
MATH UN1101

CALCULUS I (SECTION 5) - SPRING 2019

HOMEWORK 11 SOLUTIONS

Each part (labeled by letters) of every question is worth 2 points. There are 15 parts, for
a total of 30 points. You are encouraged to discuss the homework with other students but
you must write your solutions individually, in your own words.

(1) Evaluate the following de�nite integrals using any method.
(a) ∫ 2

0

(2x− x2) dx

Solution. Using the fundamental theorem of calculus,∫ 2

0

(2x− x2) dx =

(
x2 − x3

3

) ∣∣∣∣
x=2

−
(
x2 − x3

3

) ∣∣∣∣
x=0

= 4− 8

3
=

4

3
.

(b) ∫ 2

−2
(1 +

√
4− x2) dx

Solution. First split up the integral:∫ 2

−2
1 dx+

∫ 2

−2

√
4− x2 dx.

The �rst integral is equal to 4. As for the second, it is hard to �nd an antideriv-
ative for

√
4− x2. Instead, interpret the integral as the area under a semicircle

of radius 2: ∫ 2

−2

√
4− x2 dx =

1

2
π · 22 = 2π.

So the �nal answer is 4 + 2π .
(c) ∫ π

0

cos(θ) dθ

Solution. The antiderivative of cos is sin, so using the fundamental theorem of
calculus,
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∫ π

0

cos(θ) dθ = sin(π)− sin(0) = 0 .

(This makes sense because exactly half of the desired area is the negative of the
other half, and they cancel.)

(d) ∫ 3

3

sin(x)3
√
x7 + 1 dx

Solution. It is hard to �nd an antiderivative for the integrand. But we don't
need to, because the limits of integration leave no area under the curve. So the
answer is 0 .

(e) ∫ 6

1

(3f(x)− 4g(x)) dx

if
∫ 8

1
f(x) dx = 2 and

∫ 8

6
f(x) dx = 1 and

∫ 1

6
g(x) dx = 3.

Solution. Using properties of integrals,∫ 6

1

(3f(x)− 4g(x)) dx = 3

(∫ 8

1

f(x) dx−
∫ 8

6

f(x) dx

)
− 4

(
−
∫ 1

6

g(x) dx

)
.

Now we just plug in the given values, to get 3(2− 1)− 4(−3) = 15 .
(f) ∫ 1

0

(u+ 2)(u− 1)
√
u du

Solution. Expand everything in the integrand:

(u+ 2)(u− 1)
√
u = (u2 + u− 2)

√
u = u5/2 + u3/2 − 2u1/2.

Its antiderivative is

2

7
u7/2 +

2

5
u5/2 − 4

3
u3/2.

Using the fundamental theorem of calculus, the integral is 2/7 + 2/5− 4/3 =

−68/105.
(g) ∫ π

−π
| sin(θ)| dθ

Solution. The best way to do this integral is to note that | sin(−θ)| = | −
sin(θ)| = | sin(θ)|, so the area on [−π, 0] is the same as the area on [0, π]. So the
whole integral is just∫ π

−π
| sin(θ)| dθ = 2

∫ π

0

| sin(θ)| dθ = 2

∫ π

0

sin(θ) dθ.
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(Alternatively, you can manually compute the piece on [−π, 0]. Because of the
absolute value, it is necessary to split the integral into two pieces.) The remaining
integral can be computed using the fundamental theorem of calculus:∫ π

0

sin(θ) dθ = − cos(π)− (− cos(0)) = −(−1)− (−(−1)) = 2.

So the �nal answer is 4 .

(2) Express the limit as a de�nite integral, and then evaluate it.
(a)

lim
n→∞

1

n

n∑
k=1

1

1 + (k/n)2

Solution. The guess is that we split up an interval into n pieces of width 1/n
each, because of the overall factor of 1/n and the sum from k = 1 to n. Since we
see a term k/n, this suggests our pieces are [0, 1/n], [1/n, 2/n], . . . , [(n−1)/n, 1].
Hence we have the Riemann sum for∫ 1

0

1

1 + x2
dx.

(Check this by writing down its right Riemann sum, if you are not convinced.)
Now recognize the integrand as the derivative of arctan. So by the fundamental
theorem of calculus,∫ 1

0

1

1 + x2
dx = arctan(1)− arctan(0) =

π

4
.

(b)

lim
n→∞

1

n

n∑
k=1

e1+k/n

Solution. We are still splitting an interval into n pieces of width 1/n. But now
we have two di�erent choices for exactly what the pieces are:

(i) [0, 1/n], [1/n, 2/n], . . . , [(n− 1)/n, 1], with integrand e1+x;
(ii) [1, 1 + 1/n], [1 + 1/n, 1 + 2/n], . . . , [1 + (n− 1)/n, 2], with integrand ex.

So the corresponding integral is either∫ 1

0

e1+x dx or

∫ 2

1

ex dx.

Both evaluate to e2 − e .

(3) Let f(x) =
√
1 + x4.

(a) Show that 1 ≤ f(x) ≤ 1 + x4 for x ≥ 0.

Solution. If x ≥ 0 then 1 + x4 ≥ 1. But for z ≥ 1 we know
√
z ≤ z. So it

follows that √
1 + x4 ≤ 1 + x4.
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For the lower bound, take the square root of 1 ≤ 1 + x4.

(b) Show that 1 ≤
∫ 1

0
f(x) dx ≤ 1.2. (Hint: use (a).)

Solution. By properties of integrals, using (a),

1 =

∫ 1

0

1 dx ≤
∫ 1

0

√
1 + x4 dx ≤

∫ 1

0

(1 + x4) dx.

The last integral evaluates to∫ 1

0

(1 + x4) dx = (1− 0) +

(
15

5
− 05

5

)
= 1 +

1

5
= 1.2.

So we get the desired bounds.

(4) Find the derivative f ′(x).
(a)

f(x) =

∫ x

1

sin3(θ) cos4(θ) dθ

Solution. Using the fundamental theorem of calculus,

f ′(x) =
d

dx

∫ x

1

sin3(θ) cos4(θ) dθ = sin3(x) cos4(x) .

(b)

f(x) =

∫ x2+3

0

(u− 1)u−1 du.

Solution. Use the fundamental theorem of calculus, but keep the chain rule in
mind:

f ′(x) = (x2 + 2)x
2+2 ·

(
d

dx
(x2 + 3)

)
= 2x(x2 + 2)x

2+2.

(If it helps conceptually, write f(x) = A(x2+3), so that f ′(x) = A′(x2+3) ·2x.)
(5) Annoyed by your calculus homework, you crumple it into a ball and launch it into

an in�nitely deep hole using the Spring Launcher TechnologyTM from Homework 5.
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Your new and improved measurements show that at time t (in milliseconds), the
end of the spring is at depth (in centimeters)

x(t) = −5−
∫ t

0

10 sinx

x
dx.

(The integral is a special function called the sine integral. It is important in electrical
engineering.)
(a) There are in�nitely many times t where the spring will be fully extended (and

about to retract back). Find all such t.

Solution. Such times t are local minimums of x(t). So we must �rst �nd critical
points x′(t) = 0. Compute

x′(t) = − d

dt

∫ t

0

10 sinx

x
dx = −10 sin t

t
.

This is zero exactly when the numerator is zero, i.e. sin t = 0. So t can be any
positive multiple of π, i.e. nπ for any positive integer n. (We never consider neg-
ative t.) To check which are local maxs vs local mins, use the second derivative
test. Compute

x′′(t) = −10 · cos(t)t− sin(t)

t2
.

Note that sin(nπ) = 0 for any integer n, but
(i) if n is odd, then cos(nπ) = −1;
(ii) if n is even, then cos(nπ) = 1.

So x′′(nπ) is positive only when n is odd. Hence the local minimums are where

t is an odd positive multiple of 2π .

(b) When is the �rst time t that the end of the spring changes from accelerating
downward (i.e. extending) to accelerating upward (i.e. retracting)? You do not
need to �nd an exact value for t; just give an equation that t must satisfy. For
example: �t is the only solution to e−t = sin(t) in the interval (3, 4)�. (Hint: look
back at Homework 5.)

Solution. Such times t are in�ection points, i.e. x′′(t) = 0. From the formula
for x′′(t) above, this means we want to solve

cos(t)t− sin(t) = 0 .

The �rst in�ection point must be in between the �rst and second critical points,
at t = π and t = 2π. This is because the spring starts o� retracting, but at
some point must start expanding again to �turn around�. You can check this
mathematically using the intermediate value theorem:

cos(π)π − sin(π) = −π, cos(2π)(2π)− sin(2π) = 2π,

so somewhere in between we must have t such that cos(t)t − sin(t) = 0. Hence

t is the only solution to cos(t)t− sin(t) = 0 in (π, 2π) .
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