All terms \(g \) in \(n \) are packed in a retrieval function.

In invariant counting:

\[H \psi = \sum g_{\alpha} \psi \]

The parameters \(\psi \) is a formal variable.

In \(g \) invariant:

\[g_{\alpha} g_{\beta} \]

The parameters \(\psi_{\alpha} = g \mathcal{N} \) is the \(\alpha \) component counting degree.

Perturbative v.s. non-perturbative.

\[R_{\mathcal{N}} \]

\[g_{\alpha} = e \mathcal{N} \]

\[g_{\alpha} = e \mathcal{N} \]

Gut, in counting equation degree.
In CS:

we will explain the expansion w.r.t. \(g_s = \frac{2\pi}{\sqrt{2\pi N}} \)

(the CS perturbation theory)

(In fact \(g_s \))

In quantum group approach to JW inv. (Redeikhin-Turaev),

the quantum group is specialised at \(\sqrt{1} \),

where \(l = 2(\pi + N) \).

(\(l \)th root of 1)

"Nonperturb. ?"

\[e^{\varepsilon_i} = e^{ig_s} = e^{\frac{2\pi i}{\sqrt{2\pi N}}} = e^{\frac{4\pi i}{2\pi}} = (\sqrt{1})^{\frac{i}{2}} \]
Jones-Witten invariants (or Chern-Simons theory)

Ref: Ohkouchi Quantum invariants, App. F

M^3: 3-manifold, cpt, oriented

G: compact Lie group e.g. $SU(N)$

simple for simplicity.

A: G-connection on the trivial bundle $M \times G$

1-form with value in \mathfrak{g}

\mathcal{A} = the space of G-connections = $\Omega^1(M; \mathfrak{g})$

$CS(A) = \frac{1}{8\pi^2} \int_M Tr(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$

Chern-Simons functional

(Chern "Tr" x y = (x, y) $\in \mathfrak{g}$

must be understood appropriately).

This is a function (or lagrangian) on \mathcal{A}. But

is very different from the usual one in the physics,

as it is independent of the Riemannian metric.

Recall $\frac{dCS}{dA} = 0 \iff A$: flat connection i.e. $F_A = 0$

$\therefore A \iff \text{rep. } \pi_1(M) \to G$.
$G = \text{the group of bundle automorphism} = \text{Map}(M, G)$ (gauge group in math)

$G \to A$ by gauge transformation

$g^* A = g^{-1} d g + g A g$

$A/G = \text{the space of } G\text{-orbits of } G\text{-connections}
\quad \text{"the space of fields"}

\textbf{NB.} As is usual for a quotient space, it is important to consider also we should consider A/G as a space, as G has stabilizers in general.

Exercise CS is not a function on A/G, but

$\text{CS} : A/G \to \mathbb{R}/\mathbb{Z}$ is well-defined.

We now define Jones-Witten invariant
by "quantizing" the Chern-Simons functional:

$\mathfrak{p} \in \mathbb{Z}_{\geq 0} \quad (\text{level})$

$Z_{\mathfrak{p}}(M) \equiv Z_{\mathfrak{p}, G}(M) = \sum_{A/G} DA \exp(\mathfrak{p} i \text{tr CS}(A))$
This is very beautiful formula except that we do not know how to define the path integral.

0 Incorporation of a link

\[L : \text{link} = \prod_i L_i \text{ (components)} \]

\[\text{Hol}_{L_i}(A) = \text{the holonomy of } A \text{ along } L_i \]
\[\in \text{ conjugacy class of } G \]
\[R_i : \text{finite dimensional representation of } G \]

\[\Rightarrow \tau_{R_i} \text{ Hol}_{L_i}(A) =: W^{L_i}_{R_i}(A) \]

(Wilson line observable)

\[Z_{R, G, R_1, \ldots, R_L}(M, L) = \sum_{A \in G} \exp(2\pi i CS(A)) \prod_i \tau_{R_i} W^{L_i}_{R_i}(A) \]

(Jones-Witten link invariant)

This is a “correlation” function in the (quantum) Chern-Simons theory.

Later I will explain the perturbative expansion of the JW invariant, which is relevant for the large \(N \) duality.
But we start with "Hamiltonian approach" to the quantization problem (topological quantum field theory).

We cut M along a surface ($= 2 \dim C^0$-mfld) Σ, more precisely we should have

$$\forall M_1 = \Sigma \quad \forall M_2 = -\Sigma$$

$$\mathfrak{A}_\Sigma = \text{space of } G\text{-connections on } \Sigma \times G$$

$$\mathfrak{A}_a = \text{space of } G\text{-connections } A \text{ on } M_a,$$

subject to $A|_\Sigma = a$,

$$\sim \text{ker}(g^i \to g_{\Sigma})$$

group of inner automorphisms on $\Sigma \times G$

We expect

$$\mathbb{Z}_\mathbb{R}(M) =$$

$$= \int_{\Sigma} \int_{\mathfrak{a}} \int_{\mathfrak{a}^1} e^{2\pi i \text{CS}(A^1)} \int_{\mathfrak{a}^2} e^{2\pi i \text{CS}(A^2)}$$

$$\frac{\mathfrak{a}}{\mathfrak{g}_{\Sigma}} \quad \frac{\mathfrak{a}^1}{\text{ker}(g^1 \to g_{\Sigma})} \quad \frac{\mathfrak{a}^2}{\text{ker}(g^2 \to g_{\Sigma})}$$
\[a \to \int_{A^\Sigma} e^{i \int_{g_\Sigma} \text{CS}(A^\Sigma)} \]

But this is not quite correct.

\[\Sigma \quad m \quad g \in g_\Sigma \quad \hat{g} \quad \text{its extension to } M' \]

\[\text{CS} (\hat{g} \ast A^g) - \text{CS}(A^g) = c(a, g) \] (Wess-Zumino term)

Then \[e^{i c(a, g)} \text{ defines a line bundle } L \]

on \[\mathcal{A} / g_\Sigma \].

So \[\ast \text{ a section of the line bundle } L \] on \[\mathcal{A} / g_\Sigma \].

\[\mathcal{X}(\Sigma) = \text{the } \textit{Hilbert } \text{ space of such sections} \]

\[\mathcal{X}(\Sigma) = \mathcal{X}(\Sigma)^* \]

\[\mathcal{X}(M_1) \in \mathcal{X}(\Sigma) \] , \[\mathcal{X}(M_2) \in \mathcal{X}(\Sigma)^* \]

\[\mathcal{Z}(M) = \langle \mathcal{Z}(M_1) | \mathcal{Z}(M_2) \rangle \]

(Atiyah's topological quantum field theory)
But $\mathcal{X}(\Sigma)$ = the space of all sections is too large. As is common in quantization, we should pick up a smaller space by choosing a “polarization”.

Pick a complex structure J on Σ.

Then

$$\mathcal{A}_\Sigma \cong \Omega^1(\Sigma, \mathbb{G}) \cong \Omega^0(\Sigma, \mathbb{G} \otimes \mathbb{C}) \subset (\infty - \text{dim} \mathbb{C}) \text{ cpx mod}$$

Moreover $\mathcal{G}^\mathbb{C}_\Sigma = \text{Map}(\Sigma, \mathbb{G}^\mathbb{C})$: cpxification of \mathcal{G}_Σ acts on \mathcal{A}_Σ holomorphically by

$$A^i \mapsto g^i \tilde{g} + g^{-1}A^i g$$

Also \mathcal{Z} has a natural fiber structure.

Then it is natural to put

$$\mathcal{X}(\Sigma) = \text{space of holomorphic sections of } \mathcal{L}^\otimes \text{ on } \mathcal{A}_\Sigma/\mathcal{G}^\mathbb{C}_\Sigma$$

Comment:

We could also consider an intermediate vector space of sections of the symplectic quotient $\mu^\ast(0)/\mathcal{G}_\Sigma = \text{moduli of flat connections on } \Sigma$. The above is its geometric quantization.
\[\mathcal{M}_{G_c} = \text{moduli stack of } G_c \text{-bundles on } (\Sigma, J) \]

So \[H^0(\mathcal{L}^{\otimes g}) = \text{the space of conformal blocks} \]

When \[L \subset M, \{ p_1, \ldots, p_L \} = L \cap \Sigma \]

\[\mathcal{Z}_{G_c, R_1, \ldots, R_L}(\Sigma, p_1, \ldots, p_L) \]

\[= \text{the space of holomorphic sections of the line bundle} \]
\[\text{moduli stack of parabolic } G_c \text{-bundles on } (\Sigma, J) \]

i.e., \[G_c \text{-bundle together with reduction} \]
\[\text{of } G_c \to \text{Borel at each marked point} \]

The line bundle \[L \] now depends also on \[R_i \]

\[= \text{the space of conformal blocks attached to} \]

the data \[R_1 \]
\[\vdots \]
\[R_L \]

\[(\Sigma, J) \]
There is one thing to be checked:
\(\Xi(\Sigma) \) "should" be a topological invariant.

\(\exists \) (projectively) flat connection on the bundle of conformal blocks over the moduli space of pointed Riemann surfaces.

Perturbation theory

Suppose \(A \) is a flat connection:

\[
\text{CS}(A + \alpha) = \text{CS}(A) + \frac{1}{8\pi^2} \int_M \text{Tr}(\alpha \wedge d_A \alpha + \frac{2}{3} \alpha \wedge dA \wedge \alpha)
\]

- stationary phase approximation
 - (ignore the cubic term)

\[
\frac{\Xi(\Sigma)}{\Xi} \sim \text{large} \sum_{[A] : \text{flat connection}} \alpha([A]) e^{2\pi i \text{CS}(A)}
\]

Remark. In general, the moduli space of flat connections are not isolated points, not even a smooth manifold.

But we ignore this point, and assume \(H^*_F = 0 \).
Recall $\int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}}$

By analytic continuation $\int_{-\infty}^{\infty} e^{i\lambda x^2} \, dx = \frac{1}{\sqrt{|\lambda|}} \exp\left(\frac{\pi i}{4} \text{sgn} \lambda\right)$

$\lambda \in \mathbb{R}$

For a quadratic form Q on \mathbb{R}^n

$\int_{\mathbb{R}^n} e^{i\langle Q(x), x \rangle} \, dx \cdots dx_n = \frac{1}{\sqrt{\det Q}} \exp\left(\frac{\pi i}{4} \text{sgn} Q\right)$

In our case we want to apply this formula to \mathbb{R}^n

$\mathbf{c} \mapsto T_{\mathbb{C}}(\mathbf{A}/g)$

$Q \mapsto \frac{1}{4\pi} \sum_{x} \text{Tr}(\mathbf{a} \wedge d\mathbf{a})$

$0 \in T_{\mathbb{C}}(\mathbb{A}/g)$

We take a "slice" to the gauge group orbit standard recipe:

\mathbf{A}

Pick up a Riemannian metric g on M^3, and consider

$g \cdot A$

$\text{Ker}(d_A : \Omega^1(M) \otimes g \rightarrow \Omega^0(M) \otimes g) \equiv T_{\mathbb{C}}(\mathbf{A}/g)$
We also need to understand the Jacobian of
\(Kn d^* \rightarrow A^s / A^s \) to compare the Feynman measure.

Then finally (see [Atiyah] for more details)
\(\det Q, \text{sgn } Q \) are expressed in terms of \(\Delta_A^{(c)} \) : laplacian on \(\Omega^c(M; \mathfrak{g}) \)
\& \(DA = (dA + * dA^*) : \Omega^{\text{odd}} \rightarrow \Omega^{\text{even}} = \Omega^{\text{odd}} \)

Answer
\[
\sqrt{\text{det } RQ} = \left(\frac{\text{det } \Delta_A^{(c)}}{\text{det } \Delta_A^{(p)}} \right)^{1/4}
\]

\(\text{sgn } Q = \text{sgn } DA \)

Now we use the Ray-Singer \(\zeta \) function regularization to define \(\det \Delta_A^{(c)} , \text{sgn } DA \)

\[
\zeta_A(s) = \sum_{\lambda \neq 0} \frac{1}{\lambda^s} \quad \lambda \text{ : eigenvalue of } \Delta_A^{(c)}
\]

\[
\zeta_A(0) = \text{dim} \Omega^c \quad = 0 \quad \text{in odd dim}
\]

\[
\exp(-\zeta_A(0)) = \quad \text{det} \Delta_A
\]
i.e. in our case
\[\eta(s) = \sum_{\lambda \neq 0} |\lambda|^{-s} \text{sign} \lambda \quad \text{for } \lambda \in \mathbb{R} \]

\[\eta(0) = \text{"sgn" } D_A \]

The (Cheeger, Müller)

\[\frac{(\det \Delta_A^{(0)})^{3/2}}{(\det \Delta_A^{(0)})^{1/2}} = \text{Reidemeister torsion} \]

metric independent!

The phase factor is more subtle, as \(\eta(0) \) is not a topological invariant.

The invariant depends on the choice of the "framing" of \(M \), i.e., \(TM \cong M \times \mathbb{R}^3 \) trivialisations

framing of link

\(\xrightarrow{\text{string}} \) ribbon
O Perturbation theory.
- finite dim'l model

\[\mathcal{X}_\Delta := \int_{\mathbb{R}^n} dx \exp \left[i \mathcal{R} (Q(x) + T(x)) \right] \]

\[T \text{: cubic form} \]

\[= \int_{\mathbb{R}^n} dx \exp (i \mathcal{R} Q(x)) \sum_{m=0}^{\infty} \frac{1}{m!} \left(i \mathcal{R} T(x) \right)^m \]

We introduce a new variable \(u \in \mathbb{R}^n \) (auxiliary field)

\[\frac{\partial}{\partial u_a} \exp (i <u,x>) \bigg|_{u=0} = ix_a \]

\[\frac{\partial^2}{\partial u_a \partial u_b} \exp (i <u,x>) \bigg|_{u=0} = ix_a ix_b , \ldots \]

\[\therefore T(x)^m = \left(\sum_{a,b,c=1}^{n} T_{abc} x_a x_b x_c \right)^m \]

\[= \frac{1}{i^m} \left(\sum_{a,b,c=1}^{n} T_{abc} \frac{\partial^m}{\partial u_a \partial u_b \partial u_c} \right)^m \exp (i <u,x>) \bigg|_{u=0} \]

We put \(\exp (i <u,x>) \) to \(\exp (i \mathcal{R} Q(x)) \exp (i \mathcal{R} Q(x) + i <u,x>) \)

Complete the square:

\[\exp \left[i \mathcal{R} Q(x') - \frac{i}{4 \mathcal{R}} <u, Q u> \right] \quad x' = x + \frac{1}{4 \mathcal{R}} Q^{-1} u \]
Our measure is translation invariant. (the same is true for the Feynman measure)

\[Z_a = \frac{C}{\sqrt{\text{det} Q}} \exp \left(\frac{i\pi}{4} \text{sgn} Q \right) \]

\[\times \sum_{m=3}^{\infty} (-1)^m \frac{\partial^m}{\partial u^m} \left(\sum_{a,b,c} \frac{1}{4\pi k} \exp \left(-\frac{i}{4\pi} \langle u, Q u \rangle \right) \right)^m \]

We can expand the second part: \[\sum_{n=0}^{\infty} \frac{1}{n!} \frac{(-1)^m}{4k} \langle u, Q u \rangle^n \]

Simplest term

\(m=2, n=3 \)

\[\text{Tr} \bar{c}ab^c Q^{ab} Q^{bc} Q^{cc} \quad \text{&} \quad \text{Tr} \bar{c}ab^c Q^{ab} Q^{bc} Q^{cc} \]

(\(\overline{Q} \) permutation of indices)

\[\text{graphically} \]

We put \(T \) at vertex, \(m=\# \text{vertex} \)

\(Q \) edge \(n=\# \text{edge} \)

\(m-n = e(\Gamma) \)

(Feynman graph)
We get \(\exp \left(\sum_{P: \text{connected graph}} \frac{e(P) \chi(P)}{|\text{Aut}(P)|} \right) \).

\(\chi(P) \) is defined as above.

We apply this argument to the co-dim\(\ell \) setting:

We represent \(Q^{-1} = \sum_{M} L(\cdots, x) \times (\infty) \)

i.e. \(Q^{-1} = L^* \)

\(\rightarrow \) \(\chi(P) \) is given by an integration over \(\underbrace{M \times \cdots \times M}_{2m} \)

Remark, \(P \) is shifted by \(\mathbb{R} + \mathbb{Z}^V \)

dual Coxeter number (quantum correction)

\[
\left(\varphi_{\mathfrak{a}(0)} - \varphi_{\text{triv.}(0)} \times \mathbb{Z}^V \cdot \text{CS}(A) \right)
\]
Comment:
The perturbative invariants can be proved to be independent of a Riemannian metric. They give contributions of a flat connection (or a component of the moduli space of flat connections).

However, the exact invariant is well-defined only for an integer k. It is probably not possible to single out the contribution of a flat connection for a general 3-manifold.

Q: Do you understand why link invariants in S^3 can be defined for arbitrary p-shaun, not necessarily roots of unity?

A: No, except by computation.