been measured very
precisely, and only satisfy these relations very approximately.

E6 model. Recall from the classification of semisimple Lie algebras that there are four
infinite families A,B,C,D, and a few exceptional ones E6, E7, E8, F4, G2. Out of the
exceptional Lie algebras, only E6 is a viable gauge group for GUTs. This is a constraint
from representation theory.

Theorem 6.5. Any irrep V of E7, E8, F4, G2 is isomorphic to its complex conjugate V̄ .

But such irreps are necessary in order to have a concept of chirality for fermions, so
that the weak force can act only on left-handed fermions. The only remaining possibility,
E6, actually naturally arises in the context of a type of string theory called E8 × E8

heterotic. It naturally contains the SO(10) theory.

6.3 Supersymmetry

One theoretical solution to both the renormalization problem and the failure of unified
models is to introduce supersymmetry. Supersymmetry is a hypothetical (external)
symmetry which is not forbidden by the Coleman–Mandula theorem simply because
it is not a Lie group symmetry. We must extend the concept of a Lie algebra to a
super Lie algebra. In a super Lie algebra, there are additional generators Qα, called
supercharges, such that Q2

α = 0. Instead of the commutator, we must take the anti-
commutator

{Qα, Qβ} = QαQβ +QβQα.

The supercharges have spin-1/2, and therefore change bosons to fermions, i.e.

Q |boson〉 = |fermion〉 ,

and vice versa. Hence each fundamental particle has a superpartner. None have
been experimentally observed yet. However, this immediately has consequences for a
supersymmetric extension of the standard model.

• There is now a spin-3/2 current which is the superpartner of the spin-2 stress-
energy tensor. Hence spin-3/2 superparticles can exist and be renormalizable.
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• The existence of supersymmetry often takes care of non-renormalizability.

Definition 6.6. If there are n independent supercharges, we say the QFT has N = n
supersymmetry. The resulting Lie algebra

gSUSY = gspacetime n gsupercharges

is called the N = n supersymmetry algebra.

Irreps of the resulting Lie supergroup or superalgebra are multiplets, meaning that
they consist of ordinary particles along with some super-particles. The supercharges do
not commute with Lorentz boosts, so within a single multiplet can be different (super-
)particles of different spins. But they do commute with everything else, so all particles
in a multiplet have the same mass and internal quantum numbers.

One can ask: can the Lie super-algebra of symmetries be more complicated than
just adjoining some spin-1/2 supercharges? The answer is no: there is an analogue of
the Coleman–Mandula theorem in the supersymmetric setting.

Theorem 6.7 (Haag– Lopuszański–Sohnius). A non-trivial interacting supersymmetric
QFT (satisfying very mild assumptions) must have symmetry group

G = GSUSY ×Ggauge,

with all supercharges being spin-1/2.

Although there is no experimental evidence for supersymmetry, it remains a pro-
ductive field of mathematical study, because the non-rigorous math of QFT can often
be made fully rigorous in the supersymmetric setting. The study of supersymmetric
QFT has yielded a lot of rich mathematics over the past half-century.
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