MATH UN1101 CALCULUS I (SECTION 5) - SPRING 2019

HOMEWORK 1 (DUE JAN 28)

Each part (labeled by letters) of every question is worth 2 points. There are 15 parts, for a total of 30 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.

- (1) For each of the following functions, state its domain, range and inverse. If the inverse does not exist, state why.
 - does not exist, state why.
 (a) $f(x) = \frac{2}{1-x^3}$
 - (b) $f(x) = \ln(x^2 2)$
 - (c) $f(x) = 4 + \arctan(x)$
- (2) The step function H(x) is defined by

$$H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0. \end{cases}$$

- (a) Sketch the function $x^2H(4-2^x)$.
- (b) Sketch the function $1 + H(\sin x)/2$.
- (3) Write $2 + \sin(2 + \ln(\ln x))$ as some composition of only the following functions:

$$f(x) = 2 + x$$
, $g(x) = \sin(x)$, $h(x) = \ln(x)$.

- (4) Compute the exact value for each of the following expressions. Show and explain all your steps briefly.
 - (a) $e^{2 \ln 3}$
 - (b) $\sin(\tan^{-1}(1/3))$
- (5) Annoyed by your calculus homework, you crumple it into a ball and throw it into an infinitely deep hole. You observe that its speed in meters per second is given by the function

$$v(t) = 3 - \frac{1}{t+1}$$

where t is the time in seconds since you threw it. (Note: this is not a physically realistic model, which would be more complicated.)

(a) How fast is your homework initially traveling, right when you threw it?

1

- (b) What should the domain of v(t) be? Explain why. (Hint: many values of t do not make sense as inputs.) What is the range of v(t)?
- (c) At what time t does the speed of your homework reach v meters per second?

- (6) Use the following steps and diagram in the unit circle to compute a formula for $\sin(2\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$. Briefly explain each of your answers. A correct answer with no explanation is worth zero points.
 - (a) Using triangle OCA, what is the length of AC in terms of 2θ ?
 - (b) Using triangle BAD, what is the length of AB in terms of θ ?
 - (c) Using triangle BCA, write $\sin \theta$ in terms of the answers of the previous two questions. Rearrange it to get the *double angle formula* for $\sin(2\theta)$. What is the formula?
 - (d) What is the length of OC in terms of 2θ ? Use it and triangle BCA to compute $\cos(\pi/12)$ in terms of $\sin(\pi/6)$ and $\cos(\pi/6)$.

(The circle is a unit circle, with origin O.)