Review of geometric Satake correspondence

\[G : \text{reductive grp} \ \ackslash C \]

\[\mathcal{K} = C(L(s)) \Rightarrow \mathcal{O} = C(L(s)^\perp) \]

\[\text{Gr}_G = G(\mathcal{K}) / G(\mathcal{O}) : \text{affine Grassmannian} \]

- \(\mathfrak{g}_0 \)-dimensional variety
- \(\text{Gr}_G \cong \Omega G_{\text{cpt}} \) based loops

\(G(\mathcal{O}) \)-orbits on \(\text{Gr}_G \)
\[\leftrightarrow \lambda \in \Lambda^+ : \text{dominant coweights} \]

\[\Lambda^+ \subset \Lambda = \text{coweight lattice of } G = \text{Hom}(G_\text{sc}, T) \subset G(\mathfrak{k}) \]

\[\cong \text{weight lattice of } \mathfrak{g} \]

\[\lambda \in \Lambda^+ \leftrightarrow \text{dominant weight of } ^L G \leftrightarrow \text{f.d. irr. rep } \mathfrak{V}(\lambda) \otimes ^L G \]

\[\text{Gr}_G = \bigsqcup_{\lambda \in \Lambda^+} \text{Gr}_G^\lambda : \text{stratification} \]

(Analog of Schubert cells)

Closure \(\overline{\text{Gr}_G^\lambda} : \) finite dimensional projective variety

Usually singular
$IC(\overline{Gr}_{G^\lambda})$: intersection cohomology complex of \overline{Gr}_G (Goresky-MacPherson)
(not sheaf, cpx of constructible sheaves)

(extend C_{Gr_G} rather nontrivial way to G_{G^λ} so that Poincare duality holds)

$\mathcal{P} = \text{Perv}_{G(\emptyset)}G_{G^\lambda}$: abelian category of $G(\emptyset)$-equiv perv. sheaves on Gr

It has a tensor structure via "convolution diagram"

$$G(\emptyset) \times G_G = G_G \times G_G \to G_G$$

G_G-b.i.c. over \overline{Gr}_G

$A \ast B := \text{diag}(A \otimes B)$

Th. (Lusztig, Ginzburg, Beilinson-Drinfeld, Mirkovic-Vilonen)

$(\mathcal{P}, \ast) \cong (\text{Rep}(G^\vee), \otimes)$ as \otimes-categories

s.t. $H^\ast(IC(\overline{Gr}_{G^\lambda})) \cong \nabla(\lambda)$

Highest weight representation
How about weight space?

$\mathcal{V}(\lambda)_\mu$: weight space = stalk of $IC(\overline{Gr}_G)$ at $s^\mu \in Gr_G^\mu$

This is the starting point of the geometric Langlands.

More suitable for double affine generalization

\overline{M}_μ^λ: transversal slice to Gr_G^μ in \overline{Gr}_G^λ

$\overline{M}_\mu^\lambda \cap Gr_G^\mu =: M_\mu^\mu \subset \overline{M}_\mu^\lambda$ open

$\mathcal{V}(\lambda)_\mu \cong IC(\overline{Gr}_G^\lambda)$ at $s^\mu \cong IC(\overline{M}_\mu^\lambda)$ at s^μ

Question

What is the affine analog of the affine Grassmann

= double affine Grassmann?

$\mathcal{V}(\lambda)$: ∞-dimensional

$\mathcal{V}(\lambda) \otimes \mathcal{V}(\mu)$: ∞-direct sum of $\mathcal{V}(\nu)$'s

Consider only integrable highest weight rep.

\Rightarrow controllable ∞ sum!
But geometric side: \(\text{Gr}_G \cong \frac{G_{\mathfrak{aff}}(K)}{G_{\mathfrak{aff}}(O)} \)

and orbits are highly co-dimensional!

difficult to define IC sheaves

Proposal (Braverman - Finkelberg 07/11/2083)

analog of \(\overline{M}_\mu^\lambda \) = Uhlenbeck partial compactification of \(G \)-instantons on \(IR^+ \times \mathbb{Z}_l \)

\(l = \text{level of the rep. of aff. KM group} \)

\(H^*(IC(\text{analog of } \overline{M}_\mu^\lambda)) \cong \bigoplus \lambda \mu \)

\(\text{rep. of } (G_{\mathfrak{aff}}) \)

• certain diagram \(\longleftrightarrow \otimes \)

explained later
G: simple & simply-connected

$\text{Bun}_G^\mathbb{C}(\mathbb{C}^2) = \text{framed moduli space of } G_{\mathbb{C}}\text{-instantons on } S^4 \text{ with } C_2 = \mathbb{R}$

trivialization at ∞

$= \text{framed moduli space of algebraic } G\text{-bundles on } \mathbb{C}P^2$

trivialization at $l_\infty \subset \mathbb{C}P^2$

smooth & dim = $2k^4$

$\text{Bun}_G^\mathbb{C}(\mathbb{C}^2) \subset \mathcal{U}_G^\mathbb{C}(\mathbb{C}^2) := \bigsqcup_{0 \leq k' \leq k} \text{Bun}_G^{k'}(\mathbb{C}^2) \times S^{k-k'} \mathbb{C}^2$

Umkehr partial optification

Fix a hom $\mu: \mathbb{Z}_k \to G$

$\cap_{\text{SL}(2) \times \text{GL}(2)}$

$\mathbb{Z}_k \curvearrowright \text{Bun}_G^\mathbb{C}(\mathbb{C}^2) \subset \mathcal{U}_G^\mathbb{C}(\mathbb{C}^2)$

through the action of diagonal emb. to $(\text{ind} \times \mu): \mathbb{Z}_k \to \text{GL}(2) \times G$

fixed pts $=: \text{Bun}_G^\mathbb{C}(\mathbb{C}^2/\mathbb{Z}_k)$
another inv. \(\lambda : \mathbb{Z}_2 \longrightarrow G \) hom.
action corr. to
the fiber at \(0 \in \mathbb{C}^2 \)

\[U_{G, \mu} : \text{fixed pt set} \]

Technical conjecture

\(U_{G, \mu} : \text{irreducible} \)

Lemma (BF)

\(\lambda, \mu \in \text{Hom}(\mathbb{Z}_2, G) \) \text{ bijec} \text{t} \text{m} \text{\(\Downarrow \)} \text{ level 2 wts of} \text{\(\bar{G} \)}

\(\bar{G} \) does not contain the degree operator \(d \)
lifts to \((\bar{G}_\text{aff})^\vee \) unique up to \(\mathbb{C} \mathfrak{g} \)

\(\bar{\lambda}, \bar{\mu} \) lifts s.t. \(\langle \bar{\lambda} - \bar{\mu}, d \rangle = \mathbb{R} e \mathbb{C}_2 \)

Main Conjecture

\[H^*(IC(U_{G, \mu})) = \mathcal{U}(\bar{\lambda})_{\bar{\mu}} \]
\[\mathcal{U}(X + c_5^\mu + c_5) \cong \mathcal{U}(X)^\mu \]

- \exists \text{ graded version}
 - LHS: cohomological grading
 - RHS: principal nilpotent

Tensor product
\[l = l_1 + l_2 \]
\[\mathbb{C}^2 / \mathbb{Z}_l \leftarrow X_{l_1, l_2} \leftarrow \]
\[(l-1) \mathbb{P}^1 \text{'s} = (l_1-1) + (l_2-1) + 1 \]

Consider Okounkov space on \(X_{l_1, l_2} \)
\[\{ \lambda_1, \lambda_2, \mu \} \subset G, \mu \]
\[\lambda_1, \lambda_2 : \mathbb{Z}/l_1, \mathbb{Z}/l_2 \rightarrow G \]
level \(l_1, l_2 \) weights
Technical conjecture

\[\pi : U_{G, \mu}^{\lambda_1, \lambda_2, d}(X_{\lambda_1, \lambda_2}) \to U_{G, \mu}^{\lambda_{1+\lambda_2}}(\mathbb{P}^2) \]

Main Conjecture 2

\[\pi_* \text{IC}(U_{G, \mu}^{\lambda_1, \lambda_2, d}(X_{\lambda_1, \lambda_2})) = \bigoplus \text{IC}(U_{G, \mu}^{\lambda_1, \lambda_2}) \]

\[\oplus \text{other} \]

with

\[(\bigoplus \bigotimes \bigotimes)_{\mu} = \bigoplus \bigotimes \bigotimes \]

\[\bigotimes \bigotimes \bigotimes \]

The conjectures (except graded version) are true for \(G = \text{SL}(r) \) of MC1

\(G = \text{SL}(r) \) ---- \(U_{G, \mu}^{\lambda, d} \) is an (affine) quiver variety

its IC sheaf was computed

---- related to rep. theory of

\[\hat{sl}_r \] at level = \(r \)
I. Frenkel level-rk duality

\[\hat{\mathfrak{sl}}(r)_e \leftrightarrow \hat{\mathfrak{sl}}(2)_r \]

\[\otimes \leftrightarrow \text{branching to } \hat{\mathfrak{sl}}(1)_e \times \hat{\mathfrak{sl}}(2)_r \]

I develop the theory for the branching in the quiver variety

Remark technical advantage for \(G = \mathfrak{SL}(r) \)

= nice resolution of \(\mathcal{U}_G^\mu \)

(Gieseker quotification)

② quiver variety generalization to other \(\Gamma \subset \mathfrak{SL}(2) \)

\[\leftrightarrow \text{affine ADE} \]

But the gauge group is \(\mathfrak{SL}(r) \times \mathfrak{GL}(r) \)

Question. What kind of algebraic structure controls e.g. \(G_{E_8} \) – instantons on \(\mathbb{R}^4/\Gamma_{E_8} \)?

I. Frenkel’s joke: Monster?