An example
\n
$$
Q
$$
 a smooth manifold of dimension n.
\n $T: T^*Q \rightarrow Q$ its cotangent bundle.
\nOn an open subset $U \subset Q$ with a coordinate system $f(f; \neg f^*)$
\non element $p \in T^*(U)$ is expressed as
\n $p = \sum_{i} P_{i} d Q^{i}$.
\nThe function $P \mapsto P_{i} \quad on T^*(U)$ is denoted by P_{i} ,
\ni.e. $P_{i}(p) = P(\frac{Q}{2q^{i}})$.
\nThe function $q^{i} \cdot \pi \quad on T^*(U)$ is denoted by q^{i} .
\nThen $\{(\frac{q^{i}}{2}, \dots, \frac{q^{i}}{2}, \frac{p^{i}}{2})\}$ is a coordinate system on $T^*(U)$.
\nA symplectic form on $T^*(U)$ is given by
\n $W = \sum_{i} d^{i} \land d^{i}$.
\nThis does not depend on the choice of coordinate system, and
\ndetines a symplectic form on $T^*(Q)$. Thus,
\n $(T^*Q, W) = S$ a symplectic manifold.

The case of cotangent bundle

 $M = T^*Q \text{ is } P = \sum_i P_i dq^i, \quad \omega = \sum_i dq^i \wedge dP_i$ Q S G right action \sim T^*Q \bigcirc G right action via $pg = g^{-1*}p$. Let U_{ξ} be the vector field on Q generated by $\xi \in \mathfrak{I}$. Then the vector field X_{ξ} on T^kQ generated by ξ is locally expressed as X_{3} = $v_8^i(q) \frac{\partial}{\partial q^i} - \partial_i v_5^j(q) \rho_i \frac{\partial}{\partial p_i}$ \odot For $g_{\epsilon} = e^{t \frac{2}{3}}$ and for $p \in T_{q}^{k}Q$, $\cdot \frac{q^i(p g_e)}{=} q^i$ (99_{ϵ}) hence $(\chi_{\xi}^{\circ}(\gamma)_{\theta}) = \frac{d}{d\tau} \theta^{i}(\gamma_{\theta})\Big|_{\tau=\phi} = \mathcal{V}_{\xi}^{i}(\theta).$ · $P_i(P_{9_t}) = P_{9_t}((\frac{\partial}{\partial e_i})_{q_{9_t}}) = g_i^{1*}P((\frac{\partial}{\partial e_i})_{q_{9_t}}) =$ $P\left(9_{\mathfrak{c}}\times\left(\frac{\partial}{\partial\mathfrak{e}^i}\right)_{\mathfrak{q},\mathfrak{q}_\mathfrak{r}}\right)$. $(\rho_{\theta_{t}}) = \rho_{\theta_{t}} \left(\left(\frac{\partial}{\partial \tilde{\epsilon}} \right)_{\theta_{\theta_{t}}} \right) = g_{t}^{-1} \rho \left(\left(\frac{\partial}{\partial \tilde{\epsilon}'} \right)_{\theta_{\theta_{t}}} \right) = \rho$
Since $\frac{d}{dt} g_{t*}^{-1} \left(\frac{\partial}{\partial \tilde{\epsilon}'} \right)_{\theta_{\theta_{t}}} \big|_{t=0} = \mathcal{L}_{y_{\tilde{\delta}}} \left(\frac{\partial}{\partial \tilde{\epsilon}} \right)_{\theta_{t}} = -$ Since $\frac{1}{\lambda t} g^{-1}(\frac{\partial}{\partial r_i})_{qq}$ = $\mathcal{L}_{y_g}(\frac{\partial}{\partial r_i})_g = -\partial_i v_g(\frac{\partial}{\partial g_i})$ $X_{\frac{1}{3}}P_{i}(\rho) = \frac{d}{d\xi} P_{i}(\rho_{\beta\zeta})\Big|_{\tau=0} = P(-\partial_{i}U_{\beta}^{J}(\iota)\frac{\partial}{\partial \rho_{i}}) = -\partial_{i}U_{\beta}^{J}(\iota)\rho_{J}$

Then
\n
$$
i_{X_{\delta}}\omega = V_{\delta}^{i}(t) d\beta_{i} + d\ell^{i} J_{i}V_{\delta}^{j}(t) P_{j} = d(\beta_{i}V_{\delta}^{i}(t))
$$
\nThus, $\langle \mu(\rho), \xi \rangle := -\rho(V_{\delta})$ satisfies $d \langle \mu, \xi \rangle = -i_{X_{\delta}}\omega$
\nwhich is the condition (i) of moment map. Condition (ii)?
\nI.e. for $\rho \in T_{\ell}^{*}(Q, \rho g(V_{\delta}(\theta_{\delta}))) \stackrel{?}{=} P(V_{\delta \delta_{\delta}^{-1}}(\theta))$
\n
$$
\psi_{\delta}(\theta_{\delta}) = \frac{1}{\rho(\delta_{\alpha}^{-1}V_{\delta}(\theta_{\delta}))}
$$
\n
$$
V_{\delta}(\theta_{\delta}) = \frac{1}{\rho(\delta_{\alpha}^{-1}V_{\delta}(\theta_{\delta}))}
$$
\n
$$
V_{\delta}(\theta_{\delta}) = \frac{1}{\rho(\delta_{\alpha}^{-1}V_{\delta}(\theta_{\delta}))} = \frac{1}{\rho(\delta_{\alpha}^{-1}V_{\delta
$$

A moment map $M:\mathbb{T}^n\mathbb{Q}\to \mathbb{Y}^*$ is provided by $\langle \mu(\rho) \rangle$ = - $\rho(\nu_s)$

Suppose
$$
Q/G
$$
 has a structure of a smooth manifold and
\n $Q \rightarrow Q/G$ is a principal G-bundle.
\nThen, as symplectic manifest $\mu^1(0)/G$
\n \cong the (stangent bundle $T^4(Q)$)
\n \cong the (stangent bundle $T^4(Q)$)
\n \odot It is enough to prove this on each UCG/G with
\na local trivialization $Q|U \cong U \times G$.
\nThere, $T^*Q|_U \cong T^*U \times T^*G$ as a symplectic man: $6U$.
\nlet $\mu \leftrightarrow (\mu, \mu) = 0$, 93 and hence
\n $\langle \mu(\rho), 3 \rangle = -(0, 0, 0, 33) = -16(53)$.
\n $\mu(\rho) = 0 \Leftrightarrow \rho_G = 0$
\n $\therefore \mu^*(0)|_U \cong T^*U \times G$ and $\mu^*(0)|_U/G \cong T^*U$.

An example

Recall that the Tay-11.11s theory with gauge group G on
\nd-dimensional spacetime
$$
IR^4 = IR^{d-1} \times IR_+
$$
 is equivalent to
\nthe Hamiltonian system with conjugate variables $A_{ia}(x)$, $E_{jb}(x)$
\nwith $E_{jb} = A_{jb} + \sum_{j=1}^{n} A_{jb} + \sum_{k=1}^{n} A_{jb} = \sum_{j=1}^{n} (x_i - x_j)$
\n $\forall A_{ja}(x), E_{jb}(y) = d_{ij} \, d_{ik} \, \delta(x-y)$,
\n $Hami|vain$
\n $H(A, E) = \int d^4x \left(\frac{e^2}{2} \sum_i E_i(x)^2 + \frac{1}{2} \sum_i E_{ij}(x)^2 \right)$
\nwhere $F_{ij} = \partial_i A_j - \partial_j A_i + [A_i, A_j]$
\nand a constraint
\n $\Phi(x) := D \cdot E = \sum_i D_i E_i = \sum_i (\partial_i E_i + [A_i, E_i]) = o$
\nThe phase space of this theory may be identified with
\nthe cotangent bundle. T'A of the space
\n $A = \{ A \in \Omega^1(R^{4+}, \emptyset) \mid A(x) \to o \text{ as } |x| \to \infty \}$.
\n(We imposed one natural boundary condition at Spatial infinity.)
\nThe fiber direction corresponds to the field E(x).

The group $\circledg = \left\{ g : \mathbb{R}^{d-1} \to G \mid g(x) \to 1 \text{ or } |x| \to \infty \right\}$ acts on Al (hence on T^*Al) by $g: A \mapsto A^3 = 9^7A9 + 9^7d19$. For \in \in Lie \mathcal{G} , i . $e. \in \cdot \mathbb{R}^{d-1} \rightarrow \mathbb{S}$ of $E(x) \rightarrow 0$ as $|x| \rightarrow \infty$, $\langle \Phi \rangle$ ϵ > := $\int d^{2}x \ \overline{\mathcal{Q}}(x) \cdot \mathcal{C}(x) = - \int d^{2}x \ \overline{\mathcal{E}}(x) \cdot \mathcal{D} \epsilon(x)$ $= - \mathbb{E}(\delta \epsilon \mathbb{A})$ Thus, Φ is nothing but the moment map of the action $T^{\star}A \supseteq A$ and the reduced phase space is isomorphic to the cotangent bundle of Al/g : $\Phi^{\text{L}}(\text{O})/\text{g} \cong T^{\text{H}}(\text{A}/\text{g}).$ If we regard this as the physical phase space, physical states of the quantum theory are wavefunctionals on Al/g, or equivalently, the wavefunctionals on Al which are invariant under all spatial gauge transformations :

 $\overline{\psi}$ [A⁹] = $\overline{\psi}$ [A] $\forall g \in \mathcal{G}$. Alternatively, we may regard the physical phase space as $\widetilde{\Phi}^{(0)}/\mathcal{Y}_{2} \cong T^{*}(4/\mathcal{Y}_{2})$ where y_{0} is the identity component of y . Then, the physical state condition is $\Phi(A^{g}) = \Psi(A)$ $\forall g \in \mathcal{G}$ Or equivalently $\delta_{\epsilon}\Psi(A)=\circ$ \forall g-valued function $\epsilon(x)$, that is, the Gauss law constraint, $\widehat{\Phi}\Psi(A)=0$.