Constraints on the 1PI functions

Here we derive constraints on the coefficient functions

$$
\Gamma^{\mu v, a b}(-p, p), \Gamma_{\psi}(-p, p), \Gamma_{g h}(-p, p), \Gamma_{g h}^{\mu a}(-p-q, q, p)
$$

of the 1PI effective action Γ.
(1) Lorentz (or Euclidean) invariance

Euclidean rotation transforms the fields as

$$
\begin{aligned}
& A_{\mu}(p) \rightarrow A_{\nu}(\Lambda p) \Lambda_{\mu}^{\nu} \\
& \Psi(p) \rightarrow S(\Lambda)^{-1} \Psi(\Lambda p), \bar{\Psi}(p) \rightarrow \bar{\Psi}(\Lambda p) S(\Lambda) \\
& C(p), \bar{C}(p) \rightarrow C(\Lambda p), \bar{C}(\Lambda p)
\end{aligned}
$$

where $\Lambda \mapsto S(\Lambda)$ is the spin representation

$$
\left(S(\Lambda)^{-1} \gamma^{\mu} S(\Lambda)=\Lambda_{\nu}^{\mu} \gamma^{\nu}\right)
$$

Invariance of Γ under this requires

$$
\begin{aligned}
& \Gamma^{\mu u, a b}\left(-\Lambda p, \Lambda_{p}\right)=\Lambda_{p}^{\mu} \Lambda_{\perp}^{u} \Gamma^{p \lambda, a b}(-p, p) \\
& \Gamma_{\psi}\left(-\Lambda p, \wedge_{p}\right)=S(\Lambda) \Gamma_{\psi}(-p, p) S(\Lambda)^{-1} \\
& \Gamma_{g^{h}}\left(-\Lambda_{p}, \Lambda_{p}\right)=\Gamma_{g h}(-p, p), \\
& \Gamma_{g^{h}}^{\mu a}\left(-\Lambda_{p}-\Lambda q, \Lambda_{q}, \Lambda_{p}\right)=\Lambda_{u}^{\mu} \Gamma_{g^{h}}^{u a}(-p-q, q, p)
\end{aligned}
$$

The solution to this is:

$$
\begin{aligned}
& \Gamma^{\mu v, a b}(-p, p)=\alpha^{a b}\left(p^{2}\right) \delta^{\mu v}+\beta^{a b}\left(p^{2}\right) p^{\mu} p^{v} \\
& \Gamma_{\psi}(-p, p)=A\left(p^{2}\right) p^{p}+B\left(p^{2}\right) \\
& \Gamma_{g^{h}}(-p, p)=\Gamma_{g^{h}}\left(p^{2}\right) \\
& \Gamma_{g^{h}}^{\mu^{k}}(-p-q, q, p)=(p+q)^{\mu n} C^{q}(p, q)+q^{\mu} D^{a}(p, q)
\end{aligned}
$$

where $A\left(p^{2}\right) \& B\left(p^{2}\right)$ are identities in the spinor factor, $C^{a}(p, q) \star D^{a}(p, q)$ depends on (p, q) via $p^{2}, q^{2}, p \cdot q$.
(2) Rigid G-invariance

Invariance of P under rigid G-transformations

$$
\begin{aligned}
& A_{\mu} \rightarrow A_{g} A_{\mu}\left(=g A_{\mu} g^{-1} \text { for matrix Lie algebra }\right) \\
& \psi \rightarrow g \psi, \bar{\psi} \rightarrow \bar{\psi} g^{-1}, C \rightarrow A d_{g} C, \bar{C} \rightarrow \bar{C} A d_{g}-1
\end{aligned}
$$

requires

$$
\alpha^{a b}\left(p^{2}\right)=\delta^{a b} \alpha\left(p^{2}\right), \quad \beta^{a b}\left(p^{2}\right)=\delta^{a b} \beta\left(p^{2}\right),
$$

$A\left(p^{2}\right)$ \& $B\left(p^{2}\right)$ commute with G,

$$
\Gamma_{g^{h}}\left(p^{2}\right)=f_{g^{h}}\left(p^{2}\right) i d g
$$

$A d g C^{a}(p, q) A d_{g}^{-1}=(A d g)_{b}^{a} C^{b}(p, q)$, same for $D^{a}(p, q)$.

Here we have used the assumption that G is simple, which implies that the adjoint representation is irreducible.
By Schur's lemma, any \mathbb{C}-linea rap $f: \mathscr{O}_{\mathbb{C}} \rightarrow \mathcal{O}_{\mathbb{C}}$ that commutes with G is proportional to the identity ide

Thus the G-invariance of Γ, which implies that $\left(\alpha^{a b}\left(p^{2}\right)\right),\left(\beta^{a b}\left(p^{2}\right)\right), \quad P_{g h}\left(p^{2}\right)$ commute with $\operatorname{Ad} G$,
requires $\quad \alpha^{a b}\left(p^{2}\right) \propto \delta^{a b}, \beta^{a b}\left(p^{2}\right) \propto \delta^{a b}, \quad g^{h}\left(\rho^{2}\right) \propto i d y$
(3) BRST symmetry

Recall the Slaunou-Taylor identity:
If the system has a symmery $\phi \mapsto \phi+\delta \phi$, the $L P[$ effective action $\Gamma[\phi]$ is invariant under

$$
\phi \mapsto \phi+\hat{\delta} \phi ; \quad \hat{\delta} \phi=\langle\delta \phi\rangle_{J(\phi)}
$$

Let us apply this to the BRST syumery:

$$
\hat{\delta}_{B} \Gamma[x]=0
$$

(This is nothing but the Zinn-Justin equ at $K=0$.)

By ghost \# symmetry, Lorentz invariance, and fermion \# symmetry, we know possible forms of $\hat{\delta}_{B} X$:
$\hat{\delta_{B}} A_{\mu}(p)=f\left(p^{2}\right) P_{\mu} C(p)+$ quadratic or higher in fields
$\hat{\delta}_{B} \Psi(p)=$ quadratic or higher in fields
$\widehat{\delta}_{B} C(P)=$ quadratic or higher in fields

$$
\begin{aligned}
& \hat{\delta}_{B} \bar{C}(p) \propto: D(p) \\
& \hat{\delta}_{B} B(p)=0
\end{aligned}
$$

(To be precise, there are for bare fields, but by the form of renormalization, these hold also for the renormalized fields.) Then, the terms of $\hat{\delta_{B}} P$ which are linear in $A_{\mu} \& C$ come only from $\hat{\delta_{B}} \int \frac{d^{6} p}{(2 \pi)^{4}} \frac{1}{2} A_{\mu a}(-p) P^{\mu u, s b}(-p, p) A_{u b}(p)$ and that is

$$
\int \frac{d^{4} p}{(2 \pi)^{4}} f\left(p^{2}\right)(-p)_{\mu} C_{a}(-p) \Gamma^{\mu u, a b}(-p, p) A_{u b}(p)
$$

$\binom{$ We used $p^{\mu v, a b}(-p, \mu)=p^{u \mu, b a}(p,-p)$ which we nay assume }{ by definition. }

Vanishing of thisterm requires $\quad P_{\mu} p^{\mu \nu, a b}(-p, p)=0$
For $\Gamma^{\mu \nu, a b}(-p, p)=d^{a b}\left(\alpha\left(p^{2}\right) \delta^{\mu \nu}+\beta\left(p^{2}\right) p^{\mu} p^{u}\right)$, this \Rightarrow

$$
\alpha\left(p^{2}\right) p^{\nu}+\beta\left(p^{2}\right) p^{2} p^{\nu}=0
$$

ie. $\quad \alpha\left(p^{2}\right)=-p^{2} \beta\left(p^{2}\right)$.
Thus, we find

$$
\Gamma^{p u, a b}(-p, p)=\delta^{a b}\left(\rho^{2} \delta^{m v}-\rho^{m} p^{v}\right) \Pi\left(p^{2}\right) .
$$

(4) A diagramatic constraint on $\operatorname{Pgh}(-p, p)$

$$
\Gamma_{g h}(-p, p)=-p^{2}-(\cdots \times-1 p 2)(-\cdots \cdots)
$$

Any 1PT diagram is of the form

proportional to P_{μ}
$\therefore(\cdots r)(1 P 2)(-\cdots)$ vanishes if $P_{\mu}=0$

$$
\begin{aligned}
& \therefore \Gamma_{g h}(-p, p)=f_{g h}\left(p^{2}\right) i d y \Rightarrow f_{g h}\left(p^{2}\right)=0 \text { at } p^{2}=0 \\
& \therefore \Gamma_{g h}(-p, p)=p^{2} \Pi_{g h}\left(p^{2}\right) i d y .
\end{aligned}
$$

(5) More on $\Gamma_{\text {ghat }}^{\text {ma }}(-p-q, q, p)$

Recall (1)a(2): $\quad \Gamma_{g h}^{\mu a}(-p-q, q, p)=(p+q)^{\mu} C^{a}(p, q)+q^{\mu} D^{q}(p, q)$,
where $x^{a}=C^{a}(p, q) * D^{a}(p, q) \in$ End g_{c} obey

$$
A_{g} \circ X^{a} \circ A d_{g}^{-1}=X^{b}\left(A d_{y}\right)_{b}^{a} \quad \square(*)
$$

Recall $\left(A d_{g}\right)_{b}{ }^{a}$ is the representing matrix of $A d_{g}: g \rightarrow O$ with respect to a basis $\left\{e^{a} \subset y, \operatorname{Adg} e^{a}=e^{b}(A d g)_{b}^{a}\right.$.

Note that $X^{a}=a d e^{a}$ obey (() :

$$
\begin{gathered}
\text { Adggad } e^{a} A d_{g}^{-1} X=A d g\left[e^{a}, A d_{g}^{-1} X\right]=\left[A d_{g} e^{a}, X\right] \\
\\
=\left[e^{b}\left(d_{g}\right)_{b}^{a}, X\right]=\operatorname{ad} e^{b} X\left(A d_{g}\right)_{b}^{a} .
\end{gathered}
$$

Are there others?
End $g_{\mathbb{C}}$ is a representation of G by

$$
g \in G: f \in E_{n d} y_{\mathbb{C}} \longmapsto A d_{g} \circ f \circ A d_{g}^{-1},
$$

and it can be decomposed into irreducible representations.
Suppose this includes m-copies of the adjoint representation End $g_{\mathbb{C}} \cong \underbrace{g_{\mathbb{C}} \oplus \cdots \oplus \sigma_{\mathbb{C}}}_{m} \oplus$ other representations

Examples $G=S U(2)$

$$
\begin{aligned}
& \text { End } y_{\mathbb{C}}=\text { End } B \cong B \otimes B \cong \mathbb{1} \oplus B \oplus 5 . \\
& m=1 \\
& \text { - } G=\operatorname{SU}(3)
\end{aligned}
$$

Let $X_{I}^{a} \in$ End $J_{\mathbb{C}}$ be the image of $e^{a} \in g$ into the $[$-th copy $(I=0,1, \ldots, m-1)$. We regard ad $J_{\mathbb{C}}$ as the O-th copy, so that $X_{0}^{a}=a d e^{a}$. Then, we can expand

$$
C^{a}(p, q)=\sum_{I} X_{I}^{a} C_{I}(p, q), \quad D^{a}(p, q)=\sum_{I} X_{I}^{a} D_{\Sigma}(p, q) .
$$

Comment on renormalization condition
Renormalization condition is imposed just on $C_{0}(p, q)$:

$$
\left.C_{0}(p, q)\right|_{p^{2}=q^{2}=(p+q)^{2}=\mu^{2}}=-i
$$

We should not impose any condition on

$$
C_{[}(p, q) \text { with } I>0 \quad \text { \& } D_{\tau}(p, q) \quad \forall I
$$

Thus, the Condition presented at the class (= the one in the note)

$$
\left.C^{q}(p, q)\right|_{p^{2}=q^{2}=(p+q)^{2}=\mu^{2}}=-i e^{q}
$$

was too strong in general (it was $O K$ if $m=1$ eg. $G=S U(2)$).
That is corrected in the revised version of the note.

